测井评价水淹层

合集下载

浅议水淹层测井评价

浅议水淹层测井评价

浅议水淹层测井评价[摘要]微电极测井是在普通电阻率测井的基础上发展起来的一种测井方法,它采用特制的微电极测量井壁附近地层的电阻率。

自然伽马测井测量的是地层总的自然伽马放射性,是套管井测井的一种最基本的方法。

本文就将两种测井技术作为水淹层测井评价技术的主要组成部分,对它们的原理和应用进行了阐述,对于实际具有一定的价值。

【关键词】水淹层;测井;评价在注水开发的油田中,注人水会使油层物理性质、储集参数和测井参数发生显著的变化。

孔隙度和渗透率的变化是油层水淹对其物性影响的主要表现。

通常当注人水为淡水时,有可能造成粘土矿物表面吸附的阳离子出现不平衡而重新进行分配,其结果将造成以高岭石为主的粘土矿物被冲洗带走,造成孔隙空间增大,渗透率增加。

而以蒙脱石为主的粘土矿物,其吸水膨胀会造成孔道进一步堵塞,导致孔隙度减小,渗透率降低。

水淹对油层含油性的影响,直接表现为含油饱和度降低。

这种由于注人水的侵人使含油饱和度以不同程度下降后的数值,称之为剩余油饱和度,它介于原始含油饱和度和残余油饱和度之间。

油层水淹后,对自然电位P和电阻率Rt的影响比较明显。

当注人水矿化度较高时,随着含水饱和度的增加,电阻率Rt呈下降趋势;但随着注人水矿化度的降低,增加到一定程度后,电阻率反而急剧上升,形成“U”形曲线。

1.微电极测井1.1 微电极测井原理微电极测井(ML)是一种浅探测电阻率的方法。

由于探测深度的不同,微梯度受泥饼影响较大,微电位受泥饼影响较小而受冲洗带和过度带影响较大。

因此,将两种电阻率测井曲线按同一横向比例重叠,在淡水泥浆井中,渗透性砂岩处出现明显正幅度差(微电位大于微梯度);而在非渗透性泥岩处两者基本重合,故能有效地划分出渗透性砂岩。

1.2 微电极资料应用选用微梯度和微电位两种电极系以及相应的电极距目的是要它们在渗透性地层上方出现明显的幅度差,因此,不但要求两者同时测量,而且要将两条视电阻率曲线画在一起,采用重叠法进行解释,根据现场实践微电极测井主要有以下两种应用:1)确定岩层界面,划分薄层和薄的交互层通常依据微电极测井曲线的半幅点曲线分离点确定地层界面,一般可划分20cm厚的薄层,薄的交互层也有较清楚的显示。

水淹层测井评价方法

水淹层测井评价方法

水淹层测井评价方法
水淹层测井评价是一种重要的地质勘探方法,它的目的是对地层中的水体的性质、质量和地质结构进行准确的评价。

水淹层测井评价技术是在深度钻井过程中,利用钻井记录获取的信息,对地层中的淹水面、水体性质和分布变化等进行综合推断,从而获得准确准确的水淹层信息。

水淹层测井评价是根据深度钻井记录获取的信息,来确定淹水面和水体流动性和质量的变化情况,从而评价水淹层的整体情况。

一般来说,水淹层测井评价可以分为三个步骤:第一步是观测记录的质量评价、第二步是分析和模拟水淹层测井数据者,最后一步就是划分水淹层的区域特征。

第一步,钻井记录质量评价,一般采用技术性指标,如起采深度、采样率、采样模式、精度和可信度等来评价记录的质量,其中可信度指标是很重要的指标,它会影响到钻井深度及其下方地层的性质特征,以及淹水面的准确性和可靠性。

第二步,分析模拟钻井数据,钻井测井评价的最终效果取决于钻井数据的分析模拟。

首先,根据所测得的钻遇结果,对地层特征进行识别;其次,根据比重、沉积量、可压缩比、含水率、气体分布等参数,采用模拟计算程序模拟计算地层的水体流动特征;最后,根据模拟计算的结果,估算水体的物理性质特征,如压力、渗透率等。

第三步,划分水淹层的区域特征,一般通过观测记录和钻遇分析结果,以及模拟计算结果,综合确定淹水面的形态及其地质特征,从
而划分水淹层的区域特征。

水淹层测井评价是一项复杂的工作,需要对地层的形态特征及其地质构造有一定的认识,并具有较强的计算能力及经验判断能力,以及较高的深井技术水平,方能够准确掌握地层中的水淹层信息并做出准确的评价。

07章 水淹油层测井评价

07章 水淹油层测井评价

产水率Fw为:
式中:Bo为储集层含油体积系数;GOR为产层气油比。 ① 油层 未被水淹的油层,储集空间为油(气)、束缚水所饱和。只有束缚水、而无可 动水。可表示为:
② 油水同层或水淹层 储集层孔隙空间为油(气)、可动水和束缚水所饱和。此时:
因为Soco=(1-Swco)>0,Swm >0,储层可能同时产油和水,地层为油水同 层或水淹层。0<Kroc <1; 0<Krwc <1,有以下几种情况:
3.Δt测井 强水淹,会使物性改善,Δt上升。 4.微电极曲线 在渗透率好的水淹层段,如果泥浆性能稳定,井壁无 泥饼,极板直接与岩层接触,探测范围加深,测值受残余 油高电阻影响,造成水洗层微电极视电阻率比未水洗油层 值高。水淹部位,正离差值加大。
大庆某井自然电位上台阶显示
大庆某井自然电位下台阶显示
低含水期 中高含水期 特高含水期
25
30
32
35
37
40
43
孔隙度(%)
储 层
参 数 变 化 图
频 率
微观物理特性
0.40 0.35 0.30 0.25 0.20 0. 5 0. 0 0.05 0.00 0
500 000 500 2000 2500 3000 3500 4000 4500 5000 43 2 04 4 20
第二节 水淹层测井解释
一、水淹级别划分 油层在注水开发以后,油层孔隙结构会发生改变,物 性变好;含油下降、含水上升;油层水淹程度可根据Fw划 分三级: 强水洗层: 1.强水洗层:试油fw>80%;So比原始So↓35%以上, 地层水矿化度下降2 〜 4倍; 中等水洗: 2 . 中等水洗 : fw = 40% 〜 80%,So下降20 〜 30%; 地层水矿化度下降1 〜 2倍; 弱水洗: 3.弱水洗:fw<40%;So下降15%。

水淹层测井精细评价技术

水淹层测井精细评价技术

0.8
1
两种溶液电阻率相差不大时,电阻率单调下降低; 两种溶液电阻率相差中等时,含水饱和度达到一定程度后,电阻率变化比 较平缓,有略微上升的趋势; 两种溶液电阻率相差较大时,电阻率呈现“U”形变化
600 500
电阻率
L10-18 44# 600ppm 1000ppm 1500ppm 2000ppm
121.4
22.09 21.33 12.25 15.45 26.92 26.80 21.90 17.97 26.15 16.63 20.98 13.62 21.16 77.78
水驱倍数越大(即水淹程度越强),岩心渗透率增 大率就越大。其中渗透率增大的最大绝对值为167.8, 而最大相对增大率为121.4% 储层物性差的储层,因岩心渗透性差,所以,水淹之 后虽然其渗透率相对增大率大,但是其绝对增大值变 化不大,即渗透率变化不大 储层物性好的储层,水淹之后其渗透率绝对和相对增 大率均较高,即渗透率变化明显
双6-127
16.70
19.99
0.23
0.20
1.377
1.001
0.57
0.46
3.413
2.301
0.72
0.66
4.311
3.302
8.20
11.86
0.21
0.23
2.561
1.939
0.23
0.48
2.805
4.047
0.44
0.72
5.366
6.071
10
11
26.13
20.80 12.35 15.61 20.80 24.93 16.29 3.57
63
3790
②油层水淹后电阻率出现平直甚至“内凹”特征

水淹层定量识别方法

水淹层定量识别方法

水淹层定量识别方法
水淹层的定量识别方法主要包括以下几种:
1. 电阻率测井:这是水淹层测井中最常见的一种方法。

通过测量不同深度的电阻率,可以推断出油井中的岩石类型和含水性质。

当测量到很低的电阻率时,很可能是由于岩石孔隙中充满了水,即存在水淹层。

2. 声波测井:通过测量声波在岩石中的传播速度和幅度,可以推断出岩石的孔隙度和渗透率,从而识别水淹层。

在声波测井中,通常使用单发双收的测井仪,可以消除井壁的影响,提高测量的精度。

3. 核磁共振测井:核磁共振测井利用原子核的自旋磁矩进行研究,可以测量地层中自由水和束缚水的含量,从而识别水淹层。

核磁共振测井具有较高的测量精度和分辨率,能够提供地层中水的赋存状态和分布情况。

4. 介电测井:介电测井利用岩石和水的介电常数差异进行测量,可以识别水淹层。

介电测井能够提供地层中水的含量和分布情况,同时还可以测量地层的孔隙度和渗透率。

这些定量识别方法都有各自的优缺点,在实际应用中需要根据具体情况选择合适的方法。

同时,还需要结合地质资料、试油数据、生产数据等多方面的信息进行综合分析,才能更准确地识别出水淹层。

水淹层测井评价

水淹层测井评价
国家重点实验室
水淹层测井技术发展方向
( 3 )进一步完善水淹层测井系列。 目前,各油田由于储层类型和水淹状况差别 较大,采用的测井系列以电阻率测井系列为主, 而迄今尚没有用于直接测量地层混合液电阻率 (Rz)的测井方法,在很大程度上影响了水淹 层测井解释的精度。因此针对不同油藏的岩性 条件和水淹程度,不断把新的水淹层测井方法 引入到测井系列之中,与其他的测井方法配合 应用,形成完善的水淹层测井系列,这是提高 水淹层测井技术水平的关键
国家重点实验室
油田开发水淹层分类
按驱油效率(ED )划分水淹级别
由于各油田的束缚水饱和度不同,因而 很难用统一的含水饱和度划分水淹等级。 可用与油层含水饱和度及束缚水饱和度 同时有关的驱油效率ED 的大小作为判 断水淹级别的标准。驱油效率En 按右 式计算: Sw Swi
ED 1 Swi
国家重点实验室
我国水淹层测井的进展
(2) 各油田相继建立了适合自己油田特点的水淹层测井系列
以大庆油田为例:
① 1979 年以前水淹层测井系列以电阻率测井和 自然电位测井为主,利用自然电位基线偏移定性 划分水淹层; ② 1981 年加入人工电位测井,即激发极化电位 测井; ③ 1984 年加测自然电流测井; ④ “八五”以来,油田进入高含水中后期,要求 进行层内细分和剩余油饱和度定量解释,这样又 发展了一套薄层、超薄层的水淹层测井系列,加 测高分辨率侧向测井和高分辨率声波测井。 国家重点实验室
国家重点实验室
水淹层测井技术发展方向
( 5 )开展组合测井、综合解释,提高水淹 层测井解释符合率。 在今后一个时期,新的测井方法(如 阵列感应测井、套管井电阻率测井、核磁共 振测井)将被广泛应用,水淹层测井系列将 会进一步完善,相应的解释技术也会出现。 组合测井、综合解释将成为提高水淹层测井 解释水平的必然方向。

测井技术在老油田水淹层评价中的综合应用

测井技术在老油田水淹层评价中的综合应用

测井技术在老油田水淹层评价中的综合应用现阶段随着我国经济技术的不断发展,油田的生产开发技术也不断得到提升与进步,目前油田开发的现状要求油田在开发的过程中对测井技术的使用要求也要不断提高,在日趋复杂的油田勘探与开采工作中,做好新老测井技术在老油田水淹层中的综合应用研究是极其重要的,基于此,本文的研究就是对新老测井技术在老油田水淹层评价中的综合应用的探析。

标签:新老测井技术;老油田;水淹层;评价一、新老测井技术在老油田水淹层评价中的影响因素(一)储层的沉积微相及非均质性对油藏水淹的影响对于储层的沉积微相及非均质性对油藏水淹的影响,其主要是看储层被水淹的物性,纵剖面上受沉积相的控制,将使得物性较好的主力油层首先对水淹,而物性较差的主力油层水淹的速度要比物性较好的主力油层慢,对于水淹层的内部来说,水淹层内部的纵向水淹程度差异要收到沉积韵律的影响。

正韵律油层的底部,岩性较粗、物性较好,加之重力的影响与作用,使得正韵律油层将会首先被淹,而反韵律油层由于其顶部的岩性较粗,物性较好,因此反韵律水淹是先淹顶层的。

油水运动的规律,决定了正韵律与反韵律的运动规律,如果高渗透层偏下部,那么油水的运动特征将呈现正韵律运动的现象,如果高渗透层偏上部,那么油水运动的规律特征将呈现反韵律运动的现象。

(二)构造对油藏水淹的影响构造对油藏水淹的影响,主要表现在层间非均质性对水淹层的影响以及注水井中各层吸水能力的高低。

对于层间非均质性对水淹层的影响来说,首先表现在注射水景吸水的剖面上,这种层间非均质性将会导致各层吸水能力之间的差异,有时差异还会呈现出极其悬殊的差别。

对于注水井中各层吸水能力的高低来说,注水井中各层吸水能力的高低将必然会导致连通才有井中各層产液强度的不同,从而导致水淹程度的不同,一些吸水能力强,产液强度高的层,将首先会遭水淹。

(三)注水性质对油层水淹的影响对于注水性质对油层水淹的影响来说,在一般情况下,注水的性质与储层的水敏性是否适应与注水中水质杂志含量的程度都将直接影响到储层的吸水能力,以此影响到注水的水淹程度。

水淹层测井解释与评价综述

水淹层测井解释与评价综述

水淹层测井解释与评价综述水淹层测井技术,是20世纪50年代发展起来的一种测井工艺,是探测注水开发油田含水率高低、预测地下剩余油的重要技术。

经过半个世纪的发展,水淹层测井技术已经形成了多个技术系列,成为为高含水油田开发中后期剩余油挖潜提供依据的重要手段[1]。

0我国多数油田,一般都采用早期注水开发方式,随着油田水驱开发程度的不断提高,油田的水淹程度日趋增高,导致产层的流体性质、孔隙结构,岩石的物理化学性质,以及油气水分布规律等,都会发生一定程度的变化。

水淹层测井解释利用测井资料对水驱油藏水淹所发生的变化进行评价,以便弄清水淹部位和水淹程度,是研究剩余油饱和度的主要手段,为进行二次乃至三次采油提高采收率提供依据,也为近一步调整油田开发方案,加密井布井,注采关系调整,确定老井封堵措施等方面提供了科学的指导[2]。

一、油层水淹后产层物理性质的变化受注入水影响,储层性质发生了与开发初期不同的变化,主要表现在岩石的电学性质、孔隙结构、水动力学系统等方面[3]。

1、孔隙度、渗透率的变化注水开发过程中,注入水的推进和冲刷使岩石的孔隙度、渗透率发生改变,其变化大小与水洗程度有关。

弱水洗时,岩石中的粘土矿物受注入水浸泡发生膨胀,孔喉变窄,孔径变小,被冲刷的胶结物也可能堵塞孔道,导致孔隙度变小、渗透率降低;强水洗时,受注入水的长期冲刷,粘土矿物被冲洗,使得泥质含量降低,孔隙度变大,渗透率提高。

因此,在注水井附近的高水淹区域,储层渗透率有明显提高[3]。

2、含油性及油水分布的变化注水开发前,储层内主要为束缚水,含油饱和度高。

随着水驱程度的提高,油水分布发生变化[3]。

由于储层的非均质性的差异,物性好并且与注水井连通性好的区域先水淹,含油饱和度降低;相反,物性差且与注水井层连通差的区域后水淹或未水淹,剩余油饱和度相对较高,成为挖潜调整的主要对象。

3、润湿性的变化岩石的润湿性与岩石的性质和孔隙结构有关,并由其亲水能力表现出来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

发展方向
(4)在深度和广度上进一步深化和拓宽测井解释与分 析的内容,主要包括加强测井在油气田地质、工程、 开发等方面的应用。 (5)从单井向多井综合解释和油层描述发展,向工作 站图像解释和集成化测井解释方向发展,以测井为纽 带,与地质、地震资料有机结合起来,将测井资料解 释的综合应用推向一个新的水平。
谢谢大家 欢迎交流!
第六节
我国水淹机理解释的发展
发展方向
(1)使用新的实验研究方法,如CT、核磁共振、网络 分析求准剩余油饱和度和其他参数。用岩石物理实验 研究结论为建立新的测井方法和解释模型提供依据。 (2)发展新的测井解释理论和方法。
(3)为了掌握水驱过程中油藏剩余油饱和度的变化, 应发展C/O能谱、过套管电阻率、电磁感应、电磁波 和核测井方法的时间推移测井。

含油饱和度下降的程度存在差异
★油层内物性好的部位经注水后,经受较充分的水洗致使其含水饱 和度升高而含油饱和度降低。 ★与注水井层不连通或连通差的油层则成为未动用油层或剩余油饱 和度较高的油层上升为挖潜调整的主要对象。
第三节
油层水淹后的物性变化
2. 孔隙度和渗透率的变化

在弱水洗区,粘土受注入水浸泡发生膨胀,孔喉变窄,
视电阻率下降,感应电导率增高,自然电位负异常幅度增加, 有些油田的微电阻率曲线幅度差变小(相对未水淹油层)等。
交会图版法识别水淹层
利用声波时差测井和密度 测井可以得到地层的声阻抗: 交会图版法: Z=DEN/AC 根据已开发油田的油层、水淹层和水层 根据图中统计的数据点数可 的测井资料,计算某些能反映油层水淹情 以确定水淹层和未水淹层的 况的参数,绘制一系列定性识别水淹层的 界限,根据数据拟合可以得 交会图版,用以快速判别新钻加密井的油 到一个界限;大于这条线的 储层为未水淹层,小于这条 层、水淹层和水层。 线的储层为水淹层。根据这 个方法可以直观地判断储层 是否已经水淹。
3.水淹模式识别
内容:主要利用测井曲线的形态信息,对于表内
厚层,利用密闭取心检查井资料,建立了不同沉积 韵律储层测井曲线形态变化与水淹级别变化的对应 关系,主要包括均质层、正韵律层、反韵律层、复 合韵律层等水淹模式。
第六节Leabharlann 我国水淹机理解释的发展单井水淹层测井解释的局限性
水淹机理的基础理论实验研究还比较薄弱,有些解 释模型和方法还不适应油田特点和水淹层评价的要求。 过多的依赖经验公式,没有考虑注水开发过程中油 层岩性、物性以及电性变化造成的对原有模型的影响。 不能进行薄层、超薄层和细分水淹级别的研究。
交会图版法识别水淹层
淡水水淹层识别
淡水水淹层在常规测井曲线上的主要特征:
(1)SP曲线幅度变化和极限偏移;
(2)底层电阻率发生明显变化,随着水淹程度增加,电 阻率呈“U”形变化; (3)常有声波时差增大和自然伽马值GR的变化等。 这些特征又是随着地质特点和钻井条件而变化的。
污水水淹层识别
污水水淹层在常规测井曲线上的主要特征:
水淹层测井解释评价
——汇报人:戴文
水淹层测井解释评价
主要内容:
水淹层测井的意义 水淹层分类 油层水淹后的物性变化 定性评价水淹层
水淹等级的划分
我国水淹机理解释的发展
第一节
水淹层测井的意义
● 水淹层测井解释利用测井资料对水驱油藏水淹所
发生的变化进行评价,以便弄清水淹部位和水淹程度, 为进行二次乃至三次采油提高采收率提供依据。
第五节
定量识别水淹层
主要内容:
定量划分水淹层的等级
动态电阻率下降法划分水淹层等级
水淹模式识别
1.定量划分水淹层的等级
计算以剩余油饱和度为核心的产层参数:
(1)含水饱和度:含水饱和度是水淹层测井评 价的一个非常重要的参数,利用测井资料计算 饱和度的方法应用最为广泛。
(2)驱油效率: Swi和Sw可以通过测井信息得到,按ŋ值大小可以 划分水淹级别。 (3)含水率:含水率是反映水淹程度的最直接 参数,按Fw值划分水淹级别的标准。
2.动态电阻率下降法划分水淹层等级
定义电阻率曲线下降幅度 为△Rt,则△Rt一(Rti—Rt) 内容:针对不同储层岩石物理相,以密 /Rti(油田未注水开发时储 闭取心检查井资料为基础,利用“岩心 层的电阻率定义为Rti)。对 于未水淹层,△Rt =O;对 刻度测井技术”反求储层原始状态下的 于水淹层,△Rt>0,并且 电阻率值,再与目前实测电阻率值比较, 随着水淹程度的增强, 求出电阻率下降幅度,进而判断储层的 △Rt值变大。结合密闭取 心检查井资料,利用△Rt 水淹级别。 与其它参数组合建立不同 岩石物理相储层水淹层静 态解释标准。
第三节
油层水淹后的物性变化
5. 地层水矿化度的变化
在水淹早期,阳离子交换能力相对较高。随着水淹 程度的加大,泥质含量不断减少,阳离子交换能力 也相应减小。
此外,在油田注水开发过程中,产层的泥质含量、 地层温度和压力及驱油效率等也将发生一定的变化。
第四节
定性识别水淹层
主要内容:
淡水水淹层识别
污水水淹层识别
●水淹层测井解释还用于指导加密新井射孔试油,为
近一步调整油田开发方案,加密井布井,注采关系调
整,确定老井封堵措施等方面有重要的指导意义。
第二节
★淡水水淹层:
水淹层分类
是指边内注水并由淡水驱油形成的水淹层。
★边水水淹层:
靠边水或边外注水驱油形成的水淹层,多见于原始油 水界面上移或原始油水关系被破坏。
孔径缩小,孔隙度和渗透率都会降低 在强水洗区,粘土被水冲洗,泥质含量降低,孔喉增
大,孔隙度和渗透率都将提高
3. 岩石润湿性的变化

油层水淹后,由于岩石与水长期接触,岩石一般向着
强亲水方向改变
第三节
油层水淹后的物性变化
4. 地层水矿化度的变化
淡水注入情况下的两种物理作用:
两种不同矿化度的溶液发生混合作用 原始地层水与低矿化度注入水间发生离子扩散 污水回注 污水回注时,变化情况更为复杂。总的说来, 产层见水后,地层剩余水矿化度也发生变化,驱替前 缘高,远离前缘低。
★污水水淹层:
污水回注或淡、污混合形成的水淹层,此 种驱动 水矿化度非常复杂,由于注入水的性质不同,决定了 测井解释的难度。
第三节

油层水淹后的物性变化
1.饱和度分布变化
剩余油分布
★非活塞式的均匀推进,而是沿着孔隙度大、渗透性好的部位推进的, 这就必然导致一些油被留在微小孔隙或孔道之中成为剩余油随着石油的 不断采出,地层中的含油饱和度不断降低
相关文档
最新文档