轴向拉、压杆的内力及应力计算

合集下载

轴力与应力计算

轴力与应力计算
FN1=F
FN3
F
2F
FN2
FN 2 F
FN 3 F
轴力图
F
2F A
2F B
F
FN
F
F x
F
例2:已知F1=10kN;F2=20kN; F3=35kN; F4=25kN;试画出图示杆件的轴力图。
A
B
F1
F2
C
D
F3
F4
A 1B
F1
1 F2
FN / kN 10
2 C 3D
2 F3 3 F4
25
P
三、轴向拉压时横截面上的应力
已知轴力的大小,是否就可以判定构件是否发生破坏?
如果轴力很大,而杆件的横截面面积也很大,杆件是 否一定发生破坏? 如果轴力很小,而杆件的横截面面积也很小,杆件是 否一定不发生破坏?
不能只根据轴力就判断杆件是否有足够的强度; 还必须用横截面上的应力来度量杆件的受力程度。 在拉压杆的横截面上,与轴力对应的应力是正应力。
Saint-Venant原理与应力集中示意图
变形示意图: P
a
b
c
P
(红色实线为变形前的线,红色虚线为红色实线变形后的形状。) 应力分布示意图:
例1、 起吊三角架,如图所示,已知AB杆由2根截 面面积为10.86cm2的角钢制成,P=130kN,=30O。 求AB杆横截面上的应力。
B
C
A
P
NAB
变形前
受载后
F
F
所有的纵向线伸长都相等,而横向线保持为直 线且与轴线垂直。
1.平面假设 (Plane assumption)
变形前原为平面的横截面,在变形后仍保持为平面, 且仍垂直于轴线.

轴向拉压杆件内力计算公式

轴向拉压杆件内力计算公式

轴向拉压杆件内力计算公式在工程力学中,轴向拉压杆件是一种常见的结构元件,它在工程实践中被广泛应用于各种机械设备和建筑结构中。

轴向拉压杆件内力计算公式是用来计算轴向拉压杆件在受力作用下内部产生的拉力或压力的公式,它是工程设计和分析中非常重要的一部分。

在本文中,我们将介绍轴向拉压杆件内力计算公式的推导和应用,希望能够帮助读者更好地理解和应用这一重要的工程知识。

一、轴向拉压杆件的受力分析。

轴向拉压杆件是一种受拉或受压的结构元件,它通常由材料制成,具有一定的截面形状和尺寸。

当轴向拉压杆件受到外部力的作用时,内部会产生拉力或压力,这种内力的大小和方向是由外部力和结构本身的特性共同决定的。

在进行轴向拉压杆件的内力计算时,需要先进行受力分析,确定受力情况和受力方向。

通常情况下,轴向拉压杆件受到的外部力可以分为两种情况,拉力和压力。

对于受拉的轴向拉压杆件,外部力的方向和内部拉力的方向相同;对于受压的轴向拉压杆件,外部力的方向和内部压力的方向相反。

在受力分析的基础上,可以得到轴向拉压杆件内力计算的基本公式:N = A σ。

其中,N为轴向拉压杆件的内力,A为截面积,σ为应力。

根据受力分析的结果,可以确定σ的正负号,从而确定N的正负号,进而确定内力的方向。

二、轴向拉压杆件内力计算公式的推导。

1. 受拉的轴向拉压杆件。

对于受拉的轴向拉压杆件,外部拉力的方向和内部拉力的方向相同,因此内力的大小可以直接由外部拉力计算得到。

假设外部拉力为P,截面积为A,根据胡克定律,可以得到应力σ=P/A,进而得到内力N=P。

因此,受拉的轴向拉压杆件内力计算公式为:N = P。

2. 受压的轴向拉压杆件。

对于受压的轴向拉压杆件,外部压力的方向和内部压力的方向相反,因此内力的大小需要考虑结构的稳定性。

假设外部压力为P,截面积为A,根据胡克定律,可以得到应力σ=P/A,进而得到内力N=P。

然而,受压的轴向拉压杆件在实际应用中往往需要考虑结构的稳定性,因此需要引入材料的材料的屈服强度和稳定性系数,从而得到更加精确的内力计算公式。

轴向拉压杆的应力

轴向拉压杆的应力

1
FN1 A1
103.9 103 N 300 106 m2
346MPa(拉)
2
FN 2 A2
120 103 N 1274.8 106 m2
94MPa(压)
30° F
2
(a)
FN1
A
30
FN 2 F
(b)
工程力学
cos
FN A
cos
cos
p cos cos2
p
sin
2
sin 2
2、符号规定
m n p
mt
⑴、α:斜截面外法线与x轴的夹角。
x 轴正向逆时针转到 n 轴“α”规定为正值;
x 轴正向顺时针转到 n 轴“α”规定为负值。 ⑵、σα:同“σ”的符号规定
⑶、τα:在保留段内任取一点,如果“τα”对其点之矩为顺 时针方向规定为正值,反之为负值。
工程力学
轴向拉压杆的应力
一、轴向拉压杆横截面上正应力的确定
推导的思路:实验→变形规律→应力的分布规律→应力的
1、实验:
计算公式
变形前
F
F
受力后
2、变形规律: 横向线——仍为平行的直线,且间距增大。 纵向线——仍为平行的直线,且间距减小。
3、平面假设:变形前的横截面,变形后仍为平面且各横截面 沿杆轴线作相对平移
8、公式Байду номын сангаас使用条件
(1) 轴向拉压杆 (2) 除外力作用点附近以外其它各点处(范围:不超过杆的横 向尺寸)--圣维南原理
二、轴向拉压杆任意斜面上应力的计算
1、斜截面上应力确定
m
m
n
(1) 内力确定:
F
F
O
FNα=FN=F

工程力学-第7章-轴向拉压杆件的强度与变形计算

工程力学-第7章-轴向拉压杆件的强度与变形计算
广 州 汽 车 学 院
7
Guang Zhou Auto College
工程力学
第7章 轴向拉压杆件的强度与变形计算
广 州 汽
斜拉桥承受拉力的钢缆 车 学 院
8
Guang Zhou Auto College
工程力学
第7章 轴向拉压杆件的强度与变形计算
广 州 汽 车 学 院9来自 7-1轴向拉压杆横截面上的应力
胡克定律



工程力学
17
轴向拉压的变形分析
P
P
A 细长杆受拉会变长变细,
P
B 受压会变短变粗
C 长短的变化,沿轴线方向, 称为纵向变形
l+Dl l
d-Dd d
D 粗细的变化,与轴线垂直,
称为横向变形
P
P
P
7-3轴向拉压杆的变形计算 胡克定律
工程力学
Guang Zhou Auto College
变形量的代数和:


Δ
l

FNi li FNi ADlEADA+i
=Dl AD DlDE DlEB Dl
FNDElDE + FNEBlEB + FNBClBC
BC

Ec AAD
Ec ADE
Es AEB
Es ABC
=1.2106 m 0.6106 m 0.285106 m 0.428106 m
广
承受轴向载荷的拉(压)杆在工程中的

应用非常广泛。

由汽缸、活塞、连
杆所组成的机构中,不

仅连接汽缸缸体和汽缸
盖的螺栓承受轴向拉力,

带动活塞运动的连杆由

讲轴向拉压杆强度计算.

讲轴向拉压杆强度计算.

P
N=266kN
max
N 4 266 103 116.2MP a 2 A 3.14 54
A
α
B P=30kN
C
一起重用支架。a= 30°,AB杆为圆截面 钢杆,1 160MPa 。BC杆为正方形木 材杆件, 2 10MPa 。请根据强度条 件设计AB杆直径d与BC杆边长a。
L x A B
分析:
V ABDLBD;
P C
ABD N BD / ; LBD h / sin 。

h
D
L x
XA
A
B
YA

NBD
P
C
解: BD杆内力N( ): 取AC为研究对象,如图
mA 0 , (NBDsin ) (hctg ) Px
PL NBD hcos
HC
C
RC
③应力:

N
max
N 4P A d2
4 26.3 103 MPa 2 131 3.14 0.016
max
131MPa 170 MPa
此杆满足强度要求,是安全的。
[例] 简易起重机构如图,AC为刚性梁,吊车与吊起重物总重
为P,为使 BD杆最轻,角 应为何值? 已知 BD 杆的许用应力 为[]。
2.5 轴向拉压(杆)强 度计算
一、许用应力与安全系数
1.材料的极限应力 塑性材料: σ°=σs 脆性材料: σ°=σb 2.许用应力
为了保证构件能正常地工作,应当把最大工作应 力限制在一定的范围之内,这个限制值称为材料在 拉伸(或压缩)时的许用应力。用 [σ]表示。
3.安全系数n

第2讲 轴向拉压杆的内力和应力

第2讲 轴向拉压杆的内力和应力

解:当载荷W移到A点时,斜杆AB
受到拉力最大,设其值为Fmax。
讨论横梁平衡 Mc 0
W
Fmax Fmax sin AC W AC 0
FmaxA
Fmax

W
sin
W
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
0.8m
B C
Fmax
FRCx C FRCy
d

A
1.9m
拉伸
F
F
压缩
F
F
目录
§2.1 轴向拉伸与压缩的概念和实例 举例说明:
A
计算简图
P1
拉杆
P1
B P2
压杆
P2
C
F
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
m
F m
F
FN
FN
Fx 0
FN F 0 FN F
1、截面法求内力
F (1)假想沿m-m横截面将
杆切开
(2)留下左半段或右半段
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
A
FN1 28.3kN FN 2 20kN
1
2、计算各杆件的应力。
45° B
C
2
FN1
yF
FN 2 45° B x
F
Байду номын сангаас1

FN1 A1


28.3103 202 106

4
90106 Pa 90MPa
2

FN 2 A2

(3)内力均匀分布,各点正应力相等,为常量
ac

轴向拉伸和压缩—拉(压)杆的强度计算(建筑力学)

轴向拉伸和压缩—拉(压)杆的强度计算(建筑力学)

轴向拉伸与压缩
例7-12 图示三角支架,在节点A处受铅直荷载FP作用。已 知AB为圆截面钢杆,直径d=30mm,许用应力[σ]=160MPa, AC为正方形木杆,边长a=100mm,许用压应力[σc]=10MPa试 求许用荷载[ FP ]。
解 (1)计算杆的轴力
由∑Fy=0 -FNACsin30°-FP=0
A FNAB 63 103 mm2 393.8mm2
[ ] 160
轴向拉伸与压缩
当拉杆选用角钢时,每根角型的最小面积应为
A1
A 2
393.8 2
mm 2
196.9mm2
查型钢表,选用两根25×4的2.5号等边角钢。
A1=185.9mm2 故此时拉杆的面积为
A=2×185.9mm2=371.8mm2>370.6mm2 满足强度要求。
材料的安全系数比塑性材料的大。建筑工程中,一般,取nS =1.4~1.7,nb=2.5~3.0。
轴向拉伸与压缩
3. 强度条件 为了保证轴向拉(压)杆在承受外力作用时能安全正常地
使用,不发生破坏,必须使杆内的最大工作应力不超过材料 的许用应力,即
σmax≤[σ]
塑性材料: 脆性材料:
max
FN max A
解(1)先求支座反力。
FAy = FBy= 0.5q l = 0.5×10×8.4 = 42kN
轴向拉伸与压缩
(2)再求拉杆的轴力。
用截面法取左半个屋架为研究对 象,如图示。
由 MC 0
FNAB
h
FAy
l 2
q
l 2
l 4
0
FNAB
42 42 10 4.2 2.1 kN 1.4
63kN
(3)校核拉杆的强度。

第二章 轴向拉压应力与材料的力学性能

第二章 轴向拉压应力与材料的力学性能

拉压杆斜截面上的应力P
A为横截面的面积 A为斜截面的面积 横截面上的正应力 斜截面上的应力
N p A P P cos cos A A cos
P A
斜截面上的正应力和剪应力
p cos cos2 p sin cos sin
P
1 1 P A N1 3P C 2 N2
A
∴N2=P-3P= -2P
2
3、内力图
P A l P
3P
B
注意:
1 、一次只能取一个截面, 将原构件分成两部分。
C
l

O
2、内力方向设为正向后建立平 衡方程求解。(说明+-)
3 、分离体图与原图上下对 齐,截面位置一目了然。 4 、轴力图大小近似按比例, 也要与上图对齐。 练习:
1、变形规律试验及平面假设:
a c
P
b d
变形前
a´ c´
b´ d´
受力后 P
2、变形规律: 横向线——仍为平行的直线,且间距增大。 纵向线——仍为平行的直线,且间距减小。 平面假设:原为平面的横截面在变形后仍为平面. N 3、横截面上的应力:均匀分布 A
例2-4:计算下图中指定截面上的应力。AB段与CD段的横截面积均 为20mm2,AB段横截面积为 10 mm2 ,
C
已知:三角架 ABC 的〔σ 〕=120 MPa,AB 杆为 2 根 80*80*7 的等边角钢,AC 为 2 根 10 号槽钢,AB、AC 两杆的夹角为300 。 求:此结构所能承担的最大外荷载 Fmax
解: 1、F 与 FN 的关系
Y
0
X 0 F Y 0 F
NAC
FNAB cos30 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:(1)计算各段的轴力
AB段:用1-1截面在AB段内将杆截开,取左段为研究对象,以N1表示截面上的轴力,并假设为拉力。写出平
衡方程: ∑X=0,N1+P1=0
得 N1=-P1=-20KN 负号表示AB段轴力N1实际为压力。
BC段:同理写出平衡方程: ∑X=0,N2+P1-P2=0
得 N2=-P1+P2=-20+30=10KN 正号表示BC段轴力N2实际为拉力。
面垂直的应力为正应力,与截面相切的应力为剪应力。轴向拉伸、压缩时,杆件
截面上各点处产生正应力,且大小相等。若应力用σ表示,横截面积为A,轴力
为N,则
N
A
正应力的正负号规定:拉应力为正,压应力为负。
课题七 轴向拉、压杆的内力及应力计算
例:如图7-2a悬臂梁,已知P1=20KN,P2=30KN,P3=10KN,试画出杆的轴力图。
课题七 轴向拉、压杆的内力及应力计算
三、轴力图
表明沿杆长各横截面轴力变化规律的图形称为轴力图。用平行于杆轴线的坐 标表示横截面的位置,用垂直于杆轴线的坐标表示横截面上的轴力,按选定的比 例尺把正轴力画在轴的上方,负轴力画在轴的下方,并连成直线,就得到轴力 图。
四、轴向拉、压杆横截面上的应力
单位面积课题七 轴向拉、压杆的内力及应力计算
一、轴向拉伸和压缩
受力特点:直杆的两端沿杆轴线方向作用一对大小相等,方向相反的力。 变形特点:在外力作用下产生轴线方向的伸长或缩短。 当作用力背离杆端时,作用力是拉力,杆件产生伸长变形,叫做轴向拉伸。 见图7-1a 当作用力指向杆端时,作用力是压力,杆件产生压缩变形,叫做轴向压缩。 见图7-1b
图 7-1
课题七 轴向拉、压杆的内力及应力计算
二、轴向拉、压杆的内力——轴力
1、用截面法求轴力 截面法是计算各种内力的基础方法,其步骤如下: a、切开:在需求内力的截面处假设将杆件切成两部分。 b、代替:取一部分为研究对象,并用内力代替弃去部分对研究部分的作用。 c、平衡:对研究部分建立平衡方程求解内力。 轴力的正负号规定:当杆件受拉而伸长时,轴力为拉力,其方向背离截面, 取正号;当杆件受压而缩短时,轴力为压力,其方向指向截面,取负号。
CD段:同理可得:
N3=-P1+P2-P3=-20+30-10=0KN CD段轴力N3为零。
(2)画轴力图
图7-2
以平行于杆轴的X轴为横坐标,垂直于杆轴的N轴为纵坐标,按一定比例将各段轴力标在坐标上,可作出轴力
图。
相关文档
最新文档