材料力学轴向拉压
合集下载
材料力学(机械类)第二章 轴向拉伸与压缩

第
二
章
拉伸压缩与剪切
1
பைடு நூலகம்
§2-1
轴向拉伸与压缩的概念和实例
轴向拉伸——轴力作用下,杆件伸长 (简称拉伸) 轴向压缩——轴力作用下,杆件缩短 (简称压缩)
2
拉、压的特点:
1.两端受力——沿轴线,大小相等,方向相反 2. 变形—— 沿轴线
3
§2-2 轴向拉伸或压缩时横截面上的内力和应力
1 、横截面上的内力
A3
2
l1 l2 y AA3 A3 A4 sin 30 tan 30 2 1.039 3.039mm
A
A A4
AA x2 y2 0.6 2 3.039 2 3.1mm
40
目录
例 2—5 截面积为 76.36mm² 的钢索绕过无摩擦的定滑轮 F=20kN,求刚索的应力和 C点的垂直位移。 (刚索的 E =177GPa,设横梁ABCD为刚梁)
16
§2-4
材料在拉伸时的力学性能
材料的力学性能是指材料在外力的作用下表现出的变 形和破坏等方面的特性。
现在要研究材料的整个力学性能(应力 —— 应变):
从受力很小
破坏
理论上——用简单描述复杂
工程上——为(材料组成的)构件当好医生
17
一、 低碳钢拉伸时的力学性能 (含碳量<0.3%的碳素钢)
力均匀分布于横截面上,σ等于常量。于是有:
N d A d A A
A A
得应力:
N A
F
FN
σ
10
例题2-2
A 1
45°
C
2
二
章
拉伸压缩与剪切
1
பைடு நூலகம்
§2-1
轴向拉伸与压缩的概念和实例
轴向拉伸——轴力作用下,杆件伸长 (简称拉伸) 轴向压缩——轴力作用下,杆件缩短 (简称压缩)
2
拉、压的特点:
1.两端受力——沿轴线,大小相等,方向相反 2. 变形—— 沿轴线
3
§2-2 轴向拉伸或压缩时横截面上的内力和应力
1 、横截面上的内力
A3
2
l1 l2 y AA3 A3 A4 sin 30 tan 30 2 1.039 3.039mm
A
A A4
AA x2 y2 0.6 2 3.039 2 3.1mm
40
目录
例 2—5 截面积为 76.36mm² 的钢索绕过无摩擦的定滑轮 F=20kN,求刚索的应力和 C点的垂直位移。 (刚索的 E =177GPa,设横梁ABCD为刚梁)
16
§2-4
材料在拉伸时的力学性能
材料的力学性能是指材料在外力的作用下表现出的变 形和破坏等方面的特性。
现在要研究材料的整个力学性能(应力 —— 应变):
从受力很小
破坏
理论上——用简单描述复杂
工程上——为(材料组成的)构件当好医生
17
一、 低碳钢拉伸时的力学性能 (含碳量<0.3%的碳素钢)
力均匀分布于横截面上,σ等于常量。于是有:
N d A d A A
A A
得应力:
N A
F
FN
σ
10
例题2-2
A 1
45°
C
2
材料力学第3章 轴向拉压变形

Fy 0 :FN1 sin 30 FN3 sin 30 F
(2) 变形协调方程
Δl2 Δl1 Δl3 Δl2 tan30 sin 30 sin 30 tan30
秦飞 编著《材料力学》 第3章 轴向拉压变形
31
3.4 拉压杆静不定问题的解法
例题3-5
(3) 利用物性关系,用力表示变形协调方程
切
B点水平位移:
线 代
圆
Fa
弧
Bx BB1 l1 EA ()
B点铅垂位移:
By
BB'
l2 sin 45
l1
tan
45
(1
2
2) Fa EA
()
秦飞 编著《材料力学》 第3章 轴向拉压变形
19
3.3 桁架的节点位移
例题3-3
图示托架,由横梁AB与斜撑杆CD所组成,并承受集中载荷
2
3.1拉压杆的轴向变形与横向变形
轴向应变: l 胡克定律: FN
l
E EA
所以得到: l FNl EA
(拉压杆胡克定律)
l FNl EA
EA为拉压刚度,只与材料和横截面面积有关。
秦飞 编著《材料力学》 第3章 轴向拉压变形
3
3.1拉压杆的轴向变形与横向变形
(2)补充方程-变形协调方程(compatibility equation)
l1
tan
l2
sin
l3
秦飞 编著《材料力学》 第3章 轴向拉压变形
25
3.4 拉压杆静不定问题 解法
(3)物性(物理)关系
l1
FN1l1 E1 A1
(2) 变形协调方程
Δl2 Δl1 Δl3 Δl2 tan30 sin 30 sin 30 tan30
秦飞 编著《材料力学》 第3章 轴向拉压变形
31
3.4 拉压杆静不定问题的解法
例题3-5
(3) 利用物性关系,用力表示变形协调方程
切
B点水平位移:
线 代
圆
Fa
弧
Bx BB1 l1 EA ()
B点铅垂位移:
By
BB'
l2 sin 45
l1
tan
45
(1
2
2) Fa EA
()
秦飞 编著《材料力学》 第3章 轴向拉压变形
19
3.3 桁架的节点位移
例题3-3
图示托架,由横梁AB与斜撑杆CD所组成,并承受集中载荷
2
3.1拉压杆的轴向变形与横向变形
轴向应变: l 胡克定律: FN
l
E EA
所以得到: l FNl EA
(拉压杆胡克定律)
l FNl EA
EA为拉压刚度,只与材料和横截面面积有关。
秦飞 编著《材料力学》 第3章 轴向拉压变形
3
3.1拉压杆的轴向变形与横向变形
(2)补充方程-变形协调方程(compatibility equation)
l1
tan
l2
sin
l3
秦飞 编著《材料力学》 第3章 轴向拉压变形
25
3.4 拉压杆静不定问题 解法
(3)物性(物理)关系
l1
FN1l1 E1 A1
材料力学课件-第三章-轴向拉压变形

Δ
F
f
o
d
A
d
•弹性体功能原理:Vε W ,
f df
• 拉压杆应变能
2 FN l V ε 2 EA
Page28
BUAA
MECHANICS OF MATERIALS
*非线性弹性材料
F
f
•外力功计算
W fd
0
F W 2
•功能原理是否成立? •应变能如何计算计算?
dx
dz
dy
x
•单向受力体应变能
V v dxdydz dxdydz 2E
2
z
单向受力
Page30
BUAA
MECHANICS OF MATERIALS
2 dxdydz •单向受力体应变能 V v dxdydz 2E FN ( x ) •拉压杆 (x)= , dydz A A 2 FN ( x ) V dx (变力变截面杆) y 2 EA( x ) l 2 FN l dx (常应力等直杆) V dz 2 EA •纯剪应变能密度 dy dxdz dy dxdydz dVε 2 2 2 1 2 z v G 纯剪切
BUAA
MECHANICS OF MATERIALS
第三章
§3-1 §3-2 §3-3 §3-4
§3-5 §3-6
轴向拉压变形
引言 拉压杆的变形与叠加原理 桁架的节点位移 拉压与剪切应变能
简单拉压静不定问题 热应力与预应力
Page1
BUAA
MECHANICS OF MATERIALS
本章主要研究:
Page7
材料力学--轴向拉伸和压缩

2、轴力图的作法:以平行于杆轴线的横坐标(称为基
线)表示横截面的位置;以垂直于杆轴线方向的纵坐
标表示相应横截面上的轴力值,绘制各横截面上的轴 FN
力变化曲线。
x
§2-2 轴力、轴力图
三、轴力图
FN
3、轴力图的作图步骤:
x
①先画基线(横坐标x轴),基线‖轴线;
②画纵坐标,正、负轴力各绘在基线的一侧;
③标注正负号、各控制截面处 、单位及图形名称。
FN
4、作轴力图的注意事项: ①基线一定平行于杆的轴线,轴力图与原图上下截面对齐; ②正负分绘两侧, “拉在上,压在下”,封闭图形; ③正负号标注在图形内,图形上下方相应的地方只标注轴力绝对值,不带正负号; ④整个轴力图比例一致。
50kN 50kN 50kN
第二章 轴向拉伸和压缩
第二章
轴向拉伸和压缩
第二章 轴向拉伸和压缩
§2 — 1 概述
§2 — 2 轴力 轴力图
目
§2 — 3 拉(压)杆截面上的应力
§2 — 4 拉(压)杆的变形 胡克定律 泊松比
录
§2 — 5 材料在拉伸与压缩时的力学性质
§2 — 6 拉(压)杆的强度计算
§2 — 7 拉(压)杆超静定问题
FN
作轴力图的注意事项: ①多力作用时要分段求解,一律先假定为正方向,优先考虑直接法; ②基线‖轴线,正负分绘两侧, “拉在上,压在下”,比例一致,封闭图形; ③正负号标注在图形内,图形上下方相应的地方只标注轴力绝对值,不带正负号; ④阴影线一定垂直于基线,阴影线可画可不画。
§ 2-3拉(压)杆截面上的应力
§2 — 8 连接件的实用计算
§2-1 概述 §2-1 概述
——轴向拉伸或压缩,简称为拉伸或压缩,是最简单也是做基本的变形。
材料力学第二章-轴向拉伸与压缩

FN 3 P
1
2
P
P
1
2
FN1
3 P
3
P FN2
PP FN3
FN 1 P FN 2 0 FN 3 P
1
2
4、作内力图
P
P
P
3 P
1 FN
P
2
3
P x
[例2] 图示杆旳A、B、C、D点分别作用着大小为5P、8P、 4P、 P 旳力,方向如图,试画出杆旳轴力图。
OA PA
B PB
C PC
D PD
q
u 正应力旳正负号要求:
sx
sx sx
s
x
P
u 对变截面杆, 当截面变化缓慢时,横截面上旳 正应力也近似为均匀分布,可有:
s (x) FN (x)
A( x)
合力作用线必须与杆件轴线重叠;
圣维南原理
若用与外力系静力等 效旳合力替代原力系, 则这种替代对构件内应 力与应变旳影响只限于 原力系作用区域附近很 小旳范围内。 对于杆件,此范围相当 于横向尺寸旳1~1.5倍。
h
解: 1) BD杆内力N
取AC为研究对象,受力分析如图
mA 0 , (FNsinq ) (hctgq) Px 0
FN
Px
hcosq
2) BD杆旳最大应力: s max FN max PL A hAcosq
突变规律: 1、从左边开始,向左旳力产生正旳轴力,轴力图向上突变。 2、从右边开始,向右旳力产生正旳轴力,轴力图向上突变。 3、突变旳数值等于集中力旳大小。
即:离端面不远处,应力分布就成为均匀旳。
§2–3 直杆轴向拉压时斜截面上旳应力
一、斜截面上旳内力
n
1
2
P
P
1
2
FN1
3 P
3
P FN2
PP FN3
FN 1 P FN 2 0 FN 3 P
1
2
4、作内力图
P
P
P
3 P
1 FN
P
2
3
P x
[例2] 图示杆旳A、B、C、D点分别作用着大小为5P、8P、 4P、 P 旳力,方向如图,试画出杆旳轴力图。
OA PA
B PB
C PC
D PD
q
u 正应力旳正负号要求:
sx
sx sx
s
x
P
u 对变截面杆, 当截面变化缓慢时,横截面上旳 正应力也近似为均匀分布,可有:
s (x) FN (x)
A( x)
合力作用线必须与杆件轴线重叠;
圣维南原理
若用与外力系静力等 效旳合力替代原力系, 则这种替代对构件内应 力与应变旳影响只限于 原力系作用区域附近很 小旳范围内。 对于杆件,此范围相当 于横向尺寸旳1~1.5倍。
h
解: 1) BD杆内力N
取AC为研究对象,受力分析如图
mA 0 , (FNsinq ) (hctgq) Px 0
FN
Px
hcosq
2) BD杆旳最大应力: s max FN max PL A hAcosq
突变规律: 1、从左边开始,向左旳力产生正旳轴力,轴力图向上突变。 2、从右边开始,向右旳力产生正旳轴力,轴力图向上突变。 3、突变旳数值等于集中力旳大小。
即:离端面不远处,应力分布就成为均匀旳。
§2–3 直杆轴向拉压时斜截面上旳应力
一、斜截面上旳内力
n
材料力学之四大基本变形

WZ
IZ ymax
一、变形几何关系
( y)d d y
d
d
y
z
y
dx
y
CL8TU3-2
bh3
bh2
I Z 12 , WZ 6
d4
I Z 64
d3
, WZ 32
IZ
(D4 d 4)
64
D4
64
(1 4 )
WZ
D3
32
(1 4 )
(1)求支座反力
M A 0, M 0 RBl 0 M B 0, RAl M 0 0
(2)列剪力方程和弯矩方程
RB
M0 l
RA
M0 l
AC段 :
Q1
RA
M0 l
M1
RA x
M0 l
x
(0 x a)
CB段 :
Q2
返回
例3-1: 传动轴如图所示,转速 n = 500转/分钟,主动轮B输入功率NB= 10KW,A、 C为从动轮,输出功率分别为 NA= 4KW , NC= 6KW,试计算该轴的扭矩。
先计算外力偶矩
A
B
C x
mA
9550
NA n
9550 4 500
76.4Nm
mB
9550 NB n
9550 10 500
四大基本变形复习
1.轴向拉伸与压缩 2.剪切 3.扭转 4.弯曲
1.轴向拉压
受力特征:受一对等值、反向的纵向力,力的作用线与杆轴线 重合。 变形特征:沿轴线方向伸长或缩短,横截面沿轴线平行移动
材料力学 轴向拉压3

课堂讨论题
低碳钢加载→卸载→ 再加载路径有以下四种, 请判断哪一个是正确的: (A)OAB →BC →COAB ; (B)OAB →BD →DOAB ; (C)OAB →BAO→ODB; (D)OAB →BD →DB。 正确答案是( D ) 关于材料的力学一般性能,有如下结论,请判断哪一个是正确的: (A)脆性材料的抗拉能力低于其抗压能力; (B)脆性材料的抗拉能力高于其抗压能力; (C)塑性材料的抗拉能力高于其抗压能力; (D)脆性材料的抗拉能力等于其抗压能力。 正确答案是( ) A
§2-5 材料在拉伸与压缩时的力学性能
力学性能:材料在受力后的表现出的变形和破坏特性。 力学性能:材料在受力后的表现出的变形和破坏特性。 不同的材料具有不同的力学性能。 不同的材料具有不同的力学性能。 材料的力学性能可通过实验得到。 材料的力学性能可通过实验得到。 通过实验得到 一、试件与设备
压缩标准试件 拉伸标准试样
4、对应力集中的敏感性 当杆件上有圆孔、凹槽时,受力后,在截面突变处的附近, 当杆件上有圆孔、凹槽时,受力后,在截面突变处的附近,有应力 集中现象。 集中现象。 对于塑性材料来说, 对于塑性材料来说,因为有较 长的屈服阶段, 长的屈服阶段,所以在孔边最大应 力到达屈服极限时, 力到达屈服极限时,若继续加力, 圆孔边缘的应力仍在屈服极限值, 圆孔边缘的应力仍在屈服极限值, 所以应力并不增加, 所以应力并不增加,所增加的外力 只使屈服区域不断扩展。 只使屈服区域不断扩展。 而脆性材料随着外力的增加, 而脆性材料随着外力的增加,孔边应力也急剧地上升并始终保持最 大值。当达到强度极限时,该处首先破裂。 大值。当达到强度极限时,该处首先破裂。 所以,脆性材料对于应力集中十分敏感。而塑性材料则相反。 所以,脆性材料对于应力集中十分敏感。而塑性材料则相反。因 此,应力集中使脆性材料的承载能力显著降低,即使在静载下,也应 应力集中使脆性材料的承载能力显著降低,即使在静载下, 考虑应力集中对构件强度的影响。 考虑应力集中对构件强度的影响。
材料力学单辉祖第三章轴向拉压变形

o x
FN q
q
L
最大正应力发生在x = 0处
P
max
FN (0) P ql (0) A A
P
x
22
Example-变轴力杆
取长度为dx的微元体 由胡克定理知,微元体伸长为
FN ( x) d dx EA
FN ( x) P q(l x)
o x
FN
dx dFN对微段变形忽略
杆件在外力F2作用下 的伸长为
l
2P
P
3l P
2P
l2 P
FN 2 L 2 Pl EA EA
19
Example-多力杆
杆件的总伸长为
l l P l2 P
方法一答案
2 Pl l l1 l2 EA ()
2 Pl EA
2P
P
l
3l
20
Example-变轴力杆
B
60 0
F2 l
F1
l
C A
C"
D
C´ A´
几何关系
45
Example-Bracket
利用几何关系, 得A点垂直位移AA´
A 2CC CD 2 6.0 mm 0 sin 30
l B
600
F2
F1
l
C A
C"
D
C´ A´
几何关系
46
Example-零力杆
求A点的位移
*AB杆不受力不伸长,只转动
()
41
Example-Bracket
图示托架,AB为刚梁,CD为支撑杆,已知 F1=5kN,F2=10kN,l=1m,斜支撑CD为铝 管,弹性模量为E=70GPa,横截面面积为 A=440mm2,求刚梁AB端点A的铅垂位移。
FN q
q
L
最大正应力发生在x = 0处
P
max
FN (0) P ql (0) A A
P
x
22
Example-变轴力杆
取长度为dx的微元体 由胡克定理知,微元体伸长为
FN ( x) d dx EA
FN ( x) P q(l x)
o x
FN
dx dFN对微段变形忽略
杆件在外力F2作用下 的伸长为
l
2P
P
3l P
2P
l2 P
FN 2 L 2 Pl EA EA
19
Example-多力杆
杆件的总伸长为
l l P l2 P
方法一答案
2 Pl l l1 l2 EA ()
2 Pl EA
2P
P
l
3l
20
Example-变轴力杆
B
60 0
F2 l
F1
l
C A
C"
D
C´ A´
几何关系
45
Example-Bracket
利用几何关系, 得A点垂直位移AA´
A 2CC CD 2 6.0 mm 0 sin 30
l B
600
F2
F1
l
C A
C"
D
C´ A´
几何关系
46
Example-零力杆
求A点的位移
*AB杆不受力不伸长,只转动
()
41
Example-Bracket
图示托架,AB为刚梁,CD为支撑杆,已知 F1=5kN,F2=10kN,l=1m,斜支撑CD为铝 管,弹性模量为E=70GPa,横截面面积为 A=440mm2,求刚梁AB端点A的铅垂位移。