2007原题
2007年全国统一高考数学试卷(文科)(全国卷一)及答案

2007年全国统一高考数学试卷(文科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设S={x|2x+1>0},T={x|3x﹣5<0},则S∩T=()A.∅B.C.D.2.(5分)α是第四象限角,cosα=,则sinα=()A.B.C.D.3.(5分)已知向量,,则与()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向4.(5分)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A.B.C.D.5.(5分)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有()A.36种B.48种C.96种D.192种6.(5分)下面给出的四个点中,位于表示的平面区域内的点是()A.(0,2) B.(﹣2,0)C.(0,﹣2)D.(2,0)7.(5分)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A.B.C.D.8.(5分)设a>1,函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为,则a=()A.B.2 C.D.49.(5分)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g(x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件10.(5分)函数y=2cos2x的一个单调增区间是()A.B.C.D.11.(5分)曲线在点处的切线与坐标轴围成的三角形面积为()A.B.C.D.12.(5分)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()A.4 B.C.D.8二、填空题(共4小题,每小题5分,满分20分)13.(5分)从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):492496494495498497501502504496 497503506508507492496500501499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g之间的概率约为.14.(5分)函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)=.15.(5分)正四棱锥S﹣ABCD的底面边长和各侧棱长都为,点S、A、B、C、D都在同一个球面上,则该球的体积为.16.(5分)等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.三、解答题(共6小题,满分80分)17.(10分)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA (Ⅰ)求B的大小;(Ⅱ)若,c=5,求b.18.(12分)某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.(Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率;(Ⅱ)求3位顾客每人购买1件该商品,商场获的利润不超过650元的概率.19.(12分)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SA⊥BC;(Ⅱ)求直线SD与平面SBC所成角的大小.20.(12分)设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.(Ⅰ)求a、b的值;(Ⅱ)若对任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围.21.(12分)设{a n}是等差数列,{b n}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.(Ⅰ)求{a n}、{b n}的通项公式;(Ⅱ)求数列的前n项和S n.22.(12分)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且AC⊥BD,垂足为P (Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.2007年全国统一高考数学试卷(文科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2007•全国卷Ⅰ)设S={x|2x+1>0},T={x|3x﹣5<0},则S∩T=()A.∅B.C.D.【分析】集合S、T是一次不等式的解集,分别求出再求交集.【解答】解:S={x|2x+1>0}={x|x>﹣},T={x|3x﹣5<0}={x|x<},则S∩T=,故选D.2.(5分)(2007•全国卷Ⅰ)α是第四象限角,cosα=,则sinα=()A.B.C.D.【分析】根据同角的三角函数之间的关系sin2+cos2α=1,得到余弦的值,又由角在第四象限,确定符号.【解答】解:∵α是第四象限角,∴sinα=,故选B.3.(5分)(2007•全国卷Ⅰ)已知向量,,则与()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向【分析】根据向量平行垂直坐标公式运算即得.【解答】解:∵向量,,得,∴⊥,故选A.4.(5分)(2007•全国卷Ⅰ)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A.B.C.D.【分析】根据焦点坐标求得c,再根据离心率求得a,最后根据b=求得b,双曲线方程可得.【解答】解.已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则c=4,a=2,b2=12,双曲线方程为,故选A.5.(5分)(2007•全国卷Ⅰ)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有()A.36种B.48种C.96种D.192种【分析】根据题意,先分析甲,有C42种,再分析乙、丙,有C43•C43种,进而由乘法原理计算可得答案.【解答】解;根据题意,甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,有C42种,乙、丙各选修3门,有C43•C43种,则不同的选修方案共有C42•C43•C43=96种,故选C.6.(5分)(2007•全国卷Ⅰ)下面给出的四个点中,位于表示的平面区域内的点是()A.(0,2) B.(﹣2,0)C.(0,﹣2)D.(2,0)【分析】本题考查的是不等式所表示的平面区域内点所满足的条件的问题,解决此问题只需将点代入验证即可【解答】解:将四个点的坐标分别代入不等式组,解可得,满足条件的是(0,﹣2),故选C.7.(5分)(2007•全国卷Ⅰ)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A.B.C.D.【分析】先通过平移将两条异面直线平移到同一个起点B,得到的锐角∠A1BC1就是异面直线所成的角,在三角形中A1BC1用余弦定理求解即可.【解答】解.如图,连接BC1,A1C1,∠A1BC1是异面直线A1B与AD1所成的角,设AB=a,AA1=2a,∴A1B=C1B=a,A1C1=a,∠A1BC1的余弦值为,故选D.8.(5分)(2007•全国卷Ⅰ)设a>1,函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为,则a=()A.B.2 C.D.4【分析】因为a>1,函数f(x)=log a x是单调递增函数,最大值与最小值之分别为log a2a、log a a=1,所以log a2a﹣log a a=,即可得答案.【解答】解.∵a>1,∴函数f(x)=log a x在区间[a,2a]上的最大值与最小值之分别为log a2a,log a a,∴log a2a﹣log a a=,∴,a=4,故选D9.(5分)(2008•上海)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g (x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件【分析】本题主要是抽象函数奇偶性的判断,只能根据定义,而要否定奇偶性,一般用特值.【解答】解.若“f(x),g(x)均为偶函数”,则有f(﹣x)=f(x),g(﹣x)=g (x),∴h(﹣x)=f(﹣x)+g(﹣x)=f(x)+g(x)=h(x),∴“h(x)为偶函数”,而反之取f(x)=x2+x,g(x)=2﹣x,h(x)=x2+2是偶函数,而f(x),g(x)均不是偶函数”,故选B10.(5分)(2007•全国卷Ⅰ)函数y=2cos2x的一个单调增区间是()A.B.C.D.【分析】要进行有关三角函数性质的运算,必须把三角函数式变为y=Asin(ωx+φ)的形式,要先把函数式降幂,降幂用二倍角公式.【解答】解:函数y=2cos2x=1+cos2x,由﹣π+2kπ≤2x≤2kπ,解得﹣π+kπ≤x≤kπ,k为整数,∴k=1即有它的一个单调增区是,故选D.11.(5分)(2007•全国卷Ⅰ)曲线在点处的切线与坐标轴围成的三角形面积为()A.B.C.D.【分析】(1)首先利用导数的几何意义,求出曲线在P(x0,y0)处的切线斜率,进而得到切线方程;(2)利用切线方程与坐标轴直线方程求出交点坐标(3)利用面积公式求出面积.【解答】解:若y=x3+x,则y′|x=1=2,即曲线在点处的切线方程是,它与坐标轴的交点是(,0),(0,﹣),围成的三角形面积为,故选A.12.(5分)(2007•全国卷Ⅰ)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()A.4 B.C.D.8【分析】先根据抛物线方程求出焦点坐标和准线方程,进而可得到过F且斜率为的直线方程然后与抛物线联立可求得A的坐标,再由AK⊥l,垂足为K,可求得K的坐标,根据三角形面积公式可得到答案.【解答】解:∵抛物线y2=4x的焦点F(1,0),准线为l:x=﹣1,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A(3,2),AK⊥l,垂足为K(﹣1,2),∴△AKF的面积是4故选C.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2007•全国卷Ⅰ)从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):492496494495498497501502504496 497503506508507492496500501499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g之间的概率约为0.25.【分析】由题意知本题是一个统计问题,需要用样本的概率估计总体中位于这个范围的概率,试验发生包含的事件数时20,袋装食盐质量在497.5g~501.5g之间的可以数出有5,利用概率公式,得到结果.【解答】解:从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):492496494495498497501502504496 497503506508507492496500501499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g之间的概率约为P==0.25.故答案为:0.2514.(5分)(2007•全国卷Ⅰ)函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)=3x(x∈R).【分析】由题意推出f(x)与函数y=log3x(x>0)互为反函数,求解即可.【解答】解.函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x 对称,则f(x)与函数y=log3x(x>0)互为反函数,f(x)=3x(x∈R)故答案为:3x(x∈R)15.(5分)(2007•全国卷Ⅰ)正四棱锥S﹣ABCD的底面边长和各侧棱长都为,点S、A、B、C、D都在同一个球面上,则该球的体积为.【分析】先确定球心位置,再求球的半径,然后可求球的体积.【解答】解:正四棱锥S﹣ABCD的底面边长和各侧棱长都为,点S、A、B、C、D都在同一个球面上,则该球的球心恰好是底面ABCD的中心,球的半径是1,体积为.故答案为:16.(5分)(2007•全国卷Ⅰ)等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.【分析】先根据等差中项可知4S2=S1+3S3,利用等比数列的求和公式用a1和q分别表示出S1,S2和S3,代入即可求得q.【解答】解:∵等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,∴a n=a1q n﹣1,又4S2=S1+3S3,即4(a1+a1q)=a1+3(a1+a1q+a1q2),解.故答案为三、解答题(共6小题,满分80分)17.(10分)(2007•全国卷Ⅰ)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)若,c=5,求b.【分析】(1)根据正弦定理将边的关系化为角的关系,然后即可求出角B的正弦值,再由△ABC为锐角三角形可得答案.(2)根据(1)中所求角B的值,和余弦定理直接可求b的值.【解答】解:(Ⅰ)由a=2bsinA,根据正弦定理得sinA=2sinBsinA,所以,由△ABC为锐角三角形得.(Ⅱ)根据余弦定理,得b2=a2+c2﹣2accosB=27+25﹣45=7.所以,.18.(12分)(2007•全国卷Ⅰ)某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.(Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率;(Ⅱ)求3位顾客每人购买1件该商品,商场获的利润不超过650元的概率.【分析】(1)3位购买该商品的顾客中至少有1位采用一次性付款的对立事件是3位顾客中无人采用一次性付款,根据独立重复试验公式得到3位顾客中无人采用一次性付款的概率,再根据对立事件的公式得到结论.(2)3位顾客每人购买1件该商品,顾客的付款方式为一次性付款和分期付款,且购买该商品的3位顾客中有1位采用分期付款,根据互斥事件的公式得到结果.【解答】解:(Ⅰ)记A表示事件:“3位顾客中至少1位采用一次性付款”,则表示事件:“3位顾客中无人采用一次性付款”.P()=(1﹣0.6)3=0.064,.(Ⅱ)记B表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”.B0表示事件:“购买该商品的3位顾客中无人采用分期付款”.B1表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”.则B=B0+B1.P(B0)=0.63=0.216,P(B1)=C31×0.62×0.4=0.432.P(B)=P(B0+B1)=P(B0)+P(B1)=0.216+0.432=0.648.19.(12分)(2007•全国卷Ⅰ)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SA⊥BC;(Ⅱ)求直线SD与平面SBC所成角的大小.【分析】解法一:(1)作SO⊥BC,垂足为O,连接AO,说明SO⊥底面ABCD.利用三垂线定理,得SA⊥BC.(Ⅱ)由(Ⅰ)知SA⊥BC,设AD∥BC,连接SE.说明∠ESD为直线SD与平面SBC所成的角,通过,求出直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,以O为坐标原点,OA为x轴正向,建立直角坐标系O﹣xyz,通过证明,推出SA⊥BC.(Ⅱ).与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC 的法向量,利用α与β互余.通过,,推出直线SD与平面SBC所成的角为.【解答】解法一:(1)作SO⊥BC,垂足为O,连接AO,由侧面SBC⊥底面ABCD,得SO⊥底面ABCD.因为SA=SB,所以AO=BO,又∠ABC=45°,故△AOB为等腰直角三角形,AO⊥BO,由三垂线定理,得SA⊥BC.(Ⅱ)由(Ⅰ)知SA⊥BC,依题设AD∥BC,故SA⊥AD,由,,.又,作DE⊥BC,垂足为E,则DE⊥平面SBC,连接SE.∠ESD为直线SD与平面SBC所成的角.所以,直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,由侧面SBC⊥底面ABCD,得SO⊥平面ABCD.因为SA=SB,所以AO=BO.又∠ABC=45°,△AOB为等腰直角三角形,AO⊥OB.如图,以O为坐标原点,OA为x轴正向,建立直角坐标系O﹣xyz,因为,,又,所以,,.S(0,0,1),,,,所以SA⊥BC.(Ⅱ),.与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC的法向量,所以α与β互余.,,所以,直线SD与平面SBC所成的角为.20.(12分)(2007•全国卷Ⅰ)设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.(Ⅰ)求a、b的值;(Ⅱ)若对任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围.【分析】(1)依题意有,f'(1)=0,f'(2)=0.求解即可.(2)若对任意的x∈[0,3],都有f(x)<c2成立⇔f(x)max<c2在区间[0,3]上成立,根据导数求出函数在[0,3]上的最大值,进一步求c的取值范围.【解答】解:(Ⅰ)f'(x)=6x2+6ax+3b,因为函数f(x)在x=1及x=2取得极值,则有f'(1)=0,f'(2)=0.即解得a=﹣3,b=4.(Ⅱ)由(Ⅰ)可知,f(x)=2x3﹣9x2+12x+8c,f'(x)=6x2﹣18x+12=6(x﹣1)(x﹣2).当x∈(0,1)时,f'(x)>0;当x∈(1,2)时,f'(x)<0;当x∈(2,3)时,f'(x)>0.所以,当x=1时,f(x)取得极大值f(1)=5+8c,又f(0)=8c,f(3)=9+8c.则当x∈[0,3]时,f(x)的最大值为f(3)=9+8c.因为对于任意的x∈[0,3],有f(x)<c2恒成立,所以9+8c<c2,解得c<﹣1或c>9,因此c的取值范围为(﹣∞,﹣1)∪(9,+∞).21.(12分)(2007•全国卷Ⅰ)设{a n}是等差数列,{b n}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.(Ⅰ)求{a n}、{b n}的通项公式;(Ⅱ)求数列的前n项和S n.【分析】(Ⅰ)设{a n}的公差为d,{b n}的公比为q,根据等比数列和等差数列的通项公式,联立方程求得d和q,进而可得{a n}、{b n}的通项公式.(Ⅱ)数列的通项公式由等差和等比数列构成,进而可用错位相减法求得前n项和S n.【解答】解:(Ⅰ)设{a n}的公差为d,{b n}的公比为q,则依题意有q>0且解得d=2,q=2.所以a n=1+(n﹣1)d=2n﹣1,b n=q n﹣1=2n﹣1.(Ⅱ),,①S n=,②①﹣②得S n=1+2(++…+)﹣,则===.22.(12分)(2007•全国卷Ⅰ)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且AC⊥BD,垂足为P(Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.【分析】(Ⅰ)椭圆的半焦距,由AC⊥BD知点P在以线段F1F2为直径的圆上,故x02+y02=1,由此可以证出.(Ⅱ)设BD的方程为y=k(x+1),代入椭圆方程,并化简得(3k2+2)x2+6k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),由题意知|BD|=再求出|AC|=,由此可以求出四边形ABCD的面积的最小值.【解答】证明:(Ⅰ)椭圆的半焦距,由AC⊥BD知点P在以线段F1F2为直径的圆上,故x02+y02=1,所以,.(Ⅱ)(ⅰ)当BD的斜率k存在且k≠0时,BD的方程为y=k(x+1),代入椭圆方程,并化简得(3k2+2)x2+6k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),则,|BD|=;因为AC与BD相交于点P,且AC的斜率为,所以,|AC|=.四边形ABCD的面积•|BD||AC|=.当k2=1时,上式取等号.(ⅱ)当BD的斜率k=0或斜率不存在时,四边形ABCD的面积S=4.综上,四边形ABCD的面积的最小值为.。
word2007试题及答案

word2007试题及答案【篇一:word2007操作题一】对test2.doc进行如下编辑并保存所做的修改:1、将文章的标题字体设置为“楷体”,字号设置为“四号”;2、将“精心指导、发挥优势、重点突破、典型引路、逐步展开”这一句话颜色设置为“红色”,字型倾斜并加粗;3、将“表1: 1978年” 这一行设置成居中对齐;4、将文章中出现的“技术”二字全部替换为“technology’;5、删除文章中的图片;6、删除表格中的“林业”所在的那一列;7、在表格中的1992年这一行前面再插入一行1978年的数据;8、将文章中以“1988年8月??”开头的一段,设置段前间距和段后间距为1行。
test2.doc内容如下:火炬计划“火炬计划”是中国高新技术产业总体发展战略的一个重要组成部分,是高科技产业化的宏观指导性计划。
1988年8月,国家科委召开了“火炬计划”工作会议,提出充分发挥中国的科技优势,促进高新技术研究成果商品化,推动高新技术产业的发展。
会议决定在北京中关村建立我国第一个新技术产业开发区。
在“精心指导、发挥优势、重点突破、典型引路、逐步展开”的方针指导下,“火炬计划”配合沿海地区发展战略的实施,侧重于引导和支持一批有条件的科研部门创办以市场为导向、以高新技术为依托的技工贸一体化科技型产业,促进我国新兴产业的发展。
“火炬计划”下达后,各省市自治区都将其作为贯彻科技兴省的重要措施之一,从各方面组织力量负责实施。
现已有50个国家高新技术开发区建立了70多家创业服务中心。
这些创业服务中心在培育高新技术产业化方面起到了重要作用。
到1995年5月已“孵化”高新技术企业2000多家。
表1:全国国民生产总值指数(1978年=100)【篇二:word2007笔试试题答案】badccabcddbbcbbaccdbdcccb填空题:ctrlshift+6ctrl+=alt+printscreen重复上一步操作f12空ctrl选择性粘贴为图片shift判断题:第一题:1、编辑主文档 (如:毕业证书)2、在excel中创建名单表格,包含证书中二次打印的各字段内容(年月日分格大写输入)。
2007年北京卷高考语文真题及标准答案(完美版)

2007年北京卷高考语文真题及标准答案一、本大题共5小题,每小题3分,共15分。
1.下列各组词语,没有错别字的一组是:A.精粹精络精疲力竭精诚所至,金石为开B.赠予授予予人口实同甘共苦,祸福予共C.即将立即若即若离一言即出,驷马难追D.挥毫毫发毫无二致失之毫厘,谬以千里2.将下列词语依次填入各句横线处,最恰当的一组是①近期,中国观众有幸目睹了来自意大利庞贝古城的遗珍,它们清晰地再现了古城被埋没前最后的情景。
②在休斯敦火箭队的姚明,出席"护鲨行动从我做起"的活动时说:"今后,本人在任何情况下都拒绝食用鱼翅。
"③书的封面设计于书籍出版发行的整体规划,同时必须结合书的内容特点和读者对象进行构思。
A.时间效劳从属B.瞬间效力从属C.瞬间效劳归属D.时间效力归属3.下列句子中,加点成语使用不恰当的一句是A.没有人仅因富甲一方而被长久纪念,相反,人们念念不忘的,大都是超脱于物质利益的追逐的人。
B.在军阀混战和北平沦陷期间,碧云寺孙中山衣冠冢得以保全,这多亏中山先生生前卫士谭惠全等人恪尽职守,矢志护灵。
C.自行车队被两只高大威猛的藏獒追赶得几入绝境,最后靠下坡高速骑行才得以摆脱,队员们至今仍心有余悸。
D.暮春时节是潭拓寺"二乔玉兰"的盛花期,4月上旬,这两株玉兰的树冠上就布满了含英咀华的花蕾。
4.下列句子,没有语病的一句是A.素质可以理解为人在先天条件的基础上,在家庭、社会的影响下,经过后天的教育所形成的稳定的心理品格。
B.很少有以7毫米以下口径制造狙击步枪的国家,因为狙击要求威力大,精度高,但中国狙击步枪偏选择了小口径。
C.几组蝴蝶展框吸引了参观者,大家都以为这是标本,看到展框上方"仿真蝴蝶微型风筝"的标志,使大家恍然大悟。
D.在翻阅中国话剧100周年纪念活动资料时,他萌生了创作一台寻找中国话剧源头的剧本的意念。
5.下列有关文学常识的表述,错误的一项是A.《再别康桥》、《雨巷》、《大堰河一一我的保姆》、《乡愁》,分别是徐志摩、戴望舒、艾青、余光中的诗作。
2007年高考全国1卷数学理科试卷含答案

2007年普通高等学校招生全国统一考试理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)k k n k n n P k C p p k n -=-=,,,…,一、选择题(1)α是第四象限角,5tan 12α=-,则sin α=( ) A .15 B .15- C .513 D .513-(2)设a 是实数,且1i1i 2a +++是实数,则a =( ) A .12 B .1 C .32D .2(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A .垂直B .不垂直也不平行C .平行且同向D .平行且反向(4)已知双曲线的离心率为2,焦点是(40)-,,(40),,则双曲线方程为( ) A .221412x y -= B .221124x y -= C .221106x y -= D .221610x y -=(5)设a b ∈R ,,集合{}10b a b a b a ⎧⎫+=⎨⎬⎩⎭,,,,,则b a -=( ) A .1B .1-C .2D .2-(6)下面给出的四个点中,到直线10x y -+=的距离为2,且位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( ) A .(11),B .(11)-,C .(11)--,D .(11)-,(7)如图,正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( )A .15B .25C .35D .45(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( ) AB .2C.D .4(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( ) A .充要条件 B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件(10)21nx x ⎛⎫- ⎪⎝⎭的展开式中,常数项为15,则n =( )A .3B .4C .5D .6(11)抛物线24y x =的焦点为F ,准线为l ,经过F的直线与抛物线在x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( ) A .4B.C.D .8(12)函数22()cos 2cos 2xf x x =-的一个单调增区间是( ) A .233ππ⎛⎫ ⎪⎝⎭,B .62ππ⎛⎫ ⎪⎝⎭,C .03π⎛⎫ ⎪⎝⎭,D .66ππ⎛⎫- ⎪⎝⎭,第Ⅱ卷注意事项:AB1B1A1D 1C CD1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.3.本卷共10题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.(13)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有 种.(用数字作答) (14)函数()y f x =的图像与函数3log (0)y x x =>的图像关于直线y x =对称,则()f x = .(15)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为 . (16)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上.已知正三棱柱的底面边长为2,则该三角形的斜边长为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分10分) 设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. (18)(本小题满分12分)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.(Ⅰ)求事件A :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A ; (Ⅱ)求η的分布列及期望E η.(19)(本小题满分12分)四棱锥S ABCD -中,底面ABCD为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =∠,2AB =,BC =SA SB =(Ⅰ)证明SA BC ⊥;(Ⅱ)求直线SD 与平面SAB 所成角的大小.(20)(本小题满分12分) 设函数()e e xxf x -=-.(Ⅰ)证明:()f x 的导数()2f x '≥;(Ⅱ)若对所有0x ≥都有()f x ax ≥,求a 的取值范围. (21)(本小题满分12分)已知椭圆22132x y +=的左、右焦点分别为1F ,2F .过1F 的直线交椭圆于B D ,两点,过2F 的直线交椭圆于A C ,两点,且AC BD ⊥,垂足为P .(Ⅰ)设P 点的坐标为00()x y ,,证明:2200132x y +<; (Ⅱ)求四边形ABCD 的面积的最小值.(22)(本小题满分12分)已知数列{}n a 中12a =,11)(2)n n a a +=+,123n =,,,…. (Ⅰ)求{}n a 的通项公式; (Ⅱ)若数列{}n b 中12b =,13423n n n b b b ++=+,123n =,,,…,43n n b a -<≤,123n =,,,….2007年普通高等学校招生全国统一考试 理科数学试题(必修+选修Ⅱ)参考答案一、选择题: (1)D (2)B (3)A (4)A (5)C (6)C (7)D (8)D (9)B(10)D (11)C (12)A二、填空题:(13)36(14)3()xx ∈R(15)13(16)三、解答题: (17)解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 2A A A =++3A π⎛⎫=+ ⎪⎝⎭.由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336A πππ<+<,所以1sin 232A π⎛⎫+<⎪⎝⎭.由此有232A π⎛⎫<+< ⎪⎝⎭所以,cos sin A C +的取值范围为32⎫⎪⎪⎝⎭,. (18)解:(Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”.知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=,()1()10.2160.784P A P A =-=-=.(Ⅱ)η的可能取值为200元,250元,300元.(200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=.η的分布列为2000.42500.43000.2E η=⨯+⨯+⨯240=(元).(19)解法一:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD .因为SA SB =,所以AO BO =,又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥,由三垂线定理,得SA BC ⊥.(Ⅱ)由(Ⅰ)知SA BC ⊥,依题设ADBC ∥, 故SA AD ⊥,由AD BC ==SA =AO =1SO =,SD =.SAB △的面积211122S AB SA ⎛=-= ⎝连结DB ,得DAB △的面积21sin13522S AB AD == 设D 到平面SAB 的距离为h ,由于D SAB S ABD V V --=,得121133h S SO S =, 解得h =A设SD 与平面SAB 所成角为α,则sin h SD α===所以,直线SD 与平面SBC所成的我为arcsin11. 解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥. 如图,以O 为坐标原点,OA 为x0)A ,,(0B ,(0C -,,(001)S ,,,(2,(0CB =,0SA CB =,所以SA BC ⊥.(Ⅱ)取AB 中点E ,022E ⎛⎫ ⎪ ⎪⎝⎭,,连结SE ,取SE 中点G ,连结OG ,1442G ⎛⎫⎪ ⎪⎝⎭,,. 12OG ⎫=⎪⎪⎝⎭,,1SE ⎫=⎪⎪⎝⎭,(AB =. 0SE OG =,0AB OG =,OG 与平面SAB 内两条相交直线SE ,AB 垂直.所以OG ⊥平面SAB ,OG 与DS 的夹角记为α,SD 与平面SAB 所成的角记为β,则α与β互余.D ,(DS =.22cos 11OG DS OG DSα==sin β=,所以,直线SD 与平面SAB 所成的角为arcsin 11. (20)解:(Ⅰ)()f x 的导数()e e xxf x -'=+.由于e e e 2x -x x x -+=≥,故()2f x '≥. (当且仅当0x =时,等号成立). (Ⅱ)令()()g x f x ax =-,则()()e e x x g x f x a a -''=-=+-,(ⅰ)若2a ≤,当0x >时,()e e 20xxg x a a -'=+->-≥,故()g x 在(0)+,∞上为增函数,所以,0x ≥时,()(0)g x g ≥,即()f x ax ≥.(ⅱ)若2a >,方程()0g x '=的正根为1ln x =,此时,若1(0)x x ∈,,则()0g x '<,故()g x 在该区间为减函数.所以,1(0)x x ∈,时,()(0)0g x g <=,即()f x ax <,与题设()f x ax ≥相矛盾. 综上,满足条件的a 的取值范围是(]2-∞,. (21)证明:(Ⅰ)椭圆的半焦距1c ==,由AC BD ⊥知点P 在以线段12F F 为直径的圆上,故22001x y +=,所以,222200021132222y x y x ++=<≤. (Ⅱ)(ⅰ)当BD 的斜率k 存在且0k ≠时,BD 的方程为(1)y k x =+,代入椭圆方程22132x y +=,并化简得2222(32)6360k x k x k +++-=. 设11()B x y ,,22()D x y ,,则2122632k x x k +=-+,21223632k x x k -=+22212221221)(1)()432k BD x x k x x x x k +⎡=-=++-=⎣+;因为AC 与BC 相交于点P ,且AC 的斜率为1k-,所以,2211132k AC k⎫+⎪⎝⎭==⨯+ 四边形ABCD 的面积222222222124(1)(1)962(32)(23)25(32)(23)2k k S BD AC k k k k +24+===++⎡⎤+++⎢⎥⎣⎦≥. 当21k =时,上式取等号.(ⅱ)当BD 的斜率0k =或斜率不存在时,四边形ABCD 的面积4S =.综上,四边形ABCD 的面积的最小值为9625. (22)解:(Ⅰ)由题设:11)(2)n n a a +=+1)(1)(2n a =+1)(n a =11)(n n a a+=.所以,数列{n a 是首项为21的等比数列,1)n n a ,即n a的通项公式为1)1nn a ⎤=+⎦,123n =,,,…. (Ⅱ)用数学归纳法证明.(ⅰ)当1n =2<,112b a ==,所以11b a <≤,结论成立.(ⅱ)假设当n k =43k k b a -<≤, 也即430k k b a -<. 当1n k =+时,13423k k k b b b ++-=+(3(423k k b b -+-=+(3023k k b b -=>+,又1323k b <=-+所以1(323k k k b b b +-=+2(3(k b <-4431)(k a -≤41k a +=也就是说,当1n k =+时,结论成立.43n n b a -<≤,123n =,,,….。
2007年高考数学试题(北京.理)含答案

年普通高等学校招生全国统一考试数学(理工农医类)(北京卷)一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知cos tan 0θθ< ,那么角θ是( )A.第一或第二象限角 B.第二或第三象限角C.第三或第四象限角 D.第一或第四象限角2.函数()3(02)xf x x =<≤的反函数的定义域为( )A.(0)+∞, B.(19], C.(01), D.[9)+∞, 3.平面α∥平面β的一个充分条件是( )A.存在一条直线a a ααβ,∥,∥B.存在一条直线a a a αβ⊂,,∥C.存在两条平行直线a b a b a b αββα⊂⊂,,,,∥,∥D.存在两条异面直线a b a a b αβα⊂,,,∥,∥ 4.已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0 ,那么( )A.AO OD =B.2AO OD =C.3AO OD = D.2AO OD = 5.记者要为5名志愿都和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( )A.1440种 B.960种 C.720种 D.480种6.若不等式组220x y x y y x y a-0⎧⎪+⎪⎨⎪⎪+⎩≥,≤,≥,≤表示的平面区域是一个三角形,则a 的取值范围是( ) A.43a ≥B.01a <≤ C.413a ≤≤ D.01a <≤或43a ≥ 7.如果正数abcd ,,,满足4a b cd +==,那么( )A.ab c d +≤,且等号成立时a b c d ,,,的取值唯一B.ab c d +≥,且等号成立时a b c d ,,,的取值唯一C.ab c d +≤,且等号成立时a b c d ,,,的取值不唯一ab c d +≥,且等号成立时a b c d ,,,的取值不唯一8.对于函数①()lg(21)f x x =-+,②2()(2)f x x =-,③()cos(2)f x x =+,判断如下三个命题的真假:命题甲:(2)f x +是偶函数;命题乙:()f x 在()-∞2,上是减函数,在(2)+∞,上是增函数;命题丙:(2)()f x f x +-在()-∞+∞,上是增函数.能使命题甲、乙、丙均为真的所有函数的序号是( )A.①③ B.①② C.③ D.②2007年普通高等学校招生全国统一考试数学(理工农医类)(北京卷)第II 卷(共110分)注意事项:1.用钢笔或圆珠笔将答案直接写在试卷上.2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.22(1)i =+ .10.若数列{}n a 的前n 项和210(123)n S n n n =-= ,,,,则此数列的通项公式为 ;数列{}n na 中数值最小的项是第 项.11.在ABC △中,若1tan 3A =,150C = ,1BC =,则AB = . 12.已知集合{}|1A x x a =-≤,{}2540B x x x =-+≥.若A B =∅ ,则实数a 的取值范围是 .13.2002年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos2θ的值等于 .14.已知函数()f x ,()g x 分别由下表给出则[(1)]f g 的值为 ;满足[()][()]f g x g f x >的x 的值是.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本小题共13分)数列{}n a 中,12a =,1n n a a cn +=+(c 是常数,123n = ,,,),且123a a a ,,成公比不为1的等比数列.(I )求c 的值;(II )求{}n a 的通项公式.16.(本小题共14分) 如图,在Rt AOB △中,π6OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C--是直二面角.动点D 的斜边AB 上.(I )求证:平面COD ⊥平面AOB ;(II )当D 为AB 的中点时,求异面直线AO 与CD 所成角的大小;(III )求CD 与平面AOB 所成角的最大值.17.(本小题共14分) 矩形ABCD 的两条对角线相交于点(20)M ,,AB 边所在直线的方程为360x y --=,点(11)T -,在AD 边所在直线上.(I )求AD 边所在直线的方程;(II )求矩形ABCD 外接圆的方程;(III )若动圆P 过点(20)N -,,且与矩形ABCD 的外接圆外切,求动圆P 的圆心的轨迹方程.18.(本小题共13分)某中学号召学生在今年春节期间至少参加一次社会公益活动(以下简称活动).该校合唱团共有100名学生,他们参加活动的次数统计如图所示.(I )求合唱团学生参加活动的人均次数; (II )从合唱团中任意选两名学生,求他们参加活动次数恰好相等的概率. x1 2 3 ()f x 13 1 x 1 2 3 ()g x 3 2 1 O C AD B1 2 3 102030 40 50 参加人数 活动次数III )从合唱团中任选两名学生,用ξ表示这两人参加活动次数之差的绝对值,求随机变量ξ的分布列及数学期望E ξ.19.(本小题共13分)如图,有一块半椭圆形钢板,其半轴长为2r ,短半轴长为r ,计划将此钢板切割成等腰梯形的形状,下底AB 是半椭圆的短轴,上底CD 的端点在椭圆上,记2CD x =,梯形面积为S .(I )求面积S 以x 为自变量的函数式,并写出其定义域;(II )求面积S 的最大值.20.已知集合{}12(2)k A a a a k = ,,,≥,其中(12)i a i k ∈=Z ,,,,由A 中的元素构成两个相应的集合:{}()S a b a A b A a b A =∈∈+∈,,,,{}()T a b a A b A a b A =∈∈-∈,,,. 其中()a b ,是有序数对,集合S 和T 中的元素个数分别为m 和n .若对于任意的a A ∈,总有a A -∉,则称集合A 具有性质P .(I )检验集合{}0123,,,与{}123-,,是否具有性质P 并对其中具有性质P 的集合,写出相应的集合S 和T ;(II )对任何具有性质P 的集合A ,证明:(1)2k k n -≤; (III )判断m 和n 的大小关系,并证明你的结论.2007年普通高等学校招生全国统一考试数学(理工农医类)(北京卷)答案一、选择题(本大题共8小题,每小题5分,共40分)1.C 2.B 3.D 4.A5.B 6.D7.A 8.D 4r C D A B2r6小题,每小题5分,共30分)9.i -10.211n - 3 11.102 12.(23), 13.725 14.1 2三、解答题(本大题共6小题,共80分)15.(共13分)解:(I )12a =,22a c =+,323a c =+,因为1a ,2a ,3a 成等比数列,所以2(2)2(23)c c +=+,解得0c =或2c =.当0c =时,123a a a ==,不符合题意舍去,故2c =.(II )当2n ≥时,由于 21a a c -=,322a a c -=,1(1)n n a a n c --=-, 所以1(1)[12(1)]2n n n a a n c c --=+++-= . 又12a =,2c =,故22(1)2(23)n a n n n n n =+-=-+= ,,. 当1n =时,上式也成立,所以22(12)n a n n n =-+= ,,. 16.(共14分)解法一:(I )由题意,CO AO ⊥,BO AO ⊥,BOC ∴∠是二面角B AO C --是直二面角,又 二面角B AO C --是直二面角,CO BO ∴⊥,又AO BO O = , CO ∴⊥平面AOB ,又CO ⊂平面COD .∴平面COD ⊥平面AOB .(II )作DE OB ⊥,垂足为E ,连结CE (如图),则DE AO ∥,CDE ∴∠是异面直线AO 与CD 所成的角. ADRt COE △中,2CO BO ==,112OE BO ==, 225CE CO OE ∴=+=. 又132DE AO ==. ∴在Rt CDE △中,515tan 33CE CDE DE ===. ∴异面直线AO 与CD 所成角的大小为15arctan3. (III )由(I )知,CO ⊥平面AOB , CDO ∴∠是CD 与平面AOB 所成的角,且2tan OC CDO OD OD ==. 当OD 最小时,CDO ∠最大,这时,OD AB ⊥,垂足为D ,3OA OB OD AB== ,23tan 3CDO =, CD ∴与平面AOB 所成角的最大值为23arctan3. 解法二:(I )同解法一. (II )建立空间直角坐标系O xyz -,如图,则(000)O ,,,(0023)A ,,,(200)C ,,,(013)D ,,,(0023)OA ∴= ,,,(213)CD =- ,,,cos OA CD OACD OA CD ∴<>= , 6642322== . ∴异面直线AO 与CD 所成角的大小为6arccos4. (III )同解法一17.(共14分) 解:(I )因为AB 边所在直线的方程为360x y --=,且AD 与AB 垂直,所以直线AD 的斜率为3-. O CA DB x y z(11)T -,在直线AD 上,所以AD 边所在直线的方程为13(1)y x -=-+.320x y ++=.(II )由36032=0x y x y --=⎧⎨++⎩,解得点A 的坐标为(02)-,, 因为矩形ABCD 两条对角线的交点为(20)M ,.所以M 为矩形ABCD 外接圆的圆心. 又22(20)(02)22AM =-++=.从而矩形ABCD 外接圆的方程为22(2)8x y -+=.(III )因为动圆P 过点N ,所以PN 是该圆的半径,又因为动圆P 与圆M 外切, 所以22PM PN =+, 即22PM PN -=.故点P 的轨迹是以M N ,为焦点,实轴长为22的双曲线的左支. 因为实半轴长2a =,半焦距2c =. 所以虚半轴长222b c a =-=.从而动圆P 的圆心的轨迹方程为221(2)22x y x -=-≤. 18.(共13分)解:由图可知,参加活动1次、2次和3次的学生人数分别为10、50和40.(I )该合唱团学生参加活动的人均次数为110250340230 2.3100100⨯+⨯+⨯==. (II )从合唱团中任选两名学生,他们参加活动次数恰好相等的概率为222105040021004199C C C P C ++==. (III )从合唱团中任选两名学生,记“这两人中一人参加1次活动,另一人参加2次活动”为事件A ,“这两人中一人参加2次活动,另一人参加3次活动”为事件B ,“这两人中一人参加1次活动,另一人参加3次活动”为事件C .易知(1)()()P P A P B ξ==+111110505040241001005099C C C C C C =+=; (2)()P P C ξ==1110402100899C C C ==; ξ的分布列: ξ 0 1 2P 41995099 899 ξ的数学期望:4150820129999993E ξ=⨯+⨯+⨯=. 19.(共13分)解:(I )依题意,以AB 的中点O 为原点建立直角坐标系O xy -(如图),则点C 的横坐标为x .点C 的纵坐标y 满足方程22221(0)4x y y r r+=≥, 解得222(0)y r x x r =-<< 221(22)22S x r r x =+- 222()x r r x =+- ,其定义域为{}0x x r <<. (II )记222()4()()0f x x r r x x r =+-<<,, 则2()8()(2)f x x r r x '=+-.令()0f x '=,得12x r =. 因为当02r x <<时,()0f x '>;当2r x r <<时,()0f x '<,所以12f r ⎛⎫ ⎪⎝⎭是()f x 的最大值. CD A B O x y12x r =时,S 也取得最大值,最大值为213322f r r ⎛⎫= ⎪⎝⎭. 即梯形面积S 的最大值为2332r . 20.(共13分) (I )解:集合{}0123,,,不具有性质P . 集合{}123-,,具有性质P ,其相应的集合S 和T 是{}(13)(31)S =--,,,, {}(21)23T =-(),,,.(II )证明:首先,由A 中元素构成的有序数对()i j a a ,共有2k 个. 因为0A ∉,所以()(12)i i a a T i k ∉= ,,,,; 又因为当a A ∈时,a A -∉时,a A -∉,所以当()i j a a T ∈,时,()(12j i a a T i j k ∉= ,,,,,.从而,集合T 中元素的个数最多为21(1)()22k k k k --=, 即(1)2k k n -≤. (III )解:m n =,证明如下: (1)对于()a b S ∈,,根据定义,a A ∈,b A ∈,且a b A +∈,从而()a b b T +∈,. 如果()a b ,与()c d ,是S 的不同元素,那么a c =与b d =中至少有一个不成立,从而a b c d +=+与b d =中也至少有一个不成立.故()a b b +,与()c d d +,也是T 的不同元素.可见,S 中元素的个数不多于T 中元素的个数,即m n ≤,(2)对于()a b T ∈,,根据定义,a A ∈,b A ∈,且a b A -∈,从而()a b b S -∈,.如果()a b ,与()c d ,是T 的不同元素,那么a c =与b d =中至少有一个不成立,从而a b c d -=-与b d =中也不至少有一个不成立,故()a b b -,与()c d d -,也是S 的不同元素.可见,T 中元素的个数不多于S 中元素的个数,即n m ≤,由(1)(2)可知,m n =.。
2007年高考试题及答案数学陕西卷

2007年普通高等学校招生全国统一考试(陕西卷)理科数学(必修+选修Ⅱ)全解全析注意事项:1.本试卷分第一部分和第二部分,第一部分为选择题,第二部分为非选择题。
2.考生领到试卷后,须按规定在试卷上填写姓名、准考证号、并在答题卡上填涂对应的试卷类型信息点。
Z3.所有答案必须在答题卡上指定区域内作答。
考试结束后,将本试卷和答题卡一并交回。
第一部分(共60分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共12小题,每小题5分,共60分).1.在复平面内,复数z=i +21对应的点位于ZM(A )第一象限 (B )第二象限 (C )第在象限 (D )第四象限 解析:Z=ii515252-=-,选D2.已知全信U ={1,2,3, 4,5},集合A ={}23Z <-∈x x ,则集合CuA 等于(A ){}4,3,2,1(B ){}4,3,2 (C) {}5,1 (D) {}5Z 解析:A={2,3,4},CuA={1,5},选C 3.抛物线y=x2的准线方程是(A )4y+1=0 (B)4x+1=0 (C)2y+1=0 (D)2x+1=0解析:P=21,准线方程为y=412-=-P ,即014=+y ,选A4.已知sin α=55,则sin4α-cos4α的值为(A )-51(B)-53 (C)51(D) 53解析:sin4α-cos4α=αα22cos sin-=1sin 22-α=-53,选B5.各项均为正数的等比数列{}n a 的前n 项和为Sn ,若Sn=2,S30=14,则S40等于 (A )80 (B )30 (C)26 (D)16ZX 解析:选B6.一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是(A )433 (B)33(C) 43(D) 123M解析:正三棱锥的高为1,由平面几何知识知底面边长为3,体积为431)3(43312=⨯⨯,选C7.已知双曲线C :12222=-by c a(a >0,b >0),以C 的右焦点为圆心且与C 的浙近线相切的圆的半径是A.ab B.22b a + C.a D.Bz解析::圆的半径是(C ,0)到渐近线xa by =的距离,所以R=bcbc ab a bc ==+⨯-22|0|,选D8.若函数f(x)的反函数为f)(1x -,则函数f(x-1)与f)1(1--x 的图象可能是解析:函数f(x-1)与f )1(1--x 的图象是f (x )与f )(1x -的图象向右平移一个单位得到。
2007年高考文科数学试题及答案(全国卷1)
如果事件 A、B 相互独立,那么 P(A·B)=P(A)·P(B)
如果事件 A 在一次试验中发生的概率是 P,那么 n 次独立重复试验中事件 A 恰好发生 k 次的概率
C
1 n
pk
(1
p) nk
(k
0,1,2,
球的表面积公式 S 4R 2 其中 R 表示球的半径
球的体积公式
一、选择题
V 4 R3 3
1.a 是第四象限角, tan 5 ,则 sin 12
A. 1 5
B. 1 5
2.设 a 是实数,且 a 1 i 是实数,则 a= 1i 2
A. 1 2
B.1
3.已知向量 a=(-5,6),b=(6,5),则 a 与 b
n)
其中 R 表示球的半径
C. 5 13
C. 3 2
2.社会主义本质理论对探索怎样建设3.社19会57主年义2月具,有毛重在要《的关实于践正意确义处。理社人会民主内义2.社部本科会矛质学主盾理的义的论1本本问的.邓质质题提小是的》出平创科讲,提新学话为出,内中我“创涵提们邓社新。出寻始小会的邓(找终平主关小1一代坚义)键平种表持的我2在对能.1中把科本国人社9够国发学质社5才会从4先展社,会年,主更进作会是主,人义深生为主解义毛才本层产执义放制在的质次1力政理生度《成所.认社1的兴论产还论长作.识发会发国和力刚十靠的社展主展的实,刚大教概会才义要第践发建关坚育括主是本求一的展立系2持。,义硬质、,要基生,》以人一,道理发大务本产还重发才方从理论展力是成力没要展资面而,把才促由果,有讲社的源强为把我是进中,消完话会办是调四中发们(硬先国抓灭全中主法第必、国展对2道进共住剥建提三义解一)须科的生社理生产“削立出、经决资采解学社产会,产党什,(代济前源取放技会力主是力的么消还1表基进。从和术主作义)对的执是除不中础科低发是义1为的吧社3发政社两完9国基的学级展.第建发社认二国5会展地会极全先本问技到6生一设展会识、内主,年位主分巩进建题术高产生在才主提发外义是底所义化固生立,实级力产改是义高1展一时中我决,的邓产的是力9,力革硬建到是切间5国定怎最思小力同实和国另3开道设了党积经共对的样终想年平的时行国家一放理的一执极验产农,建达。1一发,改民资方中2,根个政因教党业是设到(月再展我革教本面探是本新兴素训站、对社共2,强要国开育主指索)适任的国都的在手一执会同毛调求的放水义出出第创应务科在的调深时工、政主富1泽,政以平的4了一三造.时,学社第动刻坚代.业发规义裕东中一治来,过2解条节性代符水会一起总持前.和展律”。关社 国个领我始度放发、地主合平阶要来结社列资才认这”于会 社公域们终形和展社提题马。级务为。会,本是识个1总主 会有也党是式发更会9出变克社二关中主保硬的根8路义 主制发的衡。展快主了化思会6、系国义持道深本3线基 义占生一年量所生、义社.的主社发解用工现理化问的本 基主了条,综谓产人的会需义会生决和业金商,题1完制 本体重主邓合国力民根主要基本.主变事所平化向业也,1整度 制,大要小国家的享本9义。本质义化业有方建的是深5的度一变经平力资手受社任原理6本的服问法设根社对刻表确 的个化验年提和本段到会 1务理论第质同务题进与本会党揭一.述立 确共,。出社主社和社主基,的二理时的行社体主实示、:, 立同确苏“会义会目会3义本是提节论,基关改会现义了社.从为 ,富立共社文,社主的主一改矛巩出、的我本键造主和改其社会中当 使裕了二会明就会义。义、造盾固,对重国方是。义根造所会之华代 占,中十主程是主基建中的和和为第社要针这改本基承主一人中 世这国大义度在义本设国基两发进一会意。靠不造要本担义本民国 界是共以财的国基制内成特本类展一节主义的(自仅同求完的本质共一 人我产后富重家本度涵果色完矛社步、义主2己保时。成历质理和切 口们党毛属要直)制的包最伴社成盾会推中本要的证并,史论国发 四必领泽于标接正度确括大随会,的主进国质矛发了举标第的这成展 分须导东人志控确的立(,着主是学义改特理盾展2社。志五需是提立进 之坚的提民。制处确是1.能社义我说采制革色论也。会实着章要对)出,步 一持人出,和理立中够会建国,取度开社的发的践中。马把到奠 的民要社支经,国社充经设强积的放会提生稳证国克解社定 东民“会配济是历会分济道调极必和主出了定明历思放会了 方主以下建4广史主体制路要引然社义变,.史主和主把制 大专苏义的设大上义现度初严导要会二建化而党上义发义对度 国政为的资和劳最的出和步经格、求主设。且坚长的展改企基 进党的鉴致本社动深本对社探济区逐。义确道人极持达重生造业础 入在根社”富主会人刻质资会索结分步现立路民大社数产基的。 了过本会,是义发民最和本经的构过代社的对的会千发力逐本改社渡原主探全经展真伟根主济理发正渡化会初于促主年展概步完造会时则义索民济中正大本义结论生确的建新主步经进义的,括实成和主期。基自共的成任优构成了处方设中义探济了改阶对为现,对义总本己同国一为社务越的果根理式提国基索文社造级于国这人制 社路政的致家系国会性根本两。供的本化会与剥建家是的度 会线治道富资列家变一的本变类中了成制迅主社削设的一改的 ,第制路。本重的革、道变化不国强立度速义会制中社个造建 这三主度。社大主,社路化,同这大,的发事主度国的会过结立 是节要。会义关人也会,1社性场的标重展业义的特本主.渡合极 世、内人主有系解和是主奠我会质巨思志大的的工结(色质义时起大 界社容民义初。决社2义定国主的大想着意需发业束3社0。工期来地 社(会被民原级了会基)世了社义矛而武我义要展化,会(业。,提 会2主概则和3在生本把纪理会经盾深器国同),同实主2化党把高 主对义括专,高一产制资中)论的济,刻。新经遵改总时现义新是在对了 义手制为政第级个资度本国强基阶成在特的通民济循革之并了具民党这资工 运二七度“实一形以料的主又调础级分新别社过主文自4过,举由有主在个本人 动、届 业在一质是式农的.(初义一消,关已民是它会(没主化愿于和的新重主过过主阶 史新社二 的中化上发之民主1步工次灭开系占主要是变4收义不互集平方民(大)义渡渡义级 上民会中 社国三已展)分为人确商划剥阔也绝主正中革官能利中改针主3的用社时时工和 又主全 会的改成生坚。主立)业时削了发对义确国,僚命满、的造,主理和会期期商广 一主义会确”为产持初题正者代,广2生优革处革不资阶足典计解对义论平的.的业大 个义改提立。无,积级资的确改的消阔了势命理命仅√本段人型划决于向和赎五总总搞劳 历革造出 改“产第极形本、分造历除前根,理人的没中而民示体了在社3实买种路路糟动 史命的使 造一阶二领式主落(.析成史两景本社论民具有国形基需党范制诸深会践的经线线成人 性理历中 ,化级是导的义后√ 1农为巨极。的会内体对革成本要的和如刻主意)方济的和为民 的论史国 党”专共、工的中村自变分邓主指部实生命的结建国初实的义积法成主总自的 伟是经“ 和即政同稳家商半国的食。化小义导矛际产在走社束状设家步现社的。极改分体任食积 大以验稳 政社;致步资业殖社革阶其们平。公下盾出力一农会和况。帮构社会转引造—。务其极 胜一毛步 府会人富前本的民会命级力吐对1有,。发的个村主社之加助想会变导资—要.,力性 利、泽地 采主民。进农社地第的必和出社制中(,发以包义会间强的,变革农本社从是的和 。适东由 取义代”的业会半二阶须社了会已国3不展农围的主党原要革中社民主会根)要社创合为农 了工表这方是、主封节级走层会最主成共拘造民城国义矛的则求与保会组义主本从在会造中主业 积大段针国手义建、构农状主终义为产泥成为市营改盾建,2中经持主织工义上全一主性国要极化会话,家工改的.社成村况义达本我党武于破主、经造,设以央济社义起商性改体个义。特代转 领,制成采对业造东会主包,劳到质国领装已��
2007年普通高等学校招生全国统一考试数学卷(湖北.文)含答案
2007年普通高等学校招生全国统一考试(湖北卷)数 学(文史类)本试卷共4页,满分150分,考试时间120分钟.★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置.2.选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.答在试题卷上无效. 3.将填空题和解答题用0.5毫米的黑色墨水签字笔或黑色墨水钢笔直接答在答题卡上每题对应的答题区域内.答在试题卷上无效.4.考试结束,请将本试题卷和答题卡一并上交.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.tan690°的值为( )A.D.2.如果{}|9U x x =是小于的正整数,{}1234A =,,,,{}3456B =,,,,那么U UA B =痧( )A.{}12,B.{}34,C.{}56,D.{}78,3.如果2323nx x ⎛⎫- ⎪⎝⎭的展开式中含有非零常数项,则正整数n 的最小值为( )A.10B.6 C.5 D.3 4.函数21(0)21x x y x +=<-的反函数是( )A.21log (1)1x y x x +=<-- B.21log (1)1x y x x +=>-C.21log (1)1x y x x -=<-+ D.21log (1)1x y x x -=>+5.在棱长为1的正方体1111ABCD ABC D -中,E F ,分别为棱11AA BB ,的中点,G 为棱11A B 上的一点,且1(01)A G λλ=≤≤.则点G 到平面1D EF 的距离为( )1D 1C6.为了了解某学校学生的身体发育情况,抽查了该校100名高中男生的体重情况,根据所得数据画出样本的频率分布直方图如右图所示.根据此图,估计该校2000名高中男生中体重大于70.5公斤的人数为( ) A .300 B .360 C .420 D .4507.将5本不同的书全发给4名同学,每名同学至少有一本书的概率是( ) A .1564B .15128C .24125D .481258.由直线1y x =+上的一点向圆22(3)1x y -+=引切线,则切线长的最小值为( ) A .1B.CD .39.设(43)=,a ,a 在b上的投影为2,b 在x 轴上的投影为2,且||14≤b ,则b 为( ) A .(214),B .227⎛⎫- ⎪⎝⎭,C .227⎛⎫- ⎪⎝⎭,D .(28),10.已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件,现有下列命题: ①s 是q 的充要条件;②p 是q 的充分条件而不是必要条件; ③r 是q 的必要条件而不是充分条件; ④p ⌝是s ⌝的必要条件而不是充分条件;⑤r 是s 的充分条件而不是必要条件.则正确命题的序号是( ) A .①④⑤ B .①②④ C .②③⑤ D .②④⑤二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置上.54.5 56.5 58.5 60.5 62.5 64.5 66.5 68.5 70.5 72.5 74.5 76.5kg )11.设变量x y ,满足约束条件30023x y x y x -+⎧⎪+⎨⎪-⎩≥,≥,≤≤,则目标函数2x y +的最小值为 .12.过双曲线22143x y -=左焦点1F 的直线交曲线的左支于M N ,两点,2F 为其右焦点,则22MF NF MN +-的值为______.13.已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是122y x =+,则(1)(1)f f '+=____.14.某篮球运动员在三分线投球的命中率是12,他投球10次,恰好投进3个球的概率为 .(用数值作答)15.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为116t ay -⎛⎫= ⎪⎝⎭(a 为常数),如图所示,根据图中提供的信息,回答下列问题:(I )从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为.(II )据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过 小时后,学生才能回到教室.三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)已知函数2π()2sin 4f x x x ⎛⎫=+⎪⎝⎭,ππ42x ⎡⎤∈⎢⎥⎣⎦,. (I )求()f x 的最大值和最小值;(II )若不等式()2f x m -<在ππ42x ⎡⎤∈⎢⎥⎣⎦,上恒成立,求实数m 的取值范围.17.(本小题满分12分)如图,在三棱锥V ABC -中,VC ABC ⊥底面,AC BC ⊥,D 是AB 的中点,且AC BC a ==,π02VDC θθ⎛⎫=<< ⎪⎝⎭∠.(I )求证:平面VAB ⊥平面VCD ;(II )试确定角θ的值,使得直线BC 与平面VAB 所成的角为π6.18.(本小题满分12分)某商品每件成本9元,售价为30元,每星期卖出432件,如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值x (单位:元,030x ≤≤)的平方成正比,已知商品单价降低2元时,一星期多卖出24件.(I )将一个星期的商品销售利润表示成x 的函数; (II )如何定价才能使一个星期的商品销售利润最大? 19.(本小题满分12分)设二次函数2()f x x ax a =++,方程()0f x x -=的两根1x 和2x 满足1201x x <<<.(I )求实数a 的取值范围; (II )试比较(0)(1)(0)f f f -与116的大小.并说明理由. 20.(本小题满分13分)已知数列{}n a 和{}n b 满足:11a =,22a =,0n a >,n b =*n ∈N ),且{}n b 是以q 为公比的等比数列.(I )证明:22n n a a q +=;(II )若2122n n n c a a -=+,证明数列{}n c 是等比数列; (III )求和:1234212111111n na a a a a a -++++++.21.(本小题满分14分)在平面直角坐标系xOy 中,过定点(0)C p ,作直线与抛物线22x py =(0p >)相交于A B ,两点. (I )若点N 是点C 关于坐标原点O 的对称点,求ANB △面积的最小值;(II )是否存在垂直于y 轴的直线l ,使得l 被以AC 为直径的圆截得的弦长恒为定值?若存在,求出l 的方程;若不存在,说明理由.(此题不要求在答题卡上画图)2007年普通高等学校招生全国统一考试(湖北卷)数学(文史类)试题参考答案一、选择题:本题考查基础知识和基本运算.每小题5分,满分50分. 1.A 2.D 3.C 4.A 5.D 6.B 7.A 8.C 9.B 10.B二、填空题:本题考查基础知识和基本运算.每小题5分,满分25分. 11.32-12.8 13.314.1512815.110110010111610t t t y t -⎧⎛⎫ ⎪⎪⎝⎭⎪=⎨⎪⎛⎫⎛⎫> ⎪⎪⎪⎝⎭⎝⎭⎩,,,≤≤;0.6 三、解答题:本大题共6小题,共75分.16.本小题主要考查三角函数和不等式的基本知识,以及运用三角公式、三角函数的图象和性质解题的能力.x解:(Ⅰ)π()1cos 221sin 222f x x x x x ⎡⎤⎛⎫=-+=+⎪⎢⎥⎝⎭⎣⎦∵ π12sin 23x ⎛⎫=+- ⎪⎝⎭.又ππ42x ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2633x -∴≤≤,即π212sin 233x ⎛⎫+- ⎪⎝⎭≤≤,max min ()3()2f x f x ==,∴.(Ⅱ)()2()2()2f x m f x m f x -<⇔-<<+∵,ππ42x ⎡⎤∈⎢⎥⎣⎦,,max ()2m f x >-∴且min ()2m f x <+,14m <<∴,即m 的取值范围是(14),. 17.本小题主要考查线面关系、直线与平面所成角的有关知识,考查空间想象能力和推理运算能力以及应用向量知识解决数学问题的能力. 解法1:(Ⅰ)AC BC a ==∵,ACB ∴△是等腰三角形,又D 是AB 的中点, CD AB ⊥∴,又VC ⊥底面ABC .VC AB ⊥∴.于是AB ⊥平面VCD . 又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ) 过点C 在平面VCD 内作CH VD ⊥于H ,则由(Ⅰ)知CD ⊥平面VAB . 连接BH ,于是CBH ∠就是直线BC 与平面VAB 所成的角. 依题意π6CBH ∠=,所以在CHD Rt △中,sin 2CH θ=; 在BHC Rt △中,πsin62a CH a ==,sin θ=∴. π02θ<<∵,π4θ=∴. 故当π4θ=时,直线BC 与平面VAB 所成的角为π6. 解法2:(Ⅰ)以C A C B C V,,所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则(000)(00)(00)000tan 22a a C A a B a D V θ⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,,,,于是,tan 222a aVD a θ⎛⎫=-⎪ ⎪⎝⎭,,,022a a CD ⎛⎫= ⎪⎝⎭,,,(0)AB a a =-,,. 从而2211(0)0002222a aABCD a a a a ⎛⎫=-=-++= ⎪⎝⎭,,,,··,即AB CD ⊥.同理2211(0)tan 0022222a a AB VD a a a a a θ⎛⎫=--=-++= ⎪ ⎪⎝⎭,,,,··, 即AB VD ⊥.又CD VD D =,AB ⊥∴平面VCD . 又AB ⊂平面VAB .∴平面VAB ⊥平面VCD .(Ⅱ)设平面VAB 的一个法向量为()x y z =,,n ,则由00AB VD ==,··nn .得0tan 022ax ay a a x y az θ-+=⎧⎪⎨+=⎪⎩,.可取(11)θ=n ,又(00)BC a =-,,,于是πsin 6BC BC a θ===nn ···即sin θ=π02θ<<,π4θ∴=. 故交π4θ=时,直线BC 与平面VAB 所成的角为π6. 解法3:(Ⅰ)以点D 为原点,以DC DB ,所在的直线分别为x 轴、y 轴,建立如图所示的空间直角坐标系,则22(000)000222D A a B a C a⎛⎫⎛⎫⎛-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,,,,,,,,,0tan 22V a a θ⎛⎫- ⎪ ⎪⎝⎭,,,于是0tan 22DV a a θ⎛⎫=- ⎪ ⎪⎝⎭,,,002DC a ⎛⎫=- ⎪ ⎪⎝⎭,,,(00)AB =,.从而(00)AB DC =,·000a ⎛⎫= ⎪ ⎪⎝⎭,,·,即AB DC ⊥.同理(00)0tan 022AB DV a a θ⎛⎫=-= ⎪ ⎪⎝⎭,,,·,即AB DV ⊥.又DCDV D =,AB ⊥∴平面VCD .又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ)设平面VAB 的一个法向量为()x y z =,,n ,则由00AB DV ==,··n n,得0tan 022ax az θ=⎨-+=⎪⎩,. 可取(tan 01)n θ=,,,又022BC a ⎛⎫=-- ⎪ ⎪⎝⎭,,,于是tan π2sin sin 62BC BC a θθ===n n ···, 即πππsin 0224θθθ=<<,,∵∴=. 故交π4θ=时, 即直线BC 与平面VAB 所成角为π6. 18.本小题主要考查根据实际问题建立数学模型,以及运用函数、导数的知识解决实际问题的能力. 解:(Ⅰ)设商品降价x 元,则多卖的商品数为2kx ,若记商品在一个星期的获利为()f x , 则依题意有22()(309)(432)(21)(432)f x x kx x kx =--+=-+,又由已知条件,2242k=·,于是有6k =, 所以32()61264329072[030]f x x x x x =-+-+∈,,. (Ⅱ)根据(Ⅰ),我们有2()1825243218(2)(12)f x x x x x '=-+-=---.A故12x =时,()f x 达到极大值.因为(0)9072f =,(12)11264f =,所以定价为301218-=元能使一个星期的商品销售利润最大.19.本小题主要考查二次函数、二次方程的基本性质及二次不等式的解法,考查推理和运算能力. 解法1:(Ⅰ)令2()()(1)g x f xx x a xa =-=+-+,则由题意可得01012(1)0(0)0a g g ∆>⎧⎪-⎪<<⎪⎨⎪>⎪>⎪⎩,,,,01133a a a a ⎧>⎪⇔-<<⎨⎪<->+⎩,,03a ⇔<<- 故所求实数a 的取值范围是(03-,. (II)2(0)(1)(0)(0)(1)2f f f g g a -==,令2()2ha a =.当a >时,()h a 单调增加,∴当03a <<-时,20()322)2322)2(17122)h a <<-- 121617122=<+,即1(0)(1)(0)16f f f -<.解法2:(I )同解法1. (II )2(0)(1)(0)(0)(1)2f f fg g a -==,由(I )知03a<<-,1170-<<∴.又10+>,于是221112(321)1)0161616a a -=-=-+<, 即212016a -<,故1(0)(1)(0)16f f f -<. 解法3:(I )方程()0f x x -=⇔2(1)0x a x a +-+=,由韦达定理得121x x a +=-,12x x a =,于是121212121200010(1)(1)0(1)(1)0x x x x x x x x x x ∆>⎧⎪+>⎪⎪<<<⇔>⎨⎪-+->⎪⎪-->⎩,,,,0133a a a a ⎧>⎪⇔<⎨⎪<->+⎩,,03a ⇔<<- 故所求实数a的取值范围是(03-,. (II )依题意可设12()()()g x x x x x =--,则由1201x x <<<,得12121122(0)(1)(0)(0)(1)(1)(1)[(1)][(1)]f f f g g x x x x x x x x -==--=--2211221112216x x x x +-+-⎛⎫⎛⎫<= ⎪ ⎪⎝⎭⎝⎭,故1(0)(1)(0)16f f f -<. 20.本小题主要考查等比数列的定义,通项公式和求和公式等基本知识及基本的运算技能,考查分析问题能力和推理能力.解法1:(I )证:由1n n b q b +=n q ==,∴ 22()n n a a q n +=∈N*. (II )证:22n n a q q -=,22221231n n n a a q a q ---∴===,222222n n n a a q a q --===,22222222212121222(2)5n n n n n n n c a a a q a q a a q q -----∴=+=+=+=.{}n c ∴是首项为5,以2q 为公比的等比数列.(III )由(II )得2221111n n q a a --=,222211nn q a a-=,于是 1221321242111111111n n n a a a a a a a a a -⎛⎫⎛⎫+++=+++++++ ⎪ ⎪⎝⎭⎝⎭24222422121111111111n n a q qq a q qq --⎛⎫⎛⎫=+++++++++⎪ ⎪⎝⎭⎝⎭2122311112n q qq -⎛⎫=++++⎪⎝⎭. 当1q =时,2422122111311112n n a a a q q q -⎛⎫+++=++++ ⎪⎝⎭32n =. 当1q ≠时,2422122111311112n n a a a q qq -⎛⎫+++=++++⎪⎝⎭最新高考复习资料223121n q q --⎛⎫-= ⎪-⎝⎭2222312(1)n n q q q -⎡⎤-=⎢⎥-⎣⎦. 故21222223121111 1.(1)nn n n q q a a a q q q -⎧=⎪⎪+++=⎨⎡⎤3-⎪≠⎢⎥⎪2-⎣⎦⎩, ,, 解法2:(I )同解法1(I ).(II )证:222*1212221221221222()22n n n n nn n n n nc a a q a q a q n c a a a a +++---++===∈++N ,又11225c a a =+=, {}n c ∴是首项为5,以2q 为公比的等比数列.(III )由(II )的类似方法得222221212()3n n n n a a a a qq ---+=+=, 34212121221234212111n nn n na a a a a a a a a a a a a a a --++++++=+++,2222212442123322k k k k k k k a a q qa a q --+---+==,12k n =,,,. 2221221113(1)2n k q q a a a --+∴+++=+++.下同解法1.21.本小题主要考查直线、圆和抛物线等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力.解法1:(Ⅰ)依题意,点N 的坐标为(0)N p -,,可设1122()()A x y B x y ,,,, 直线AB 的方程为y kx p =+,与22x py =联立得22x py y kx p ⎧=⎨=+⎩,.消去y 得22220x pkx p --=.由韦达定理得122x x pk +=,2122x x p =-.于是12122AMN BCN ACN SS S p x x =+=-△△△·.12px x =-=2p==,∴当0k =,2min ()ABN S =△.最新高考复习资料(Ⅱ)假设满足条件的直线l 存在,其方程为y a =,设AC 的中点为O ',l 与AC 为直径的圆相交于点P ,Q PQ ,的中点为H , 则O H PQ '⊥,Q '点的坐标为1122x y p +⎛⎫⎪⎝⎭,.12O P AC '===∵ 111222y p O H a a y p +'=-=--, 222PH O P O H ''=-∴221111()(244y p a y =+---1()2p a y a p a ⎛⎫=-+- ⎪⎝⎭,22(2)PQ PH =∴14()2p a y a p a ⎡⎤⎛⎫=-+- ⎪⎢⎥⎝⎭⎣⎦.令02p a -=,得2p a =,此时PQ p =为定值,故满足条件的直线l 存在,其方程为2py =, 即抛物线的通径所在的直线. 解法2:(Ⅰ)前同解法1,再由弦长公式得12AB x =-==2=又由点到直线的距离公式得d =从而2112222ABN S dAB p ===△···∴当0k =时,2m ax ()ABN S =△.(Ⅱ)假设满足条件的直线l 存在,其方程为y a =,则以AC 为直径的圆的方程为11(0)()()()0x x x y p y y -----=,将直线方程y a =代入得211()()0x x x a p a y -+--=,则21114()()4()2p x a p a y a y a p a ⎡⎤⎛⎫=---=-+- ⎪⎢⎥⎝⎭⎣⎦△.最新高考复习资料设直线l 与以AC 为直径的圆的交点为3344()()P x y Q x y ,,,,则有34PQ x x =-==.令02p a -=,得2p a =,此时PQ p =为定值,故满足条件的直线l 存在,其方程为2py =, 即抛物线的通径所在的直线.。
2007年高考理科数学试题及参考答案(湖南卷)
2007年普通高等学校招生全国统一考试(湖南卷)数学(理科)注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上.,并将准考证号条形码粘贴在答题卡上指定位置。
2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3. 第Ⅱ卷必须用0.5毫米黑色签字笔在答题卡各题的答题区域内作答;不能写在试题卷上; 如需改动,先画掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸,修正带,不按以上要求作答的答案无效。
4. 填空题请直接填写答案,解答题应写出文字说明,证明过程或演算步骤。
本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟.第I 卷(选择题)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设复数)2)(1(++i mi 是纯虚数,则m =( )A .1=mB .1-=mC .2=mD .21-=m2.已知命题:p “若b a =,则||||b a =”,则命题p 及其逆命题、否命题、逆否命题中,正确命题的个数是( )A .1个B .2个C .3个D .4个3.要完成下列两项调查:①从某社区125户高收入家庭、200户中等收入家庭、95户低收入家庭中选出100户,调查社会购买能力的某项指标;② 从某中学的5名艺术特长生中选出3名调查学习负担情况.宜采用的方法依次为( )A .①简单随机抽样调查,②系统抽样B .①分层抽样,②简单随机抽样C .①系统抽样,② 分层抽样D .①② 都用分层抽样4.如图,一个几何体的三视图都是边长为1的正方形,那么这个几何体的体积为( ) A .32 B .31 C .32 D .15.关于函数函数=)(x f 1)sin 3(cos cos 2-+x x x ,以下结论正确的是( )A .)(x f 的最小正周期是π,在区间),(12512ππ-是增函数 B .)(x f 的最小正周期是π2,最大值是2 C .)(x f 的最小正周期是π,最大值是3D .)(x f 的最小正周期是π,在区间),(612ππ-是增函数6.某人欲购铅笔和圆珠笔共若干只,已知铅笔1元一只,圆珠笔2元一只.要求铅笔不超 过2只,圆珠笔不超过2只,但铅笔和圆珠笔总数不少于2只,则支出最少和最多的钱数 分别是( )A .2元,6元B .2元,5元C .3元,6元D . 3元,5元 7.已知F 1 、F 2分别是双曲线1by ax 2222=-(a>0,b>0)的左、右焦点,P 为双曲线上的一点,若︒=∠9021PF F ,且21PF F ∆的三边长成等差数列,则双曲线的离心率是( ) A .2 B . 3 C . 4D . 58.函数xxx y sin 2sin 3cos 42---=的最大值是( )A .37- B .3- C .37 D . 1第Ⅱ卷 非选择题 (共110分)二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9—12题)9.已知集合}0|){(≥+-=m y x y x A ,,集合}1|){(22≤+=y x y x B ,.若φ=B A ,则实数m 的取值范围是____________. 10.关于函数⎩⎨⎧≤≤-≤<-=11cos 41)(x x x x x f ,,的流程图如下,现输入区间][b a ,,则输出的区间是____________.11.函数3)12(2--+=x a ax y 在区间[23-,2]上的最大值是3,则实数a =____________.12.设平面上n 个圆周最多把平面分成)(n f 片(平面区域),则=)2(f ____________,=)(n f ____________.(1≥n ,n 是自然数) (二)选做题(13—15题,考生只能从中选做两题) 13.(坐标系与参数方程选做题)设曲线C 的参数方程为θθθ(,sin 41c os 4⎩⎨⎧+=+=y a x 是参数,0>a ),若曲线C 与直线0543=-+y x 只有一个交点,则实数a 的值是____________.14.(不等式选讲选做题)设函数2)(--=a x x f ,若不等式)(x f <1的解)4,2()0,2( -∈x ,则实数a =____________.15.(几何证明选讲选做题)如右图,已知PB 是⊙O 的 切线,A 是切点,D 是弧AC 上一点,若︒=∠70BAC , 则_______=∠ADC .三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分13分)如图所示,正在亚丁湾执行护航任务的某导弹护卫舰,突然收到一艘商船的求救信号,紧急前往相关海域.到达相关海域O 处后发现,在南偏西20、5海里外的洋面M 处有一条海盗船,它正以每小时20海里的速度向南偏东40的方向逃窜.某导弹护卫舰当即施放载有突击队员的快艇进行拦截,快艇以每小时30海里的速度向南偏东θ的方向全速追击.请问:快艇能否追上海盗船?如果能追上,请求出)40sin(+θ的值;如果未能追上,请说明理由.(假设海面上风平浪静、海盗船逃窜的航向不变、快艇运转正常无故障等)NM17.(本小题满分12分)某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为其利润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润,事件A 为“购买该商品的3位顾客中,至少有1位采用1期付款”. (Ⅰ)求事件A 的概率()P A ; (Ⅱ)求η的分布列及期望E η.18.(本小题满分13分)如图,已知直四棱柱ABCD-1111D C B A 的底面是边长为2、Q1A 1CA∠ADC=120的菱形,Q 是侧棱1DD (1DD >22)延长线上的一点,过点Q 、1A 、1C 作菱形截面Q 1A P 1C 交侧棱1BB 于点P .设截面Q 1A P 1C 的面积为1S ,四面体P C A B 111-的三侧面111C A B ∆、11PC B ∆、P A B 11∆面积的和为2S ,21S S S -=. (Ⅰ)证明:QP AC ⊥;(Ⅱ) 当S 取得最小值时,求cos ∠11QC A 的值.19.(本小题满分14分)在直角坐标平面内,定点 )0,1(-F 、)0,1('F ,动点M,满足条件22||||'=+MF MF .(Ⅰ)求动点M 的轨迹C 的方程;(Ⅱ)过点F 的直线交曲线C 交于A,B 两点,求以AB 为直径的圆的方程,并判定这个圆与直线2-=x 的位置关系.20.(本小题满分14分)已知数列}{n a 的前n 项和 ,3,2,1,4232=+⋅-=n a S n n n . (Ⅰ)求数列}{n a 的通项公式;(Ⅱ)设n T 为数列}4{-n S 的前n 项和,求⋅n T21.(本小题满分14分)理科函数()326f x x x =-的定义域为[]2,t -,设()()2,f m f t n -==,)(x f '是)(x f 的导数.(Ⅰ)求证:n m ≥ ;(Ⅱ)确定t 的范围使函数()f x 在[]2,t -上是单调函数; (Ⅲ)求证:对于任意的2t >-,总存在()02,x t ∈-,满足()'02n m f x t -=+;并确定这样的0x 的个数.【答案及详细解析】一、选择题:本大题理科共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
2007年全国高考物理试题(附答案)
2007年普通高等学校招生全国统一考试(全国卷I )理综试卷(物理)理综试卷(物理)二、选择题(本题共8小题,在每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得6分,选对但不全的得3分,有选错的得0分)分) 14.据报道,最近在太阳系外发现了首颗“宜居”行星,其质量约为地球质量的6.4倍,一个在地球表面重量为600 N 的人在这个行星表面的重量将变为960 N ,由此可推知该行星的半径与地球半径之比约为半径与地球半径之比约为 A .0.5 B2 C .3.2 D .4 15.一列简诸横波沿x 轴负方向传播,波速v =4 m/s ,已知坐标原点(x =0)处质点的振动图象如图a 所示,在下列4幅图中能够正确表示t =0.15s 时波形的图是时波形的图是图a 16.如图所示,质量为m 的活塞将一定质量的气体封闭在气缸内,活塞与气缸壁之间无磨擦,a 态是气缸放在冰水混合物中气体达到的平衡状态,b 态是气缸从容器中移出后,在室温(27℃)℃)中达到的平衡状态,中达到的平衡状态,中达到的平衡状态,气体从气体从a 态变化到b 态的过程中大气压强保持不变。
若忽略气体分子之间的势能,下列说法中正确的是气体分子之间的势能,下列说法中正确的是A.与b态相比,a态的气体分子在单位时间内撞击活塞的个数较多态的气体分子在单位时间内撞击活塞的个数较多B.与a态相比,b态的气体分子在单位时间内对活塞的冲量较大态的气体分子在单位时间内对活塞的冲量较大C.在相同时间内,a,b两态的气体分子对活塞的冲量相等两态的气体分子对活塞的冲量相等D.从a态到b态,气体的内能增加,外界对气体做功,气体向外界释放了热量态,气体的内能增加,外界对气体做功,气体向外界释放了热量17.从桌面上有一倒立的玻璃圆锥,其顶点恰好与桌面接触,圆锥的轴(图中虚线)与桌面垂直,过轴线的截面为等边三角形,如图所示,有一半径为r的圆柱形平行光束垂直入射到圆锥的底面上,光束的中心轴与圆锥的轴重合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.(贝克曼梁法)回弹弯沉检测方法、步骤。
2.19㎜沥青混合料配合比OGFC之外的其它基本性质?3.CBR适用范围及目的,贯入法的试验步骤?4.EDTA标准曲线的准备。
5.EDTA法滴定水泥剂量的步骤。
6.SMA路面除了要进行配合比设计外,还应该进行哪些路用性能试验检测?7.VBI和IRI的关系如何建立?8.贝克曼梁发测弯沉值的过程。
9.标定筒下部圆锥体内砂的质量。
10.测弯沉时对标准车的要求;弯沉仪的组成;11.车载式颠簸累积仪所测定的平整度指标VBI与国际标准平整度指数IRI建立相关关系的操作步骤12.车辙试件成型方法13.承载板法测土基回弹模量的步骤?14.粗集料道瑞试验15.粗集料压碎值试验步骤?16.代用法测水泥标准稠度用水量的步骤17.道瑞磨耗试验方法步骤?18.对于SMA沥青混凝土在配合比的基础上还要检验哪些使用性能;19.对于高速公路和一级公路的公称最大粒径等于或小于19mm的密级配沥青混合料AC及SMA、OGFC混合料需在配合比设计的基础上进行哪些使用性能试验?20.分析水灰比对混凝土工作性能的影响.21.有关试件表干密度测定,即大于2%吸水量时不能有表干法?22.粉煤灰烧矢量试验步骤?23.概述土工布CBR顶破试验方法步骤?24.高速公路、一级公路的沥青混凝土(AC、SMA、OTGB)除配合比组成设计外还需要检验那些使用性能?25.高速公路路面横断面坡度检测的步骤和方法。
26.给出一组混凝土劈裂抗拉试件的实测值,试确定改组试件劈裂抗拉强度值。
27.给了20个水泥混凝土路面厚度,让评定并算合格率28.给你一组水泥胶砂试件抗折强度值计算实测代表值?29.公路工程质量检验评定标准质量保证资料的内容30.灌砂法标定的项目及单位密度计算?31.灌砂法标准砂的标定32.灌砂法检测压实度时,锥体的标定。
33.灌砂法砂的标定及单位密度计算?34.灌砂筒下部锥砂标定步骤?35.国际平整度IRI与颠簸累积值VBI之间的关系及试验步骤?36.何为快剪,固结快剪.慢剪37.烘干法测含水量时的注意事项,测试温度控制及烘干时间?38.烘干含水量适用范围,试验注意事项,温度及时间?39.厚度评定(计算题)?40.混凝土的基准配合比(不能用假定密度法)41.混凝土计算初步配合比为1:2.13:4.31,水灰比为0.58,试拌调整时工作性不满足要求,采取增加10%水泥浆用量的措施后,工作性达到要求。
试计算:(1)混凝土的基准配合比(2)若基准配合比即为试验室配合比,配置1m3混凝土需用水泥320Kg,计算混凝土中其它材料用量42.混凝土计算配合比为1:2.36:4.43,水灰比为0.52,试拌调整时,增加了10%的水泥浆用量。
试求:43.混凝土抗压强度的操作步骤?对弯沉车的要求?弯沉仪的组成?44.混凝土抗折强度评定(计算题)45.混凝土抗折强度评定(计算题)46.混凝土立方体抗压强度的步骤?47.混凝土外加剂的钢筋锈蚀试验步骤48.混凝土外加剂的钢筋锈蚀试验步骤(干硬水泥砂浆法)(不包括数据处理)49.极坐标法检测中线偏位步骤50.计算 给出十二个数值求平均值、标准差、代表值及判断合格与否。
51.计算:弯沉评定简述EDTA的滴定测水泥含量的步骤52.计算面层厚度。
53.计算水泥混凝土劈裂强度。
54.计算土工合成材料的抗拉强度和伸长率.55.假设沥青混合料为1500g,油石比为5.0%,计算集料中限情况下各个粒径集料的用量.56.剪切试验的目的.57.简述EDTA的滴定过程?58.简述承载板法测土基回弹模量的试验步骤59.简述粗骨料压碎值试验步骤60.简述粗集料的道瑞磨耗试验步骤?61.简述粉煤灰烧失量的试验步骤?62.简述建立车载式颠簸累积仪测试结果VBI与国际平整度指数IRI相关关系的现场试验步骤?63.简述快剪\固结快剪\慢剪的含义是什么?64.简述砂浆分层度试验方法65.简述砂浆分层度试验方法(标准法)66.简述手工铺砂法的步骤67.简述水泥混凝土立方体抗压强度的试验步骤?68.简述水泥稳定料的无侧限抗压强度的试验步骤69.简述土工合成材料的CBR顶破试验的适用范围、试验步骤?70.建立车载式颠簸累积仪与国际平整度指数相互关系的试验步骤;71.交工和竣工验收时,如采用贝克曼梁来测定路基、沥青路面的回弹弯沉值对测试车有什么要求,同时弯沉仪由什么组成?72.角度交会法测中桩偏位的步骤73.沥青混合料表观密度的测定,放在水中后,不停的冒气泡,过段时间后质量才稳定,吸水率2.5%,问得到的密度值可信不,什么原因?74.沥青混合料的马歇尔试验测定哪些指标?各自含义是什么?表征沥青混合料的什么性能?75.沥青混合料用粗集料的针片状的试验过程.76.沥青砼路面的评定方法环刀法的试验步骤 (怎么会考环刀,我实在想不通,一点也没看)77.沥青延度试验步骤;当水与沥青材料的密度不一致时,应采取的处理方法。
78.沥青粘附性试验的操作方法(水煮法)79.沥青钻芯取样的密度测定步骤?80.连续式平整度仪测定平整度的步骤?81.路基土现场施工压实度计算。
82.路面厚度评定(计算题)83.论述沥青老化检测?84.某工地用水泥混凝土经试拌调整后,得配合比1:1.5:3.0,W/C=0.50.砂、石的表观密度分别为2.65、2.70,未使用任何外加剂。
试计算每立方米混凝土中各种材料的用量;如施工工地砂、石的含水率分别为5%、1%,试求现场拌制400L混凝土所需各种材料的实际用量。
(计算结果精确至1KG)85.某一级路天然砂砾底基层压实厚度:给出了10个测定值、设计厚度、代表值允许偏差及合格值,对该路底基层厚度进行评价(保证率为99%)。
86.劈裂强度的计算?87.评定资料中质量保证资料的内容88.如何确定石灰稳定土,水泥稳定土中结合料的用量?89.如施工砂、石含水率分别为5%、2%,试计算拌制400L混凝土各种材料的实际用量(准确至1g)90.砂土的孔隙比91.砂中氯离子含量实验步骤92.筛分法适用范围、步骤、注意事项93.什么是水泥的标准稠度?检测水泥标准稠度有什么作用?94.试验室CBR试验注意事项,现场贯入试验步骤?95.是一道关于路面厚度评定合格与否的题。
告诉设计厚度为25cm,充许偏差△X为-10mm,合格值为-25mm,保证率系数为0.892。
由题已知计算得平均厚度为25.32cm,标准差0.836,最小值也满足要求,具体的数据记不得了。
96.水泥安定性试验步骤,水泥安定性试验有哪些方法。
97.水泥的凝结时间的测试步骤?测定凝结时间的意义是什么?什么是快剪、固结快剪、慢剪?快和慢的含义是什么?98.水泥混凝土立方体试件制作步骤?99.水泥混凝土立方体试件制作注意事项100.水泥胶砂试件成型步骤101.水泥胶砂试件的制作102.水泥净降稠度用水量(替代法)实验步骤103.水泥凝结时间测定过程和 意义104.水泥凝结时间测定过程和 意义105.水泥凝结时间测定过程和意义106.水泥凝结时间如何测定,凝结时间对施工有什么意义?107.水泥稳定材料无侧显抗压强度试验步骤108.水泥稳定材料无侧限抗压强度试验步骤?109.水泥稳定碎石无侧限抗压强度试验的操作步骤110.水泥稳定土组成设计要点111.水煮法112.砼配合比计算题?113.土的直接剪切试验有哪些方法,它们的特点和适用范围;简述其中一种的试验步骤114.土工织布顶破强度115.土粒比重测试方法,试述其中一种试验步骤方法116.弯沉的检测步骤?117.弯沉仪组成及对车辆的要求?118.为什么不能用水中重法测试吸水量大于2.%沥青混合料.2剪切试验的目的.3.计算土工合成材料的抗拉强度和伸长率.3.分析水灰比对混凝土工作性能的影响.4.沥青混合料用粗集料的针片状的试验过程.119.无侧限抗压强度120.现场弯层测试要点121.详细说明砂土相对密度的试验过程(包括设备、精确度、要点等)122.写出环刀法测土的压实度123.写出沥青面层压实度评定124.写出无侧限抗压强度试验步骤125.一道关于路面厚度的评定题126.一道评定计算题,很简单127.一道压实度计算题(简单)128.一组劈裂强度试验结果整理.4、标定筒下部圆锥体内砂的质量.5、贝克曼测弯沉的过程。
129.已知二灰稳定料6个强度,试判断该材料强度中否合格(原题记不清了,主要是要求稳定料强度评定值)130.用马歇尔确定沥青用量的指标规范规定的常规指标包括哪几个,各自的含义是什么,分别表征沥青混合料的什么性质?131.用于测定高速公路、一级公路路基、路面的回弹弯沉所用的测试车有什么要求?弯沉仪由什么组成?132.用于测定高速公路、一级公路路基、路面的回弹弯沉所用的测试车有什么要求?弯沉仪由什么组成?133.在结合料剂量试验中,EDTA溶液用完了,重新配制EDTA溶液需要不需要重新制作灰剂量滴定标准曲线?为什么?134.在进行某一项目质量评定时,对质量保证资料包括哪几个方面?135.在马歇尔试验中确定的混合料指标有哪几个?各自的含义是什么?分别表征沥青混合料的什么性质?136.怎样确定我国南北气候条件下使用的沥青标号?。