第二章 轴向拉压-习题答案
材料力学习题册答案-第2章-拉压

一、 选择题
1.图 1 所示拉杆的外表面上有一斜线,当拉杆变形时,斜线将(
A.平动
B.转动
C.不动
D.平动加转动
D)
2.轴向拉伸细长杆件如图 2 所示,则正确的说法是 ( C )
A.1-1、2-2 面上应力皆均匀分布 B.1-1、2-2 面上应力皆非均匀分布 C. 1-1 面上应力非均匀分布,2-2 面上应力均匀分布 D.1-1 面上应力均匀分布,2-2 面上应力非均匀分布
30KN 1
300mm
l1 解:(1) 轴力图如下
2
400mm
l2
10KN
-
40KN
50KN 3
400mm
l3
10KN
+
10KN
(2)
(3)右端面的位移
=
= 即右端面向左移动 0.204mm。
8.一杆系结构如图所示,试作图表示节点 C 的垂直位移,设 EA 为常数。
A
30
C
30 ΔL2 60 ΔL1
CD 段:σ3= =
Pa=25MPa
2.图为变截面圆钢杆 ABCD,已知 =20KN, = =35KN, = =300mm, =400mm,
D
3
C
P3
2
,绘出轴力图并求杆的最大最小应力。
B
1 P2
A
P1
l3 解:
-
50KN
l2 15KN
l1
20KN
+
AB 段:σ1=
=
=176.9MPa
BC 段:σ2=
反力均匀分布,圆柱承受轴向压力 P,则基座剪切面的剪力
。ห้องสมุดไป่ตู้
材料力学第二章 轴 向拉压习题及答案

第二章轴向拉压一、选择题1.图1所示拉杆的外表面上有一斜线,当拉杆变形时,斜线将( D)A.平动B.转动C.不动D.平动加转动2.轴向拉伸细长杆件如图2所示,其中1-1面靠近集中力作用的左端面,则正确的说法应是( C)A.1-1、2-2面上应力皆均匀分布B.1-1、2-2面上应力皆非均匀分布C.1-1面上应力非均匀分布,2-2面上应力均匀分布D.1-1面上应力均匀分布,2-2面上应力非均匀分布(图1)(图2)3.有A、B、C三种材料,其拉伸应力—应变实验曲线如图3所示,曲线( B)材料的弹性模量E大,曲线( A )材料的强度高,曲线( C)材料的塑性好。
4.材料经过冷作硬化后,其( D)。
A.弹性模量提高,塑性降低B.弹性模量降低,塑性提高C.比例极限提高,塑性提高D.比例极限提高,塑性降低5.现有钢、铸铁两种杆材,其直径相同。
从承载能力与经济效益两个方面考虑,图4所示结构中两种合理选择方案是( A)。
A.1杆为钢,2杆为铸铁B.1杆为铸铁,2杆为钢C.2杆均为钢D.2杆均为铸铁(图3)(图4)(图5)6.在低碳钢的拉伸试验中,材料的应力变化不大而变形显著增加的是(B)。
A. 弹性阶段;B.屈服阶段;C.强化阶段;D.局部变形阶段。
7.铸铁试件压缩破坏(B)。
A. 断口与轴线垂直;B. 断口为与轴线大致呈450~550倾角的斜面;C. 断口呈螺旋面;D. 以上皆有可能。
8.为使材料有一定的强度储备,安全系数取值应( A )。
A .大于1; B. 等于1; C.小于1; D. 都有可能。
9. 等截面直杆在两个外力的作用下发生轴向压缩变形时,这对外力所具备的特点一定是等值、( C )。
A 反向、共线B 反向,过截面形心C 方向相对,作用线与杆轴线重合D 方向相对,沿同一直线作用10. 图6所示一阶梯形杆件受拉力P的作用,其截面1-1,2-2,3-3上的内力分别为N 1,N 2和N 3,三者的关系为( B )。
《材料力学》第2章轴向拉(压)变形习题解答

其方向。 解:斜截面上的正应力与切应力的公式为:
ασσα20cos = αστα2sin 2 = 式中,MPa mm N A N 1001001000020===σ,把α的数值代入以上二式得:
[习题 2-7] 一根等直杆受力如图所示。已知杆的横截面面积 A 和材料的弹性模量 E 。试作轴力图,并求杆端点 D 的位移。 解: (1)作轴力图
[习题 2-9] 一根直径 mm d 16=、长 m l 3=的圆截面杆,承受轴 向拉力 kN F 30=,其伸长为 mm l 2.2=?。试求杆横截面上的应 力与材料的弹性模量 E 。 解:(1)求杆件横截面上的应力 MPa mm N A N 3.1491614.34 110302 23=???==σ (2)求弹性模量 因为:EA Nl l = ?, 所以:GPa MPa l l l A l N E 6.203)(9.2035902 .23000 3.149==?=??=???=σ。 [习题 2-10] (1)试证明受轴向拉伸(压缩)的圆截面杆横截 面沿圆周方向的线应变 s ε等于直径方向的线应变 d ε。 (2)一根直径为 mm d 10=的圆截面杆,在轴向力 F 作用下,直 径减小了 0.0025mm 。如材料 的弹性模量 GPa E 210=,泊松比 3.0=ν,试求该轴向拉力 F 。 (3)空心圆截面杆,外直径 mm D 120=,内直径 mm d 60=,材 料的泊松比 3.0=ν。当其轴向拉伸时,已知纵向线应变 001.0=, 试求其变形后的壁厚。 解:(1)证明 d s εε= 在圆形截面上取一点 A ,连结圆心 O 与 A 点,则 OA 即代表直 径方向。过 A 点作一条直线 AC 垂直于 OA ,则 AC 方向代表圆周方向。νεεε-==AC s(泊
轴向拉压习题答案2

第2章 轴向拉伸和压缩主要知识点:(1)轴向拉伸(压缩)时杆的内力和应力;(2)轴向拉伸(压缩)时杆的变形;(3)材料在轴向拉伸和压缩时的力学性能;(4)轴向拉压杆的强度计算;(5)简单拉压超静定问题。
轴向拉伸(压缩)时杆的变形4. 一钢制阶梯杆如图所示。
已知沿轴线方向外力F 1=50kN ,F 2=20kN ,各段杆长l 1=100mm ,l 2=l 3=80mm ,横截面面积A 1=A 2=400mm 2,A 3=250mm 2,钢的弹性模量E=200GP a ,试求各段杆的纵向变形、杆的总变形量及各段杆的线应变。
解:(1)首先作出轴力图如图4-11所示,由图知kN F N 301-=,kN F F N N 2032==。
(2)计算各段杆的纵向变形m m EA l F l N 5693311111075.31040010200101001030---⨯-=⨯⨯⨯⨯⨯⨯-==∆ m m EA l F l N 569332222100.2104001020010801020---⨯=⨯⨯⨯⨯⨯⨯==∆(3)杆的总变形量m l l l l 53211045.1-⨯=∆+∆+∆=∆。
(4)计算各段杆的线应变 451111075.310.01075.3--⨯-=⨯-=∆=l l ε 45222105.208.0100.2--⨯=⨯=∆=l l ε 45333100.408.0102.3--⨯=⨯=∆=l l ε材料在轴向拉伸和压缩时的力学性能5. 试述低碳钢拉伸试验中的四个阶段,其应力—应变图上四个特征点的物理意义是什么?答:低碳钢拉伸试验中的四个阶段为弹性阶段、屈服阶段、强化阶段和颈缩阶段。
在弹性阶段,当应力小于比例极限σp 时,材料服从虎克定律;当应力小于弹性极限σe 时,材料的变形仍是弹性变形。
屈服阶段的最低点对应的应力称为屈服极限,以σs 表示。
强化阶段最高点所对应的应力称为材料的强度极限,以σb 表示,它是材料所能承受的最大应力。
材料力学 轴向拉压 题目+答案详解

2-4. 图示结构中,1、2两杆的横截面直径分别为10mm 和20mm ,试求两杆内的应力。
设两根横梁皆为刚体。
解:(1)以整体为研究对象,易见A 处的水平约束反力为零; (2)以AB 为研究对象由平衡方程知0===A B B R Y X(3)以杆BD 为研究对象由平衡方程求得1KNN N NY KNN N mC20010 01001101 021211==--===⨯-⨯=∑∑(4)杆内的应力为MPa A N MPa A N 7.63204102012710410102322223111=⨯⨯⨯===⨯⨯⨯==πσπσ2-19. 在图示结构中,设AB 和CD 为刚杆,重量不计。
铝杆EF 的l 1=1m ,A 1=500mm 2,E 1=70GPa 。
钢杆AC 的l 2=1.5m ,A 2=300mm 2,E 2=200GPa 。
若载荷作用点G 的垂直位移不得超过2.5mm 。
试求P 的数值。
解:(1)由平衡条件求出EF 和AC 杆的内力P N N N P N N AC EF AC4332 2112=====(2)求G 处的位移22221111212243)ΔΔ23(21)ΔΔ(21Δ21ΔA E l N A E l N l l l l l l A C G +=+=+==(3)由题意kNP P P A E Pl A E Pl mml G 1125.2300102001500500107010009212143435.233222111≤∴≤⨯⨯⨯+⨯⨯⨯⨯=⨯⨯+⨯⨯≤ 2-27. 在图示简单杆系中,设AB 和AC 分别是直径 为20mm 和24mm 的圆截面杆,E=200GPa ,P=5kN ,试求A 点的垂直位移。
解:(1)以铰A 为研究对象,计算杆AB 和杆AC 的受力kN N kN N AC AB 66.3 48.4==(2)两杆的变形为()伸长mm πEA l N l ABABAB AB 201.04201020045cos 20001048.42303=⨯⨯⨯⨯⨯==Δ ()缩短mm πEA l N l ACAC AC AC 0934.04241020030cos 20001066.32303=⨯⨯⨯⨯⨯==Δ(3)如图,A点受力后将位移至A’,所以A点的垂直位移为AA’’mmctg A A l A A AA A A mmA A ctg A A ctg A A A mm AA AA AA AA A A A A l l AB A AB AC 249.00355.0284.0 4545sin /Δ 035.04530A 0972.030sin /45sin /AΔΔAA ΔAA 00330043010243434321=-='''-=''-=''=∴='''∴'''+'''==-=-='==δ 又中在图中2-36. 在图示结构中,设AC 梁为刚杆,杆件1、2、3的横截面面积相等,材料相同。
材料力学第2版 课后习题答案 第2章 轴向拉压与伸缩

习题2-1一木柱受力如图示,柱的横截面为边长20cm 的正方形,材料服从虎克定律,其弹性模量MPa .如不计柱自重,试求:51010.0×=E (1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形.解:(1)轴力图(2)AC 段应力a a ΜΡΡσ5.2105.22.010100623−=×−=×−=CB 段应力aa ΜΡΡσ5.6105.62.010260623−=×−=×−=(3)AC 段线应变45105.2101.05.2−×−=×−==ΕσεN-图CB 段线应变45105.6101.05.6−×−=×−==Εσε(4)总变形m 3441035.15.1105.65.1105.2−−−×=××−××−=ΑΒ∆2-2图(a)所示铆接件,板件的受力情况如图(b)所示.已知:P =7kN ,t =0.15cm ,b 1=0.4cm ,b 2=0.5cm ,b 3=0.6cml 。
试绘板件的轴力图,并计算板内的最大拉应力。
解:(2)aΜΡσ4.194101024.015.0767311=×××××=−a ΜΡσ1.311101025.015.0767322=×××××=−a ΜΡσ9.388101026.015.07673=××××=−最大拉应力aΜΡσσ9.3883max ==2-3直径为1cm 的圆杆,在拉力P =10kN 的作用下,试求杆内最大剪应力,以及与横截面夹角为=30o 的斜截面上的正应力与剪应力。
α解:(1)最大剪应力a d ΜΡππΡστ66.6310101102212672241max =××××===−(2)界面上的应力°=30α()a ΜΡασσα49.952366.632cos 12=×=+=a ΜΡαστα13.5530sin 66.632sin 2=×=×=°2-4图示结构中ABC 与CD 均为刚性梁,C 与D 均为铰接,铅垂力P =20kN 作用在C 铰,若(1)杆的直径d 1=1cm ,(2)杆的直径d 2=2cm ,两杆的材料相同,E =200Gpa ,其他尺寸如图示,试求(1)两杆的应力;(2)C 点的位移。
轴向拉伸及压缩习题及解答

轴向拉伸与压缩习题及解答一、判断改错1、构件力的大小不但与外力大小有关,还与材料的截面形状有关。
答:错。
静定构件力的大小之与外力的大小有关,与材料的截面无关。
2、杆件的某横截面上,假设各点的正应力均为零,那么该截面上的轴力为零。
答:对。
3、两根材料、长度都一样的等直柱子,一根的横截面积为1A ,另一根为2A ,且21A A >。
如下图。
两杆都受自重作用。
那么两杆最大压应力相等,最大压缩量也相等。
答:对。
自重作用时,最大压应力在两杆底端,即max max N All A Aνσν=== 也就是说,最大应力与面积无关,只与杆长有关。
所以两者的最大压应力相等。
最大压缩量为 2max max22N Al l l l A EA Eνν⋅∆===即最大压缩量与面积无关,只与杆长有关。
所以两杆的最大压缩量也相等。
4、受集中力轴向拉伸的等直杆,在变形中任意两个横截面一定保持平行。
所以宗乡纤维的伸长量都相等,从而在横截面上的力是均匀分布的。
答:错 。
在变形中,离开荷载作用处较远的两个横截面才保持平行,在荷载作用处,横截面不再保持平面,纵向纤维伸长不相等,应力分布复杂,不是均匀分布的。
5、假设受力物体某电测得x 和y 方向都有线应变x ε和y ε,那么x 和y 方向肯定有正应力x σ和y σ。
答:错, 不一定。
由于横向效应作用,轴在x 方向受拉〔压〕,那么有x σ;y 方向不受力,但横向效应使y 方向产生线应变,y x εενε'==-。
A 1(a) (b)二、填空题1、轴向拉伸的等直杆,杆的任一点处最大剪应力的方向与轴线成〔45〕2、受轴向拉伸的等直杆,在变形后其体积将〔增大〕3、低碳钢经过冷做硬化处理后,它的〔比例〕极限得到了明显的提高。
4、工程上通常把延伸率δ>〔5%〕的材料成为塑性材料。
5、 一空心圆截面直杆,其、外径之比为0.8,两端承受力力作用,如将外径增加一倍,那么其抗拉刚度将是原来的〔4〕倍。
材料力学练习册答案

第二章 轴向拉伸和压缩2.1 求图示杆11-、22-、及33-截面上的轴力。
解:11-截面,取右段如)(a 由0=∑x F ,得 01=N F22-截面,取右段如)(b由0=∑x F ,得 P F N -=233-截面,取右段如)(c由0=∑x F ,得 03=N F2.2 图示杆件截面为正方形,边长cm a 20=,杆长m l 4=,kN P 10=,比重3/2m kN =γ。
在考虑杆本身自重时,11-和22-截面上的轴力。
解:11-截面,取右段如)(a 由0=∑xF,得kN la F N 08.04/21==γ22-截面,取右段如)(b由0=∑xF,得kN P la F N 24.104/322=+=γ2.3 横截面为210cm 的钢杆如图所示,已知kN P 20=,kN Q 20=。
试作轴力图并求杆的总伸长及杆下端横截面上的正应力。
GPa E 200=钢。
解:轴力图如图。
杆的总伸长:m EA l F l N59102001.0102001.02000022-⨯-=⨯⨯⨯-⨯==∆ 杆下端横截面上的正应力:MPa A F N 20100020000-=-==σ 2.4 两种材料组成的圆杆如图所示,已知直径mm d 40=,杆的总伸长cm l 21026.1-⨯=∆。
试求荷载P 及在P 作用下杆内的最大正应力。
(GPa E 80=铜,GPa E 200=钢)。
解:由∑=∆EAl F l N ,得)104010806.0410********.04(1026.16296294---⨯⨯⨯⨯⨯+⨯⨯⨯⨯⨯=⨯ππP4/4/4/4/)(a )(b )(c 2N1N )(a kNkN 图NF cm cmcm解得: kN P 7.16= 杆内的最大正应力:MPa A F N 3.13401670042=⨯⨯==πσ 2.5 在作轴向压缩试验时,在试件的某处分别安装两个杆件变形仪,其放大倍数各为1200=A k ,1000=B k ,标距长为cm s 20=,受压后变形仪的读数增量为mm n A 36-=∆,mm n B 10=∆,试求此材料的横向变形系数ν(即泊松比)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2-1a 求图示各杆指截面的轴力,并作轴力图。
(c ')(e ')(d ')N (kN)205455(f ')解:方法一:截面法(1)用假想截面将整根杆切开,取截面的右边为研究对象,受力如图(b)、(c)、(d)、(e)所示。
列平衡方程求轴力: (b) 图:)(20020011拉kN N NX =→=-→=∑(c) 图:)(5252002520022压kN N NX -=-=→=--→=∑(d) 图:)(455025200502520033拉kN N NX =+-=→=-+-→=∑(e) 图:)(540502520040502520044拉kN N NX =-+-=→=--+-→=∑(2)杆的轴力图如图(f )所示。
方法二:简便方法。
(为方便理解起见,才画出可以不用画的 (b ‘)、(c ‘)、(d ‘)、(e ‘) 图,作题的时候可用手蒙住丢弃的部份,并把手处视为固定端)(1)因为轴力等于截面一侧所有外力的代数和:∑=一侧FN 。
故:)(201拉kN N =)(525202压kN N -=-=)(455025203拉kN N =+-=)(5405025204拉kN N =-+-=(2)杆的轴力图如图(f ‘)所示。
2-2b 作图示杆的轴力图。
(c)图:(b)图:(3)杆的轴力图如图(d )所示。
2-5 图示两根截面为100mm ⅹ100mm 的木柱,分别受到由横梁传来的外力作用。
试计算两柱上、中、下三段的应力。
(b)(c)(d)(f)题2-5-N图(kN)6108.5N图(kN)326.5-解:(1)梁与柱之间通过中间铰,可视中间铰为理想的光滑约束。
将各梁视为简支梁或外伸梁,柱可视为悬臂梁,受力如图所示。
列各梁、柱的平衡方程,可求中间铰对各梁、柱的约束反力,计算结果见上图。
(2)作柱的轴力图,如(e)、(f)所示。
(3)求柱各段的应力。
解:(1)用1-1截面将整个杆切开,取左边部分为研究对象;再用x -x 截面整个杆切开,取右边部分为研究对象,两脱离体受力如图(b)、(c),建立图示坐标。
(2)列平衡方程求杆的轴力 PN 图(d)题2-2b()2/0)(0011l x P N P N X <<=→=-→=∑拉()2/32/))(2/(0)2/(0l x l l x q N N l x q X x x <<-=→=--→=∑拉⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-=⨯⨯-==-=⨯⨯-==-=⨯⨯-==⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-=⨯⨯-==-=⨯⨯-==-=⨯⨯-==MPa Pa A N MPaPa A N MPa Pa A N MPa Pa A N MPaPa A N MPa Pa A N GH GH FG FG EF EF CD CD BC BC AB AB 65.001.001.0105.62.001.001.01023.001.001.010385.001.001.0105.8101.001.010106.001.001.0106333333σσσσσσ右柱左柱2-6一受轴向拉伸的杆件,横截面面积A =200mm 2,力P =10kN ,求法线与杆轴成30o 及45o 的斜截面上的正应力ασ和剪应力ατ。
解:(1)求轴向拉压杆横截面应力MPa Pa A N 5010200101063=⨯⨯==-σ(2)由轴向拉压杆斜截面上应力公式:⎪⎩⎪⎨⎧==αστασσαα2sin 2cos 2求得: ⎪⎩⎪⎨⎧=⨯=====⎪⎩⎪⎨⎧=⨯=====MPaMPaMPa MPa 25)452sin(2502sin 22545cos 50cos 65.21)302sin(2502sin 25.3730cos 50cos 452245302230οοοοοοοοαστασσαστασσ和2-9(1)证明轴向拉伸(或压缩)的圆截面杆,其横截面上沿圆周方向的线应变s ε等于沿直径方向的线应变d ε。
(2)一圆截面钢杆,直径d =10mm ,在轴向拉力P 作用下,直径减少了0.0025mm ,试求拉力P 。
(1)证明:ddddd d d s ∆=∆=∆=εππε,故,d s εε= (2)解:因4'105.2100025.0-⨯==∆==d d d εε,又01.025.0105.24''=⨯-==→-=-v v εεεε 故,kN N A E A P 7.151057.101.04001.010200429=⨯=⨯⨯⨯⨯=⋅=⋅=πεσ2-11图示结构中,刚性杆AB 由两根弹性杆AC 和BD 悬吊。
已知:P 、l 、E 1A 1和E 2A 2 ,试求x 等于多少时可使AB 杆保持水平?分析:两根杆的反力和x ,三个未知量,仅凭列AB 的平衡方程,无法求解。
显然要列变形协调方程。
解:(1)研究AB 杆,列平衡方程2N (b)题2-11⎩⎨⎧=+=⋅+⋅-P N N l N x P BD CABD 0,………(a ) 三个未知量,仅凭平衡方程无法求解。
(2)列变形协调方程AB 杆位置要水平,BD AC l l ∆=∆ 而:EAaN l EA a N l BD BD CD AC ⋅=∆⋅=∆,即EAaN EA a N l l BD CD BD AC ⋅=⋅=∆=∆………………………………………………(b ) (3)联解平衡方程式组和变形协调方程,可得:221111A E A E lA E x +=2-13 图示三角支架中,杆AB 由两根不等边角钢L63ⅹ40ⅹ4组成,当W =15kN 时,校核杆AB 的强度。
(3)强度校核:经查表,等边角钢的面积为4.058cm 2。
故,AB 杆的拉压强度足够。
2-14 图示桁架中,每根杆长均为1m ,并均由两根 Q 235等边角钢组成。
设P =400kN ,试选择AC 杆和CD 杆所用角钢的型号。
解:(1)求支反力R A 、R B :因屋架及荷载左右对称,所以:kN 200400212=⨯===P R R B A (2)求AC 杆和CD 杆的内力:用截面法1-1切开, 取截面的左边部分为研究对象,设三杆是拉杆,内力 沿截面外法线方向,脱离体受力如图(b )所示。
解:(1)拉紧的柔性约束对滑轮的作用,只相当于一个力矢2W ,而无主矩。
研究销钉,假设AB 、AC 为拉杆,受力如图(b),所示。
(注意:拉杆施与销钉的拉力是沿“背离销钉,指向杆内”) (2)列平衡方程,求AB 杆内力。
)(600230sin 0拉kN N W N Y AB AB =→=-→=∑οN AB题2-13(b)[]MPa MPa Pa A N AB AB 1609.7310058.42106043=≤=⨯⨯⨯==-σσ(b)列平衡方程求AC 杆和CD 杆的内力:⎪⎪⎩⎪⎪⎨⎧-=-=→⎪⎪⎩⎪⎪⎨⎧=⨯+=⨯⨯-⨯⨯-→⎪⎩⎪⎨⎧==∑∑332060sin 20)30cos 1(2)60sin 1(00)(P N P N N P P N Y F m DC AC DCAC D οοο (3)由强度条件选择等边角钢的型号:[][][][]⎪⎩⎪⎨⎧≥≥→⎪⎪⎪⎩⎪⎪⎪⎨⎧⨯⨯⨯=≥⨯⨯⨯=≥→⎪⎪⎪⎩⎪⎪⎪⎨⎧≤=≤=2226326322.761.310160131040021016013210400222cm cm m m A A N A N A A N A N AC DC DC AC AC DC DC DC AC AC AC σσσσσσ 故,AC 杆选两根L54040⨯⨯的等边角钢:。
CD 杆选两根L66363⨯⨯的等边角钢。
2-15图示三角架中,已知:[][]MPa ,A MPa A 100900,160,6002211====σσ22mm mm ,试求结构的许可荷载[P ]。
解:(1)求杆件的容许轴力[N ][][]kN 9696000106001016066111==⨯⨯⨯=⨯=-N A N σ[][]kN 9090000109001010066222==⨯⨯⨯=⨯=-N A N σ(2)求出内力N 与P 的关系,研究节点,受力如图(b): 由于结构对称,荷载对称,所示N 1=N 2)(06cos 20211拉P N N P N Y ==→=-→=∑π(3)由强度条件确定P :kN P kNP kNP kN N P N kN N P N 90909690][96][2211≤→⎩⎨⎧≤≤→⎩⎨⎧=≤==≤= 故,结构的容许荷载[]kN 90=P2-16 图示钢筋混凝土短柱,边长mm a 400=, 柱内有四根直径为mm d 30=的钢筋。
已知,柱 受压后混凝土的应力值为MPa h 6=σ,试求轴 向压力P 及钢筋的应力g σ。
解:方法一:钢筋混凝土短柱,下端固定,上端 为盖板覆盖,可认为短柱是由无数根纵向纤维组°N 2题2-15(b)N1成,各纵向纤维的线应变相同。
即g h εε=。
由胡虎定理εσE =可得:10102.01021111=⨯⨯===h g h h g g h g E E E E εεσσ故,MPa h g 6061010=⨯==σσ故, kN A A P g g h h 6.1129403.0106044.01062626=⨯⨯⨯⨯+⨯⨯=⋅+⋅=πσσ方法二: 由胡虎定理EA Nll =∆可得:gg g g h h h h A E l N l ,A E l N l =∆=∆ 而,钢筋和混凝土的纵向绝对伸长量相等。
044156.04.04/03.0102.01024/22111122=⨯⨯⨯⨯=⋅==→=ππa d E E A E A E N N A E l N A E l N h g h h g g h g g g g h h h 故:N N N kNN N h g h 39.42960044156.0044156.09604.010626=⨯===⨯⨯=kN N N P g h 6.112939.4249604=⨯+=⨯+=由轴向拉压杆的应力公式得:MPa Pa A N G gg 60403.01039.4223=⨯⨯==πσ 2-24 图示为低碳钢的εσ-曲线,若超过屈服极限后继续加载,当试件横截面上应力MPa 300=σ时,测得其轴向线应变3105.3-⨯=ε,然后立即卸载至0=σ,试求试件的轴向塑性应变P ε。
解:(1)卸载遵循弹性规律:卸卸εσE =。
查表可知低碳钢的弹性模量:E =200GPa3116105.110210300-⨯=→⨯=⨯→=e e E εεεσ卸卸(2)卸载前的轴向线应变3105.3-⨯=ε,则3102-⨯=-=e P εεε题2-25题2-242-25 图示拉杆为钢杆,测得表面上K 点处的横向线应变4'102-⨯-=ε,试求荷载P 和总伸长量l ∆。