材料力学 轴向拉压 题目+答案详解

合集下载

轴向拉压习题答案2

轴向拉压习题答案2

第2章 轴向拉伸和压缩主要知识点:(1)轴向拉伸(压缩)时杆的内力和应力;(2)轴向拉伸(压缩)时杆的变形;(3)材料在轴向拉伸和压缩时的力学性能;(4)轴向拉压杆的强度计算;(5)简单拉压超静定问题。

轴向拉伸(压缩)时杆的变形4. 一钢制阶梯杆如图所示。

已知沿轴线方向外力F 1=50kN ,F 2=20kN ,各段杆长l 1=100mm ,l 2=l 3=80mm ,横截面面积A 1=A 2=400mm 2,A 3=250mm 2,钢的弹性模量E=200GP a ,试求各段杆的纵向变形、杆的总变形量及各段杆的线应变。

解:(1)首先作出轴力图如图4-11所示,由图知kN F N 301-=,kN F F N N 2032==。

(2)计算各段杆的纵向变形m m EA l F l N 5693311111075.31040010200101001030---⨯-=⨯⨯⨯⨯⨯⨯-==∆ m m EA l F l N 569332222100.2104001020010801020---⨯=⨯⨯⨯⨯⨯⨯==∆(3)杆的总变形量m l l l l 53211045.1-⨯=∆+∆+∆=∆。

(4)计算各段杆的线应变 451111075.310.01075.3--⨯-=⨯-=∆=l l ε 45222105.208.0100.2--⨯=⨯=∆=l l ε 45333100.408.0102.3--⨯=⨯=∆=l l ε材料在轴向拉伸和压缩时的力学性能5. 试述低碳钢拉伸试验中的四个阶段,其应力—应变图上四个特征点的物理意义是什么?答:低碳钢拉伸试验中的四个阶段为弹性阶段、屈服阶段、强化阶段和颈缩阶段。

在弹性阶段,当应力小于比例极限σp 时,材料服从虎克定律;当应力小于弹性极限σe 时,材料的变形仍是弹性变形。

屈服阶段的最低点对应的应力称为屈服极限,以σs 表示。

强化阶段最高点所对应的应力称为材料的强度极限,以σb 表示,它是材料所能承受的最大应力。

习题解答1(轴向拉压)

习题解答1(轴向拉压)

3
初始应力对杆件稳定性的影响
初始应力会降低杆件的稳定性,使杆件在受载时 更容易发生失稳现象。
06
典型例题解析与讨论
简单载荷作用下杆件问题解析
轴向拉伸与压缩基本概念
通过例题解析,阐述轴向拉伸与压缩的基本概念,包括受力特点、 变形特点等。
截面法求内力
通过具体例题,讲解如何利用截面法求解杆件在简单载荷作用下的 内力,包括轴力和轴力图。
02
轴向拉压杆件内力分析
内力计算方法
截面法
通过截取杆件的一部分,分析截面上的 内力和外力平衡关系,从而求得杆件的 内力。
VS
节点法
对于由多个杆件组成的结构,可以通过分 析节点处的平衡关系,求得各杆件的内力 。
截面法求内力
截开杆件
在需要求内力的截面处,假想地将杆件截开, 取其中一部分为研究对象。
01
轴向变形与位移是密切相关的,轴向变形是引起位移的主要 因素之一。
02
在小变形条件下,轴向变形与位移成正比关系;而在大变形 条件下,由于材料非线性等因素的影响,两者之间的进一步研究轴向变形与位移 之间的关系,为工程应用提供更为准确的理论依据。
04
轴向拉压杆件强度条件与 刚度条件
超静定问题解析
通过具体例题,讲解超静定问题的求解方法,包括力法和 位移法。讨论超静定结构的特点及在工程中的应用。
特殊情况下杆件问题解析
温度变化对杆件的
影响
解析温度变化对杆件内力和变形 的影响,以及如何处理由此产生 的附加应力和变形。结合例题进 行讨论。
初始应力对杆件的
影响
阐述初始应力对杆件承载能力和 稳定性的影响,以及如何在设计 和分析中考虑初始应力的影响。 通过具体例题进行解析。

材料力学第二章 轴 向拉压习题及答案

材料力学第二章 轴 向拉压习题及答案

第二章轴向拉压一、选择题1.图1所示拉杆的外表面上有一斜线,当拉杆变形时,斜线将( D)A.平动B.转动C.不动D.平动加转动2.轴向拉伸细长杆件如图2所示,其中1-1面靠近集中力作用的左端面,则正确的说法应是( C)A.1-1、2-2面上应力皆均匀分布B.1-1、2-2面上应力皆非均匀分布C.1-1面上应力非均匀分布,2-2面上应力均匀分布D.1-1面上应力均匀分布,2-2面上应力非均匀分布(图1)(图2)3.有A、B、C三种材料,其拉伸应力—应变实验曲线如图3所示,曲线( B)材料的弹性模量E大,曲线( A )材料的强度高,曲线( C)材料的塑性好。

4.材料经过冷作硬化后,其( D)。

A.弹性模量提高,塑性降低B.弹性模量降低,塑性提高C.比例极限提高,塑性提高D.比例极限提高,塑性降低5.现有钢、铸铁两种杆材,其直径相同。

从承载能力与经济效益两个方面考虑,图4所示结构中两种合理选择方案是( A)。

A.1杆为钢,2杆为铸铁B.1杆为铸铁,2杆为钢C.2杆均为钢D.2杆均为铸铁(图3)(图4)(图5)6.在低碳钢的拉伸试验中,材料的应力变化不大而变形显著增加的是(B)。

A. 弹性阶段;B.屈服阶段;C.强化阶段;D.局部变形阶段。

7.铸铁试件压缩破坏(B)。

A. 断口与轴线垂直;B. 断口为与轴线大致呈450~550倾角的斜面;C. 断口呈螺旋面;D. 以上皆有可能。

8.为使材料有一定的强度储备,安全系数取值应( A )。

A .大于1; B. 等于1; C.小于1; D. 都有可能。

9. 等截面直杆在两个外力的作用下发生轴向压缩变形时,这对外力所具备的特点一定是等值、( C )。

A 反向、共线B 反向,过截面形心C 方向相对,作用线与杆轴线重合D 方向相对,沿同一直线作用10. 图6所示一阶梯形杆件受拉力P的作用,其截面1-1,2-2,3-3上的内力分别为N 1,N 2和N 3,三者的关系为( B )。

《材料力学》第2章轴向拉(压)变形习题解答

《材料力学》第2章轴向拉(压)变形习题解答

其方向。 解:斜截面上的正应力与切应力的公式为:
ασσα20cos = αστα2sin 2 = 式中,MPa mm N A N 1001001000020===σ,把α的数值代入以上二式得:
[习题 2-7] 一根等直杆受力如图所示。已知杆的横截面面积 A 和材料的弹性模量 E 。试作轴力图,并求杆端点 D 的位移。 解: (1)作轴力图
[习题 2-9] 一根直径 mm d 16=、长 m l 3=的圆截面杆,承受轴 向拉力 kN F 30=,其伸长为 mm l 2.2=?。试求杆横截面上的应 力与材料的弹性模量 E 。 解:(1)求杆件横截面上的应力 MPa mm N A N 3.1491614.34 110302 23=???==σ (2)求弹性模量 因为:EA Nl l = ?, 所以:GPa MPa l l l A l N E 6.203)(9.2035902 .23000 3.149==?=??=???=σ。 [习题 2-10] (1)试证明受轴向拉伸(压缩)的圆截面杆横截 面沿圆周方向的线应变 s ε等于直径方向的线应变 d ε。 (2)一根直径为 mm d 10=的圆截面杆,在轴向力 F 作用下,直 径减小了 0.0025mm 。如材料 的弹性模量 GPa E 210=,泊松比 3.0=ν,试求该轴向拉力 F 。 (3)空心圆截面杆,外直径 mm D 120=,内直径 mm d 60=,材 料的泊松比 3.0=ν。当其轴向拉伸时,已知纵向线应变 001.0=, 试求其变形后的壁厚。 解:(1)证明 d s εε= 在圆形截面上取一点 A ,连结圆心 O 与 A 点,则 OA 即代表直 径方向。过 A 点作一条直线 AC 垂直于 OA ,则 AC 方向代表圆周方向。νεεε-==AC s(泊

轴向拉压习题答案2

轴向拉压习题答案2

第2章 轴向拉伸和压缩主要知识点:(1)轴向拉伸(压缩)时杆的内力和应力;(2)轴向拉伸(压缩)时杆的变形;(3)材料在轴向拉伸和压缩时的力学性能;(4)轴向拉压杆的强度计算;(5)简单拉压超静定问题。

轴向拉伸(压缩)时杆的变形4. 一钢制阶梯杆如图所示。

已知沿轴线方向外力F 1=50kN ,F 2=20kN ,各段杆长l 1=100mm ,l 2=l 3=80mm ,横截面面积A 1=A 2=400mm 2,A 3=250mm 2,钢的弹性模量E=200GP a ,试求各段杆的纵向变形、杆的总变形量及各段杆的线应变。

解:(1)首先作出轴力图如图4-11所示,由图知kN F N 301-=,kN F F N N 2032==。

(2)计算各段杆的纵向变形m m EA l F l N 5693311111075.31040010200101001030---⨯-=⨯⨯⨯⨯⨯⨯-==∆ m m EA l F l N 569332222100.2104001020010801020---⨯=⨯⨯⨯⨯⨯⨯==∆(3)杆的总变形量m l l l l 53211045.1-⨯=∆+∆+∆=∆。

(4)计算各段杆的线应变 451111075.310.01075.3--⨯-=⨯-=∆=l l ε 45222105.208.0100.2--⨯=⨯=∆=l l ε 45333100.408.0102.3--⨯=⨯=∆=l l ε材料在轴向拉伸和压缩时的力学性能5. 试述低碳钢拉伸试验中的四个阶段,其应力—应变图上四个特征点的物理意义是什么?答:低碳钢拉伸试验中的四个阶段为弹性阶段、屈服阶段、强化阶段和颈缩阶段。

在弹性阶段,当应力小于比例极限σp 时,材料服从虎克定律;当应力小于弹性极限σe 时,材料的变形仍是弹性变形。

屈服阶段的最低点对应的应力称为屈服极限,以σs 表示。

强化阶段最高点所对应的应力称为材料的强度极限,以σb 表示,它是材料所能承受的最大应力。

轴向拉压习题及解答

轴向拉压习题及解答

5-1 试求图示各杆的轴力,并指出轴力的最大值。

解:(a)(1) 用截面法求内力,取1-1、2-2截面;(2) 取1-1截面的左段; 110 0 xN N FF F F F =-==∑(3) 取2-2截面的右段;220 0 0xN N FF F =-==∑(4) 轴力最大值:max N F F =(b)(1) 求固定端的约束反力;0 20 xR R FF F F F F =-+-==∑(2) 取1-1截面的左段;110 0 xN N FF F F F =-==∑(a)(c) (d)N 1F RF N 1220 0 xN R N R FF F F F F =--==-=-∑(4) 轴力最大值:max N F F =(c)(1) 用截面法求内力,取1-1、2-2、3-3截面;(2) 取1-1截面的左段;110 20 2 xN N FF F kN =+==-∑(3) 取2-2截面的左段;220 230 1 xN N FF F kN =-+==∑(4) 取3-3截面的右段;330 30 3 xN N FF F kN =-==∑(5) 轴力最大值:max 3 N F kN =(d)(1) 用截面法求内力,取1-1、2-2截面;FRF N 21 1F N 1N 2F N 3110 210 1 xN N FF F kN =--==∑(2) 取2-2截面的右段;220 10 1 xN N FF F kN =--==-∑(5) 轴力最大值:max 1 N F kN =5-2 试画出8-1所示各杆的轴力图。

解:(a)(b)(c) (d)F N1F N 2FFFFF 1kN5-5 图示阶梯形圆截面杆,承受轴向载荷F 1=50 kN 与F 2作用,AB 与BC 段的直径分别为d 1=20 mm 和d 2=30 mm ,如欲使AB 与BC 段横截面上的正应力相同,试求载荷F 2之值。

解:(1) 用截面法求出1-1、2-2截面的轴力;11212 N N F F F F F ==+(2) 求1-1、2-2截面的正应力,利用正应力相同;311215010159.210.024N F MPa A σπ⨯===⨯⨯32221225010159.210.034N F F MPa A σσπ⨯+====⨯⨯262.5F kN ∴=5-6 题8-5图所示圆截面杆,已知载荷F 1=200 kN ,F 2=100 kN ,AB 段的直径d 1=40 mm ,如欲使AB 与BC 段横截面上的正应力相同,试求BC 段的直径。

《材料力学》第2章 轴向拉压变形 习题解

《材料力学》第2章 轴向拉压变形 习题解

第二章轴向拉(压)变形[习题2-1] 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。

(a )解:(1)求指定截面上的轴力 FN =-11FF F N -=+-=-222(2)作轴力图轴力图如图所示。

(b )解:(1)求指定截面上的轴力 FN 211=-2222=+-=-F F N (2)作轴力图FF F F N =+-=-2233 轴力图如图所示。

(c )解:(1)求指定截面上的轴力 FN 211=-FF F N =+-=-222(2)作轴力图FF F F N 32233=+-=- 轴力图如图所示。

(d )解:(1)求指定截面上的轴力 FN =-11F F a aFF F qa F N 22222-=+⋅--=+--=-(2)作轴力图 中间段的轴力方程为: x aFF x N ⋅-=)(]0,(a x ∈轴力图如图所示。

[习题2-2] 试求图示等直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。

若横截面面积,试求各横截面上的应力。

2400mm A =解:(1)求指定截面上的轴力kNN 2011-=- )(10201022kN N -=-=-)(1020102033kN N =-+=-(2)作轴力图轴力图如图所示。

(3)计算各截面上的应力MPa mm N A N 504001*********-=⨯-==--σMPa mm N A N 254001010232222-=⨯-==--σMPamm N A N 254001010233333=⨯==--σ[习题2-3] 试求图示阶梯状直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。

若横截面面积,,,并求各横截面上的应力。

21200mm A =22300mm A =23400mm A =解:(1)求指定截面上的轴力kNN 2011-=-)(10201022kN N -=-=-)(1020102033kN N =-+=-(2)作轴力图轴力图如图所示。

材料力学 中国建筑工业出版社第二章 轴向拉压习题答案

材料力学 中国建筑工业出版社第二章 轴向拉压习题答案

2-1a 求图示各杆指截面的轴力,并作轴力图。

(c ')(e ')(d ')N (kN)205455(f ')解:方法一:截面法(1)用假想截面将整根杆切开,取截面的右边为研究对象,受力如图(b)、(c)、(d)、(e)所示。

列平衡方程求轴力: (b) 图:)(20020011拉kN N NX =→=-→=∑(c) 图:)(5252002520022压kN N NX -=-=→=--→=∑(d) 图:)(455025200502520033拉kN N NX =+-=→=-+-→=∑(e) 图:)(540502520040502520044拉kN N NX =-+-=→=--+-→=∑(2)杆的轴力图如图(f )所示。

方法二:简便方法。

(为方便理解起见,才画出可以不用画的 (b ‘)、(c ‘)、(d ‘)、(e ‘) 图,作题的时候可用手蒙住丢弃的部份,并把手处视为固定端)(1)因为轴力等于截面一侧所有外力的代数和:∑=一侧FN 。

故:)(201拉kN N =)(525202压kN N -=-=)(455025203拉kN N =+-=)(5405025204拉kN N =-+-=(2)杆的轴力图如图(f ‘)所示。

2-2b 作图示杆的轴力图。

(c)图:(b)图:(3)杆的轴力图如图(d )所示。

2-5 图示两根截面为100mm ⅹ100mm 的木柱,分别受到由横梁传来的外力作用。

试计算两柱上、中、下三段的应力。

(b)(c)(d)(f)题2-5-N图(kN)6108.5N图(kN)326.5-解:(1)梁与柱之间通过中间铰,可视中间铰为理想的光滑约束。

将各梁视为简支梁或外伸梁,柱可视为悬臂梁,受力如图所示。

列各梁、柱的平衡方程,可求中间铰对各梁、柱的约束反力,计算结果见上图。

(2)作柱的轴力图,如(e)、(f)所示。

(3)求柱各段的应力。

解:(1)用1-1截面将整个杆切开,取左边部分为研究对象;再用x -x 截面整个杆切开,取右边部分为研究对象,两脱离体受力如图(b)、(c),建立图示坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2-4. 图示结构中,1、2两杆的横截面直径分别为10mm 和20mm ,试求两杆内
的应力。

设两根横梁皆为刚体。

解:(1)以整体为研究对象,易见A 处的水平约束反力为零; (2)以AB 为研究对象
由平衡方程知
0===A B B R Y X
(3)以杆BD
由平衡方程求得
KN
N N N
Y KN
N N
m
C
200
10 01001101 0212
11==--===⨯-⨯=∑∑
(4)杆内的应力为
1
MPa A N MPa A N 7.6320
41020127104101023
2222
3111=⨯⨯⨯==
=⨯⨯⨯==πσπσ
2-19. 在图示结构中,设AB 和CD 为刚杆,重量不计。

铝杆EF 的l 1=1m ,A 1=500mm 2,
E 1=70GPa 。

钢杆AC 的l 2=,A 2=300mm 2,E 2=200GPa 。

若载荷作用点G 的垂直位移不得超过。

试求P 的数值。

解:(1)由平衡条件求出EF 和AC 杆的内力
P N N N P N N AC EF AC
4
3
32 2112=====
(2)求G 处的位移
2
2221111212243)ΔΔ23
(21)ΔΔ(21Δ21ΔA E l N A E l N l l l l l l A C G +
=+=+== (3)由题意
kN
P P P A E Pl A E Pl mm
l G 1125.2300
102001500500107010009212143435.23
3222111≤∴≤⨯⨯⨯+⨯⨯⨯⨯=⨯⨯+⨯⨯≤ 2-27. 在图示简单杆系中,设AB 和AC 分别是直径 为20mm 和24mm 的圆截面
杆,E=200GPa ,P=5kN ,试求A 点的垂直位移。

解:(1)以铰A 为研究对象,计算杆AB 和杆AC 的受力
kN N kN N AC AB 66.3 48.4==
(2)两杆的变形为
()伸长mm πEA l N l AB
AB
AB AB 201.0420
1020045cos 2000
1048.4230
3=⨯⨯
⨯⨯
⨯==
Δ ()缩短mm πEA l N l AC
AC AC AC 0934.0424
1020030cos 2000
1066.3230
3=⨯⨯
⨯⨯
⨯==
Δ (3)如图,A 点受力后将位移至A ’,所以A 点的垂直位移为AA ’’
mm
ctg A A l A A AA A A mm
A A ctg A A ctg A A A mm AA AA AA AA A A A A l l A
B A AB A
C 249.00355.0284.0 4545sin /Δ 035.0 4530A 0972.030sin /45sin /A
ΔΔAA ΔAA 00330043010243434321=-='''-=''-=''=∴='''∴'''+'''==-=-='==δΘ又中在图中
2-36. 在图示结构中,设AC 梁为刚杆,杆件1、2、3的横截面面积相等,材料
相同。

试求三杆的轴力。

解:(1)以刚杆AC 为研究对象,其受力和变形情况如图所示
(2)由平衡方程
2 0)(0
03
2
3
2
1
=+==-++=∑∑a N a N F m P N N N Y A
ρ
(3)由变形协调条件
Δ2ΔΔ 231l l l =+
(4)由物理关系
Δ Δ Δ332211EA
l N l EA l
N l EA l N l ===
(5)联立求解得
P N P N P N 6
1 31 65321-===
2-38. 图示支架的三根杆的材料相同,杆1的横截面面积为200mm 2,杆2为
300mm 2,杆3为400mm 2。

若P=30kN ,试求各杆内的应力。

解:(1)铰A 的受力及变形如图所示
(2)由平衡方程
30sin )( 0 030cos 30cos 00
310
1
032=-+==-+=∑∑P N N Y N N N X
(3)由变形几何关系
N1
2
310
21
0232
1310
1
40
21Δ3ΔΔ30sin 30cos ΔΔ30cos ΔΔ30sin 30cos Δl l l l l l l A A A A AA AA l AA +=∴⋅-=+
===
(4)由物理关系
2
313
3332222111130cos Δ Δ Δl l l EA l N l EA l
N l EA l N l =
====
(5)得补充方程
022321=--N N N
(6)解联立方程得
)(64.34 )(04.8 )(36.25321受压受拉受拉KN N KN N KN N ===
(7)计算各杆应力
MPa A N MPa A N MPa A N 6.86 8.26 1273
3322
2111-======σσσ
2-40. 阶梯形钢杆的两端在t 1=5o C 时被固定,杆件的A 1=500mm 2,A 2=1000mm 2。

当温度升高到t 2=25o C 时,试求杆内各部分的应力。

设钢的E=200GPa ,=×10-6/o C 。

解:阶梯杆的受力如图所示,由平衡条件可得 由平衡条件可得
21R R =
由温度升高引起的阶梯杆伸长为
a t t tl l t 2)(ΔΔ12-==αα
由两端反力引起的阶梯杆缩短为
2
211ΔEA a
R EA a R l +
=
由变形关系
0ΔΔ=-t l l
求得约束力
KN R R 3.3321==
计算应力
KN A R MPA A R 3.33 7.662
1
2111-=-=-=-=σσ
2-42. 在图示结构中,1、2两杆的抗拉刚度同为E 1A 1,3杆为E 3A 3。

3杆的长度
为l +,其中为加工误差。

试求将3杆装入AC 位置后,1、2、3杆的内力。

解:3杆装入后,三杆的铰接点为A 1,此时3杆将缩短,而1杆和2杆将伸长,
A 1受力分析
由平衡方程
N1
N3
00 0X 321
12=-+==-=∑∑N N N
Y N N
由变形谐调条件
αδcos )Δ(Δ31l l -=
由物理关系
α
cos Δ Δ Δ3
213
33331122211111l l l A E l N l A E l
N l A E l N l =
====
得补充方程
αδcos )(3
33111
1A E l N A E l N -= 联立求解三根杆的内力
)
cos 2(cos 2)cos 2(cos 332112
33113332112331121A E A E l A E A E N A E A E l A E A E N N +=
+=
=ααδααδ。

相关文档
最新文档