第二章轴向拉压1详解
合集下载
材料力学(机械类)第二章 轴向拉伸与压缩

第
二
章
拉伸压缩与剪切
1
பைடு நூலகம்
§2-1
轴向拉伸与压缩的概念和实例
轴向拉伸——轴力作用下,杆件伸长 (简称拉伸) 轴向压缩——轴力作用下,杆件缩短 (简称压缩)
2
拉、压的特点:
1.两端受力——沿轴线,大小相等,方向相反 2. 变形—— 沿轴线
3
§2-2 轴向拉伸或压缩时横截面上的内力和应力
1 、横截面上的内力
A3
2
l1 l2 y AA3 A3 A4 sin 30 tan 30 2 1.039 3.039mm
A
A A4
AA x2 y2 0.6 2 3.039 2 3.1mm
40
目录
例 2—5 截面积为 76.36mm² 的钢索绕过无摩擦的定滑轮 F=20kN,求刚索的应力和 C点的垂直位移。 (刚索的 E =177GPa,设横梁ABCD为刚梁)
16
§2-4
材料在拉伸时的力学性能
材料的力学性能是指材料在外力的作用下表现出的变 形和破坏等方面的特性。
现在要研究材料的整个力学性能(应力 —— 应变):
从受力很小
破坏
理论上——用简单描述复杂
工程上——为(材料组成的)构件当好医生
17
一、 低碳钢拉伸时的力学性能 (含碳量<0.3%的碳素钢)
力均匀分布于横截面上,σ等于常量。于是有:
N d A d A A
A A
得应力:
N A
F
FN
σ
10
例题2-2
A 1
45°
C
2
二
章
拉伸压缩与剪切
1
பைடு நூலகம்
§2-1
轴向拉伸与压缩的概念和实例
轴向拉伸——轴力作用下,杆件伸长 (简称拉伸) 轴向压缩——轴力作用下,杆件缩短 (简称压缩)
2
拉、压的特点:
1.两端受力——沿轴线,大小相等,方向相反 2. 变形—— 沿轴线
3
§2-2 轴向拉伸或压缩时横截面上的内力和应力
1 、横截面上的内力
A3
2
l1 l2 y AA3 A3 A4 sin 30 tan 30 2 1.039 3.039mm
A
A A4
AA x2 y2 0.6 2 3.039 2 3.1mm
40
目录
例 2—5 截面积为 76.36mm² 的钢索绕过无摩擦的定滑轮 F=20kN,求刚索的应力和 C点的垂直位移。 (刚索的 E =177GPa,设横梁ABCD为刚梁)
16
§2-4
材料在拉伸时的力学性能
材料的力学性能是指材料在外力的作用下表现出的变 形和破坏等方面的特性。
现在要研究材料的整个力学性能(应力 —— 应变):
从受力很小
破坏
理论上——用简单描述复杂
工程上——为(材料组成的)构件当好医生
17
一、 低碳钢拉伸时的力学性能 (含碳量<0.3%的碳素钢)
力均匀分布于横截面上,σ等于常量。于是有:
N d A d A A
A A
得应力:
N A
F
FN
σ
10
例题2-2
A 1
45°
C
2
§2–1 轴向拉压的概念及实例§2–2 轴力及轴力图§2–3.

横截面
受载后
b´ d´
平面假设:原为平面的横截面在变形后仍为平面。
纵向纤维变形相同。
2. 拉伸应力: 由平截面假定,变形均匀,内力分布均匀。 轴力引起的正应力 —— : 在横截面上均布分布。 P
N(x)
N ( x) A
规定:N为拉力,则σ为拉应力;N为压力,则σ为压应力 ;拉应力为正,压应力为负 3. Saint-Venant(圣维南)原理: 离开载荷作用处一定距离,应力分布与大小不受外载荷作 用方式的影响。
12
轴力图的特点:突变值 = 集中载荷 轴力(图)的简便求法: 自左向右:
遇到向左的P, 轴力N 增量为正; 遇到向右的P , 轴力N 增量为负。
5kN 5kN
8kN
3kN
+
8kN
–
3kN
[例2] 图示杆长为L,受分布力 q = kx 作用,方向如图,试画出 杆的轴力图。 解:x 坐标向右为正,坐标原点在
p
N
N N>0 p N N N<0 p
N 与外法线同向,为正轴力(拉力) N与外法线反向,为负轴力(压力) p
三、 轴力图—— N (x) 的图象表示。
意 ①反映出轴力与截面位置变化关系,较直观; 义 ②确定出最大轴力的数值 N 及其所在横截面的位置, P + x
即确定危险截面位置,为
强度计算提供依据。
[例1] 图示杆的A、B、C、D点分别作用着大小为5P、8P、4P、 P 的力,方向如图,试画出杆的轴力图。 O A PA N1 A PA B PB B PB C PC C PC
D
PD D PD
解: 求OA段内力N1:设置截面如图
X 0 N1 PA P B P C P D 0
《材料力学》第2章轴向拉(压)变形习题解答

其方向。 解:斜截面上的正应力与切应力的公式为:
ασσα20cos = αστα2sin 2 = 式中,MPa mm N A N 1001001000020===σ,把α的数值代入以上二式得:
[习题 2-7] 一根等直杆受力如图所示。已知杆的横截面面积 A 和材料的弹性模量 E 。试作轴力图,并求杆端点 D 的位移。 解: (1)作轴力图
[习题 2-9] 一根直径 mm d 16=、长 m l 3=的圆截面杆,承受轴 向拉力 kN F 30=,其伸长为 mm l 2.2=?。试求杆横截面上的应 力与材料的弹性模量 E 。 解:(1)求杆件横截面上的应力 MPa mm N A N 3.1491614.34 110302 23=???==σ (2)求弹性模量 因为:EA Nl l = ?, 所以:GPa MPa l l l A l N E 6.203)(9.2035902 .23000 3.149==?=??=???=σ。 [习题 2-10] (1)试证明受轴向拉伸(压缩)的圆截面杆横截 面沿圆周方向的线应变 s ε等于直径方向的线应变 d ε。 (2)一根直径为 mm d 10=的圆截面杆,在轴向力 F 作用下,直 径减小了 0.0025mm 。如材料 的弹性模量 GPa E 210=,泊松比 3.0=ν,试求该轴向拉力 F 。 (3)空心圆截面杆,外直径 mm D 120=,内直径 mm d 60=,材 料的泊松比 3.0=ν。当其轴向拉伸时,已知纵向线应变 001.0=, 试求其变形后的壁厚。 解:(1)证明 d s εε= 在圆形截面上取一点 A ,连结圆心 O 与 A 点,则 OA 即代表直 径方向。过 A 点作一条直线 AC 垂直于 OA ,则 AC 方向代表圆周方向。νεεε-==AC s(泊
C 材料力学第二章 轴向拉伸和压缩 第一部分

基于下列实验现象有“平面假设”
现象: 直线保持为直线。 相互垂直的直线依旧相互垂直。->无切应变 纵向线段伸长,横向线段缩短。 长度相等的纵向线段伸长后依旧相等。 长度相等的横向线段缩短后依旧相等。 即变形分布均匀,依据胡克定律应力分布也 均匀。
平面假设
根据表面变形情况,可以由表及里的做出 假设,即横截面间只有相对移动,相邻横 截面间纵线伸长相同,横截面保持平面, 此假设称为平面假设(Plane CrossSection Assumption)。
问题
(1)图示的曲杆,问公式 (2-2)是否适用?
2)图示杆由钢的和铝牢固 粘接而成,问公式(2-2) 是否适用?
(3)图示有凹槽的杆,问 公式(2-2)对凹槽段是否 适用?
σ
变截面杆横截面上的应力
F
F
应力集中 (Stress Concentration)
例:图示杆1为横截面为圆形的钢杆,直径d=16mm,杆2 为横截面为正方形的木杆,边长为100mm。在节点B处作 用20kN的力,试求1、2杆中的应力。
r ∆r o
θ
∆s
s
应力与变形的一般关系
正应力在正应力方向引起线应变,不引 起切应变 切应力引起切应变,在切应力方向不引 起线应变 这里作为结论直接给出,感兴趣可在课 后研究证明之。
轴拉伸实验
平面假设(基于实验观察)
a d e a a d e a b c b b c c d e b c d e
例 题
解:1、2杆都为二力杆,是简单拉 压问题,取节点B进行受力分析: 由节点B的平衡可得:
F N1 3 = G = 15kN 4 F N2 5 = − G = −25kN 4
A 2m
1.5m 1 2 C FN1 FN2 B G
材料力学第2章-1拉压

6 9 2
平方米) (牛顿/平方米)记作:Pa (帕斯 牛顿 平方米 记作: 记为: 记为:Mpa 记为: 记为:Gpa 矢量背离截面 矢量指向截面
返回
N/m N/m
2 2
兆帕 千兆帕
4、正应力的符号规定: 、正应力的符号规定: 与轴力相同,拉伸( ) 与轴力相同,拉伸(+) 压缩( 压缩(-)
5、应力的分布规律: dFN= σ dA
ε
返回
二、压缩曲线: 压缩曲线:
F D B A C
σp
σs
σb
E
O
ε=∆ L/L
1、低碳钢的压缩曲线
特点: 弹性模量E均与拉伸时相同 均与拉伸时相同, 特点:极限应力σS弹性模量 均与拉伸时相同,但得不 到强度极限。 到强度极限。
返回
铸铁压缩曲线
2、铸铁压缩曲线的特点: 铸铁压缩曲线的特点: 1)形状与拉伸时相似。 )形状与拉伸时相似。 2)抗压强度比抗拉强度高 )抗压强度比抗拉强度高4~5倍。 倍 3)在较小的变形下突然破坏,破坏断面与轴线大约成 )在较小的变形下突然破坏, 450~550角。 三、两类材料力学性能比较 塑性材料:1)破坏前变形大,有流动阶段。 塑性材料: 破坏前变形大,有流动阶段。 承受冲击的能力好。 2)承受冲击的能力好。 均相同。 3)拉压时E、 σs均相同。 脆性材料: 破坏前变形小,没有明显的流动阶段。 脆性材料:1)破坏前变形小,没有明显的流动阶段。 承受冲击的能力不好。 2)承受冲击的能力不好。 抗拉强度低,抗压强度高。 3)抗拉强度低,抗压强度高。 塑性材料适合做承拉构件,脆性材料适合做承压构件。 塑性材料适合做承拉构件,脆性材料适合做承压构件。
FN =
∫ dF
A
N
平方米) (牛顿/平方米)记作:Pa (帕斯 牛顿 平方米 记作: 记为: 记为:Mpa 记为: 记为:Gpa 矢量背离截面 矢量指向截面
返回
N/m N/m
2 2
兆帕 千兆帕
4、正应力的符号规定: 、正应力的符号规定: 与轴力相同,拉伸( ) 与轴力相同,拉伸(+) 压缩( 压缩(-)
5、应力的分布规律: dFN= σ dA
ε
返回
二、压缩曲线: 压缩曲线:
F D B A C
σp
σs
σb
E
O
ε=∆ L/L
1、低碳钢的压缩曲线
特点: 弹性模量E均与拉伸时相同 均与拉伸时相同, 特点:极限应力σS弹性模量 均与拉伸时相同,但得不 到强度极限。 到强度极限。
返回
铸铁压缩曲线
2、铸铁压缩曲线的特点: 铸铁压缩曲线的特点: 1)形状与拉伸时相似。 )形状与拉伸时相似。 2)抗压强度比抗拉强度高 )抗压强度比抗拉强度高4~5倍。 倍 3)在较小的变形下突然破坏,破坏断面与轴线大约成 )在较小的变形下突然破坏, 450~550角。 三、两类材料力学性能比较 塑性材料:1)破坏前变形大,有流动阶段。 塑性材料: 破坏前变形大,有流动阶段。 承受冲击的能力好。 2)承受冲击的能力好。 均相同。 3)拉压时E、 σs均相同。 脆性材料: 破坏前变形小,没有明显的流动阶段。 脆性材料:1)破坏前变形小,没有明显的流动阶段。 承受冲击的能力不好。 2)承受冲击的能力不好。 抗拉强度低,抗压强度高。 3)抗拉强度低,抗压强度高。 塑性材料适合做承拉构件,脆性材料适合做承压构件。 塑性材料适合做承拉构件,脆性材料适合做承压构件。
FN =
∫ dF
A
N
材料力学第二章-轴向拉伸与压缩

FN 3 P
1
2
P
P
1
2
FN1
3 P
3
P FN2
PP FN3
FN 1 P FN 2 0 FN 3 P
1
2
4、作内力图
P
P
P
3 P
1 FN
P
2
3
P x
[例2] 图示杆旳A、B、C、D点分别作用着大小为5P、8P、 4P、 P 旳力,方向如图,试画出杆旳轴力图。
OA PA
B PB
C PC
D PD
q
u 正应力旳正负号要求:
sx
sx sx
s
x
P
u 对变截面杆, 当截面变化缓慢时,横截面上旳 正应力也近似为均匀分布,可有:
s (x) FN (x)
A( x)
合力作用线必须与杆件轴线重叠;
圣维南原理
若用与外力系静力等 效旳合力替代原力系, 则这种替代对构件内应 力与应变旳影响只限于 原力系作用区域附近很 小旳范围内。 对于杆件,此范围相当 于横向尺寸旳1~1.5倍。
h
解: 1) BD杆内力N
取AC为研究对象,受力分析如图
mA 0 , (FNsinq ) (hctgq) Px 0
FN
Px
hcosq
2) BD杆旳最大应力: s max FN max PL A hAcosq
突变规律: 1、从左边开始,向左旳力产生正旳轴力,轴力图向上突变。 2、从右边开始,向右旳力产生正旳轴力,轴力图向上突变。 3、突变旳数值等于集中力旳大小。
即:离端面不远处,应力分布就成为均匀旳。
§2–3 直杆轴向拉压时斜截面上旳应力
一、斜截面上旳内力
n
1
2
P
P
1
2
FN1
3 P
3
P FN2
PP FN3
FN 1 P FN 2 0 FN 3 P
1
2
4、作内力图
P
P
P
3 P
1 FN
P
2
3
P x
[例2] 图示杆旳A、B、C、D点分别作用着大小为5P、8P、 4P、 P 旳力,方向如图,试画出杆旳轴力图。
OA PA
B PB
C PC
D PD
q
u 正应力旳正负号要求:
sx
sx sx
s
x
P
u 对变截面杆, 当截面变化缓慢时,横截面上旳 正应力也近似为均匀分布,可有:
s (x) FN (x)
A( x)
合力作用线必须与杆件轴线重叠;
圣维南原理
若用与外力系静力等 效旳合力替代原力系, 则这种替代对构件内应 力与应变旳影响只限于 原力系作用区域附近很 小旳范围内。 对于杆件,此范围相当 于横向尺寸旳1~1.5倍。
h
解: 1) BD杆内力N
取AC为研究对象,受力分析如图
mA 0 , (FNsinq ) (hctgq) Px 0
FN
Px
hcosq
2) BD杆旳最大应力: s max FN max PL A hAcosq
突变规律: 1、从左边开始,向左旳力产生正旳轴力,轴力图向上突变。 2、从右边开始,向右旳力产生正旳轴力,轴力图向上突变。 3、突变旳数值等于集中力旳大小。
即:离端面不远处,应力分布就成为均匀旳。
§2–3 直杆轴向拉压时斜截面上旳应力
一、斜截面上旳内力
n
第2章轴向拉压--1

c d
F
根据静力平衡条件:
FN dA
A
dA A
FN A
A
拉压杆内最大的正应力:
FN FN max 等直杆: max 变直杆: max A A max 正应力的符号规定——同内力
拉伸——拉应力,为正值,方向背离所在截面。 压缩——压应力,为负值,方向指向所在截面。
A A cos
F
FN= F
(2)应力确定:
①应力分布——均布
F
FN
x
F p
n
②应力公式——
FN F F p cos cos A A A cos
FN
σα——斜截面上的正应力;τα——斜截面上的切应力
p cos cos2
FN1 FN2 FN2
以轴向拉压为主要变形的杆件,称为拉压杆或轴向承载杆。 7
轴向拉压主线:
杆件的内力分析 应力 变形
强度条件 内力图 (找到内力最大值)
刚度计算
§2.1 轴向拉伸与压缩的概念 §2.2 横截面上的内力与应力 §2.3 斜截面上的应力
1 内力的概念
外力引起的物体内部的作用力。
在外力作用下,构件内部各部分之间因相对位置改变而
各段的内力并画出杆的轴力图。 O A FA B FB C FC D FD
FN
2F
5F
3F
F
x
总
结
1、外力不能沿作用线 任意移动;
2、有集中力作用的截面处,轴力图有突变,突变值 等于集中力的大小。 3、简便画图法:自左向右,遇到向左的外力,轴力 增大;遇到向右的外力,轴力减小。 P16, 例题2-2
材料力学第二章 轴向拉伸和压缩

伸长 l2 0.24mm 缩短
2、计算各杆轴向变形
C
l 2 =1m a =170mm
B'
B2
F
l1 0.48mm
3、由变形的几何条件确定B点的位移 分别以A为圆心,AB1为半径,C为圆 心,CB1为半径画弧,相较于B’点,
B"
小变形条件,可以用切线代替弧线。
材料力学
第2章 轴向拉伸和压缩
FN FN ( x)
轴力方程
即为轴力图。
即:FN随x的变化规律
以x为横坐标,以FN为纵坐标,绘制FN F( )的关系图线, N x
FN
正的轴力画在x轴的上侧,负的画在下侧.
x
材料力学
第2章 轴向拉伸和压缩
例题1
等值杆受力如图所示,试作其轴力图
F =25kN F 4=55kN 4 1=40kN F
纵向线 即: 原长相同
变形相同
横截面上各点的纵向线应变相等
c
拉压杆变形几何方程.
反映了截面上各点变形之间的几何关系.
材料力学
第2章 轴向拉伸和压缩
§2-2 横截面上的正应力 应力分布规律 找变形规律 研究思路: 试验观察 综合几何方面、物理方面、静力学方面推导应力计算公式
一、几何方面
F
a' b'
材料力学
第2章 轴向拉伸和压缩
第二章 轴向拉伸和压缩
材料力学
第2章 轴向拉伸和压缩
• • • • • •
本章主要内容 轴力及轴力图 横截面上的应力 拉压杆的变形、胡克定律 强度计算 材料的力学性质
材料力学
第2章 轴向拉伸和压缩
§2-1 概述 一、工程实际中的轴向拉压杆
2、计算各杆轴向变形
C
l 2 =1m a =170mm
B'
B2
F
l1 0.48mm
3、由变形的几何条件确定B点的位移 分别以A为圆心,AB1为半径,C为圆 心,CB1为半径画弧,相较于B’点,
B"
小变形条件,可以用切线代替弧线。
材料力学
第2章 轴向拉伸和压缩
FN FN ( x)
轴力方程
即为轴力图。
即:FN随x的变化规律
以x为横坐标,以FN为纵坐标,绘制FN F( )的关系图线, N x
FN
正的轴力画在x轴的上侧,负的画在下侧.
x
材料力学
第2章 轴向拉伸和压缩
例题1
等值杆受力如图所示,试作其轴力图
F =25kN F 4=55kN 4 1=40kN F
纵向线 即: 原长相同
变形相同
横截面上各点的纵向线应变相等
c
拉压杆变形几何方程.
反映了截面上各点变形之间的几何关系.
材料力学
第2章 轴向拉伸和压缩
§2-2 横截面上的正应力 应力分布规律 找变形规律 研究思路: 试验观察 综合几何方面、物理方面、静力学方面推导应力计算公式
一、几何方面
F
a' b'
材料力学
第2章 轴向拉伸和压缩
第二章 轴向拉伸和压缩
材料力学
第2章 轴向拉伸和压缩
• • • • • •
本章主要内容 轴力及轴力图 横截面上的应力 拉压杆的变形、胡克定律 强度计算 材料的力学性质
材料力学
第2章 轴向拉伸和压缩
§2-1 概述 一、工程实际中的轴向拉压杆
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⑵、许用应力:构件安全工作时的最大应力 jx
n
2、强度条件:最大工作应力小于等于许用应力
≤ max
等直杆: max
FN max A
变直杆:
max
FN A
max
3、强度条件的应用: (解决三类问题):
02Βιβλιοθήκη O x–k L2 2
FN
max
1 2
k L2
12
二、轴向拉压杆横截面的应力
推导思路:实验→变形规律→应力的分布规律→应力的计算公式
1、实验:
变形前
受力后
F
F
2、变形规律: 横向线——仍为平行的直线,且间距增大。
纵向线——仍为平行的直线,且间距减小。
3、平面假设:变形前的横截面,变形后仍为平面且各横截
p cos
t
ppscinos2sicno2s2
n
p
2、符号规定
⑴、:斜截面外法线与 x 轴的夹角。
t
x 轴逆时针转到 n 轴 “ ”规定为正值; x 轴顺时针转到 n 轴 “ ”规定为负值。 ⑵、 :同“ ”的符号规定
⑶、t :在保留段内任取一点,如果“t ”对保留段内
任一点之矩为顺时针方向规定为正值,反之为负值。
8
例 图示杆的A、B、C、D处分别作用着大小为FA = 5 F、 FB = 8 F、 FC = 4 F、 FD= F 的轴向力,方向如图,试求杆内 各段的内力并画出杆的轴力图。
OA
BC
D
FA
FB
FC
FD
FN1 A
BC
D
FA
FB
FC
FD
解: 求OA段内力FN1:设截面如图
FX 0 FD FC FB FA FN1 0
F 4F 8F 5F FN1 0
FN1 2F
9
OA段内力 O A
BC
FN1 2F
求AB 段内力:
FX 0
FA FN2
FB
FC
BC
FN 2 FB FC FD 0
FN2= –3F,
求BC段内力:
FB
FC
FN3
C
FX 0 FN3 FC FD 0
FC
FN3= 5F,
FN4
求CD段内力:
FX 0 FN 4 FD 0
FN4= F
FN1 2F, FN2= –3F, FN3= 5F, FN4= F
D
FD D
FD D
FD D
FD
10
FN1 2F, FN2= –3F, FN3= 5F, FN4= F
轴力图如下图示
OA FA
FN 2F
BC
D
FB
FC
FD
5F F x
面沿杆轴线作相对平移
13
横向线——仍为平行的直线,且间距增大。 纵向线——仍为平行的直线,且间距减小。
14
横向线——仍为平行的直线,且间距减小。 纵向线——仍为平行的直线,且间距增大。
15
4、应力的分布规律——内力沿横截面均匀分布
F
5、应力的计算公式:
FN
由于“均布”,可 得
A FN
FN
F FN
F
6
2、轴力的符号规定:
拉伸—拉力,其轴力为正值。方向背离所在截面。 压缩—压力,其轴力为负值。方向指向所在截面。
F
FN (+)FN
F
F
FN (-)FN
F
7
3、轴力图: 轴力沿轴线变化的图形
F
F
FN = F。
FN
4、轴力图的意义
+ x
① 直观反映轴力随截面位置变化的关系; ② 确定出最大轴力的数值及其所在位置,即确定危险截面位置, 为强度计算提供依据。
1.内力 —— 轴力(用FN 表示)
X 0,
FN P 0
FN P
5
例:已知外力 F,求:1-1截面的内力FN 。
解:(截面法确定)
1—1
①截开。
F
②代替,FN 代替。
③平衡, F
∑X = 0, FN - F = 0,
FN = F。
以1-1截面的右段为研究对象:
FN
内力 FN 沿轴线方向,所以称为轴力。
工程桁架
2
活塞杆
厂房的立柱 F
F
3
二、轴向拉压的概念:
(1)受力特点:外力合力作用线与杆轴线重合。
(2)变形特点:杆沿轴线方向伸长或缩短。 FN1
FN1
FN2
FN2
以轴向拉压为主要变形的杆件,称为拉压杆或轴向承载杆。4
§2-2 轴向拉压杆横截面的内力、应力及强度条件 一、轴向拉压杆横截面的内力
3F
11
例 图示杆长为L,受分布力 q = kx 作用(x 坐标向右为正,坐 标原点在自由端),方向如图, 试画出杆的轴力图。
y
q(x)
L
解:用截面法
x
取左侧长为x 的一段为对象分析,
内力FN(x)为:
q(x)
x
FN(x)
FN (x)
kxdx 0
0
x
FN
FN (x)
x kxdx 1 kx2
第二章 轴向拉伸和压缩
§2-1 轴向拉伸与压缩概念与实例 §2-2 轴向拉压杆横截面的内力、应力及强度条件 §2-3 应力集中概念 §2-4 轴向拉压杆的变形 节点的位移 §2-5 材料在拉压时的力学性质 §2-6 轴向拉压杆系的超静定问题
1
第二章 轴向拉伸和压缩
§2-1 轴向拉伸与压缩概念与实例 一、轴向拉压的工程实例:
(1) 轴向拉压杆
(2) 除外力作用点附近以外其它各点处。
(范围:不超过杆的横向尺寸)
17
三、轴向拉压杆任意斜面上应力的计算
1、斜截面上应力确定 F
(1) 内力确定:
FN= F
F
(2)应力确定:
①应力分布——均布
F
②应力公式——
F
x
FN
p
FN
p
FN A
F A
cos
F cos
A
cos
18
斜截面上应力
19
3、斜截面上最大应力值的确定
F
cos2 ,
t
2
sin 2
N
(1 ) max :
0,
( 2 )t max :
450
max ,横截面上。
(t 0)
t
tmax
2
(
)
2
,450 斜截面上。
x
20
四、拉压杆的强度计算
1、极限应力、许用应力以及安全系数
⑴、极限应力(危险应力、失效应力):材料发生破坏或产生过
大变形而不能安全工作时的最小应力值。“jx”(u、0)
⑵、许用应力:构件安全工作时的最大应力。“[]”
jx
n
(其中 n 为安全系数,值 > 1)
⑶、安全系数取值考虑的因素:
(a)给构件足够的安全储备。 (b)理论与实际的差异等。
21
1、极限应力、许用应力以及安全系数
⑴、极限应力:材料发生破坏或产生过大变形而不能安全工作时 的最小应力值。
A
——轴向拉压杆横截面上正应力的计算公式
16
5、应力的计算公式: FN F
A
6、拉压杆内最大的正应力:
FN
等直杆:
max
FN max A
变直杆: max
FN A
max
7、正应力的符号规定——同内力
拉伸——拉应力,为正值,方向背离所在截面。
压缩——压应力,为负值,方向指向所在截面。
8、公式的使用条件
n
2、强度条件:最大工作应力小于等于许用应力
≤ max
等直杆: max
FN max A
变直杆:
max
FN A
max
3、强度条件的应用: (解决三类问题):
02Βιβλιοθήκη O x–k L2 2
FN
max
1 2
k L2
12
二、轴向拉压杆横截面的应力
推导思路:实验→变形规律→应力的分布规律→应力的计算公式
1、实验:
变形前
受力后
F
F
2、变形规律: 横向线——仍为平行的直线,且间距增大。
纵向线——仍为平行的直线,且间距减小。
3、平面假设:变形前的横截面,变形后仍为平面且各横截
p cos
t
ppscinos2sicno2s2
n
p
2、符号规定
⑴、:斜截面外法线与 x 轴的夹角。
t
x 轴逆时针转到 n 轴 “ ”规定为正值; x 轴顺时针转到 n 轴 “ ”规定为负值。 ⑵、 :同“ ”的符号规定
⑶、t :在保留段内任取一点,如果“t ”对保留段内
任一点之矩为顺时针方向规定为正值,反之为负值。
8
例 图示杆的A、B、C、D处分别作用着大小为FA = 5 F、 FB = 8 F、 FC = 4 F、 FD= F 的轴向力,方向如图,试求杆内 各段的内力并画出杆的轴力图。
OA
BC
D
FA
FB
FC
FD
FN1 A
BC
D
FA
FB
FC
FD
解: 求OA段内力FN1:设截面如图
FX 0 FD FC FB FA FN1 0
F 4F 8F 5F FN1 0
FN1 2F
9
OA段内力 O A
BC
FN1 2F
求AB 段内力:
FX 0
FA FN2
FB
FC
BC
FN 2 FB FC FD 0
FN2= –3F,
求BC段内力:
FB
FC
FN3
C
FX 0 FN3 FC FD 0
FC
FN3= 5F,
FN4
求CD段内力:
FX 0 FN 4 FD 0
FN4= F
FN1 2F, FN2= –3F, FN3= 5F, FN4= F
D
FD D
FD D
FD D
FD
10
FN1 2F, FN2= –3F, FN3= 5F, FN4= F
轴力图如下图示
OA FA
FN 2F
BC
D
FB
FC
FD
5F F x
面沿杆轴线作相对平移
13
横向线——仍为平行的直线,且间距增大。 纵向线——仍为平行的直线,且间距减小。
14
横向线——仍为平行的直线,且间距减小。 纵向线——仍为平行的直线,且间距增大。
15
4、应力的分布规律——内力沿横截面均匀分布
F
5、应力的计算公式:
FN
由于“均布”,可 得
A FN
FN
F FN
F
6
2、轴力的符号规定:
拉伸—拉力,其轴力为正值。方向背离所在截面。 压缩—压力,其轴力为负值。方向指向所在截面。
F
FN (+)FN
F
F
FN (-)FN
F
7
3、轴力图: 轴力沿轴线变化的图形
F
F
FN = F。
FN
4、轴力图的意义
+ x
① 直观反映轴力随截面位置变化的关系; ② 确定出最大轴力的数值及其所在位置,即确定危险截面位置, 为强度计算提供依据。
1.内力 —— 轴力(用FN 表示)
X 0,
FN P 0
FN P
5
例:已知外力 F,求:1-1截面的内力FN 。
解:(截面法确定)
1—1
①截开。
F
②代替,FN 代替。
③平衡, F
∑X = 0, FN - F = 0,
FN = F。
以1-1截面的右段为研究对象:
FN
内力 FN 沿轴线方向,所以称为轴力。
工程桁架
2
活塞杆
厂房的立柱 F
F
3
二、轴向拉压的概念:
(1)受力特点:外力合力作用线与杆轴线重合。
(2)变形特点:杆沿轴线方向伸长或缩短。 FN1
FN1
FN2
FN2
以轴向拉压为主要变形的杆件,称为拉压杆或轴向承载杆。4
§2-2 轴向拉压杆横截面的内力、应力及强度条件 一、轴向拉压杆横截面的内力
3F
11
例 图示杆长为L,受分布力 q = kx 作用(x 坐标向右为正,坐 标原点在自由端),方向如图, 试画出杆的轴力图。
y
q(x)
L
解:用截面法
x
取左侧长为x 的一段为对象分析,
内力FN(x)为:
q(x)
x
FN(x)
FN (x)
kxdx 0
0
x
FN
FN (x)
x kxdx 1 kx2
第二章 轴向拉伸和压缩
§2-1 轴向拉伸与压缩概念与实例 §2-2 轴向拉压杆横截面的内力、应力及强度条件 §2-3 应力集中概念 §2-4 轴向拉压杆的变形 节点的位移 §2-5 材料在拉压时的力学性质 §2-6 轴向拉压杆系的超静定问题
1
第二章 轴向拉伸和压缩
§2-1 轴向拉伸与压缩概念与实例 一、轴向拉压的工程实例:
(1) 轴向拉压杆
(2) 除外力作用点附近以外其它各点处。
(范围:不超过杆的横向尺寸)
17
三、轴向拉压杆任意斜面上应力的计算
1、斜截面上应力确定 F
(1) 内力确定:
FN= F
F
(2)应力确定:
①应力分布——均布
F
②应力公式——
F
x
FN
p
FN
p
FN A
F A
cos
F cos
A
cos
18
斜截面上应力
19
3、斜截面上最大应力值的确定
F
cos2 ,
t
2
sin 2
N
(1 ) max :
0,
( 2 )t max :
450
max ,横截面上。
(t 0)
t
tmax
2
(
)
2
,450 斜截面上。
x
20
四、拉压杆的强度计算
1、极限应力、许用应力以及安全系数
⑴、极限应力(危险应力、失效应力):材料发生破坏或产生过
大变形而不能安全工作时的最小应力值。“jx”(u、0)
⑵、许用应力:构件安全工作时的最大应力。“[]”
jx
n
(其中 n 为安全系数,值 > 1)
⑶、安全系数取值考虑的因素:
(a)给构件足够的安全储备。 (b)理论与实际的差异等。
21
1、极限应力、许用应力以及安全系数
⑴、极限应力:材料发生破坏或产生过大变形而不能安全工作时 的最小应力值。
A
——轴向拉压杆横截面上正应力的计算公式
16
5、应力的计算公式: FN F
A
6、拉压杆内最大的正应力:
FN
等直杆:
max
FN max A
变直杆: max
FN A
max
7、正应力的符号规定——同内力
拉伸——拉应力,为正值,方向背离所在截面。
压缩——压应力,为负值,方向指向所在截面。
8、公式的使用条件