电桥电路特点
电桥电路

分类。
(1)按电源分,有直流电桥和交流电桥
直流电桥桥臂只能接入电阻。它主要用于应变电桥输出可直接显示(如接励电式指示器
或光线示波器振子)而无需中间放大场合,如半导体应变计。
交流电桥桥臂可以是 R、L、C。主要用于输出需放大的场合,如金属应变计等。
(2)按工作方式分,有平衡桥式电路(零位测量法)和不平衡桥式电路(偏差测量法)。
E 4
( R1 R1
R2 R2
R3 R3
R4 R4
)
U 0K 4
(1
2
3
4)
(3.9)
2.温度补偿片
电阻片的电阻随温度的变化而变化,利用电桥的加加减特性,通过温度补偿片来消除这
一影响。所谓温度补偿片,是将电阻片贴在与构件材质相同但不参与变形的一块材料上,并
于构件处于相同的温度条件下。将补偿片正确连接在桥路中即可消除温度变化产生的影响。
平衡桥式电路带有手调或者自调整桥臂平衡的伺服反馈机构。仪表指示测量值时,电
桥处于平衡状态。常用于高精度、长时间静态应变测量,如双桥式静态应变仪。
不平衡桥式电路的输出,是与桥臂应变量成一定函数关系的不平衡电量,然后放大、显
示。仪表指示测量值时,电桥处于不平衡状态,它响应快,便于处理:常用于动态应变测量。
U SC
U0 4
K (1
2
3
4)
(3.5)
由上式表明,由应变片感受到的(ε1-ε2+ε3-ε4),通过电桥可以线性地转变为电 压的变化 UBD,只要对这个电压的变化量进行标定,就可用仪表指示出所测量的(ε1-ε2 +ε3-ε4),公式(3.5)还表明,相邻桥臂的应变相减,相对桥臂的应变相加,这一特 性称为电桥的加减特性,今后将多次用到这一特性
传感与检测技术1-2-电桥电路

大家好
E
R1 R1 R2
R3 R3 R4
(1 1)
1.2.4 电桥电路
当电桥平衡时,U0=0,所以:R1 R4 = R2 R3或R1/R2 =R3/R4
电压灵敏度
(1-2)
若R1由应变片替代,当电桥开路时,不平衡电桥输出的电压为:
U0
E( R1 R1 R1 R1 R2
R3 R3 R4
大家好
1.2.4 电桥电路
电桥电路在传感器的测量中应用很广泛,它可以把电阻的变化转换为电压 的变化。电桥电路按照不同的分类方法可以分为以下几种类型。 1.按电源的性质分类
按照电源的性质分,可分为直流电桥和交流电桥两种类型。图1为直流电桥电路图。
1)直流电桥
平衡条件,当RL→∞时,电桥输出电压
:
U0
大家好
1.2.1 传感器的分类
(4)按传感器输出能量关系分类,可将传感器分为有源传感器和无源传 感器两大类。 有源传感器是将非电能量转换为电能量,称之为能量转换型传感器,也称 换能器。通常配合有电压测量电路和放大器。 如:压电式、热电式、电磁式传感器等。 无源传感器又称为能量控制型传感器。被测非电量仅对传感器中的能量起 控制或调节作用。所以必须具有辅助能源(电能)。 如:电阻式、电容式和电感式传感器等。 (5)其他:按用途、学科、功能等进行分类。
1.2 传感器基本知识及电桥电路
1.2.1 传感器的分类 1.2.2 传感器的特性参数 1.2.3 传感技术的发展趋势 1.2.4 传感器中常用的基本测量电路
——电桥电路
大家好
1.2.1 传感器的分类
传感器是一门知识密集型技术,传感器原理各异,学科广泛,种类繁多, 一般可用如下方法分类: (1)按照被测物理量分类,可分为温度、压力、湿度、位移、流量、液 位传感器等。 (2)按照工作原理分类,可分为参量传感器(如电阻传感器、电容传感 器等)、发电传感器(如光电式传感器、热电偶传感器等)、脉冲传感器 (如光栅、磁栅式传感器等)及特殊传感器(如光纤传感器、超声波传感 器等)。 (3)按照输出信号的性质可分为模拟式和数字式传感器。
交流电桥的平衡条件

交流电桥的平衡条件
电桥平衡条件有两个:一是相对桥臂上阻抗幅模的乘积相等,二是相对桥臂上阻抗幅角之和相等。
电桥电路的主要特点就是当四个桥臂电阻的阻值满足一定关系时,会使接在对角线间的电阻中没有电流通过,这种情况称平衡状态。
其中存在一种特殊结构的电路——直流单臂电桥,R1、R2、R3和R4叫电桥的臂,检流计G接于CD之间称为“桥”。
一般情况下R1、R3两端的电压不相等,即C、D两点间的电势不等,G中有电流通过。
改变R1、R3的大小,可以使UAC=UAD,这时G中无电流通过。
当G中无电流时叫做“电桥平衡”。
本实验就是研究R1、R2、R3和R4之间满足什么关系时电桥平衡。
交流电桥在测量时除了要满足阻抗模相等的条件,还要满足一定的阻抗角条件,即体现在测量实践中就是必须调节两个元件方能使电桥平衡,而直流电桥只需调整一个参数即可。
若想改变一个四臂直流电桥的性质是不可能的,它们只能做数量上的变化。
但对于交流四臂电桥来说,它的复数桥臂可以是各种各样的串并联线路。
即交流电桥四臂的组成具有多样性。
电桥特性及应用

当电桥中的可变元件调节到某一特定值时,桥路中的电流为 零,此时电桥的输入和输出电压相等,称为电桥的平衡状态 。在平衡状态下,可以测量电桥中各个元件的参数。
02 电桥的特性
电桥的灵敏度
总结词
电桥的灵敏度是指其输出电压或电流 随输入信号变化的能力。
详细描述
电桥的灵敏度越高,表示其输出变化 量与输入变化量的比值越大,即对输 入信号的响应越强烈。这有助于提高 测量精度和降低测量误差。
电感测量
同样地,电桥也可以用于测量电感器的电感值,通过比较不同电感器的感抗值,可以计 算出电感器的电感值。
测量非线性元件的特性
测量二极管特性
电桥可以用来测量二极管的特性,如正 向压降、反向电流等参数。
VS
测量晶体管特性
通过使用电桥测量晶体管的输入、输出阻 抗等参数,可以了解晶体管的工作状态和 性能。
微型化电桥
通过微纳制造技术,将电桥结构微型化,实现高精度、低功耗和便携式的测量。
电桥在物联网和人工智能领域的应用前景
物联网应用
利用电桥的高灵敏度和精确度,实现各种物理量的实时监测和远程传输,为物联 网应用提供可靠的数据来源。
人工智能应用
结合人工智能技术,利用电桥获取的大量数据,进行模式识别、预测分析和智能 控制等方面的应用。
详细描述
精确度越高,表示电桥测量结果的可靠性越高。影响电桥精确度的因素包括温度、湿度、噪声等环境 因素以及电桥本身的质量和性能。为提高精确度,应选择高品质的电桥并采取相应的校准和补偿措施 。
电桥的温度系数
总结词
电桥的温度系数是指电桥输出随温度变化的程度。
详细描述
温度系数越低,表示电桥受温度影响越小,稳定性越好。了解电桥的温度系数对于长期稳定性和高精度测量非常 重要。在实际应用中,应采取相应的温度补偿措施以减小温度对电桥测量的影响。
直流电桥的三种工作方式及特点

直流电桥的三种工作方式及特点直流电桥是一种广泛应用于电子仪器的电路,它可以用来测量电阻、电容和电感等电路参数。
一般来说,直流电桥可以通过三种不同的工作方式来实现精确的电路参数测量,每种工作方式都有其独特的特点和优势。
下面,我们将对这三种直流电桥的工作方式进行详细介绍。
第一种工作方式是“相敏式直流电桥”。
这种电桥采用相位灵敏技术,将待测信号与参考信号进行比较。
此时,电桥会产生一个相位差信号,该信号随着电路参数的变化而变化。
通过测量相位差信号的变化,可以确定待测电路参数的值。
这种工作方式对精度的要求较高,但是它可以快速地测量出电路参数,因此被广泛应用于实时测量和控制系统中。
第二种工作方式是“电势式直流电桥”。
这种电桥利用电路中的电势差来测量电路参数。
具体来说,电桥会将待测电路分成两个部分,然后将它们与一个已知电势差的标准电路进行比较。
通过测量电位差的变化,可以确定待测电路参数的值。
这种工作方式可以在电路参数变化较慢时使用,并且对仪器的精度要求较低,因此被广泛应用于实验室和教学中。
第三种工作方式是“电阻式直流电桥”。
这种电桥通过测量电路中的电阻来测量待测电路参数的值。
具体来说,电桥会将待测电路与已知电阻值的标准电路进行比较,通过测量电流的变化来计算待测电
路的电阻值。
这种工作方式常常用于测量比较低的电阻值,并且对仪器的精度要求较高,因此主要应用于精密测量领域。
总之,直流电桥的三种工作方式各有优劣,可以在不同的应用环境中得到应用。
了解这些工作方式的特点和优势,可以帮助我们更好地选择合适的电桥,并且在使用时可以更加准确地测量电路参数。
高考物理电学十大方法精讲 方法09电桥法

方法09电桥法如图:R 1、R 2、R 3、R 4是电桥的四个臂,电桥的一组对角顶点a 、b 之间接电阻R ,对角c 、d 之间接电源,如果所接电源为直流电源,则这种电桥称为直流电桥。
电桥电路的主要特点就是:当四个桥臂电阻的阻值满足一定关系时,会使接在对角线a 、b 间的电阻R 中没有电流通过。
这种情况称平衡状态。
要达到平衡条件:必须满足a 、b 两点电势相同。
U da =I a R 1 U ac =I a R 2 U db =I b R 3 U bc =I b R 4 U da =U db U ac =U bc R 1I a =R 3I b R 2I a =R 4I b1324R R R R =或R 1R 4=R 2R 3直流电桥的平衡条件是:对臂电阻的乘积相等. 【调研1】 如图所示是一种测量电阻的实验装置电路图,其中R 1、R 2是未知的定值定值,R 3是保护电阻,R 是电阻箱,R x 是待测电阻,V 是一只零刻度在中央、指针可以左右偏转的双向电压表.闭合开关S 1、S 2,调节R ,使电压表V 的指针指在零刻度处,这时R 的读数为90Ω;将R 1、R 2互换后,再次闭合S 1、S 2,调节R ,使电压表V 的指针指在零刻度处,这时R 的读数为160Ω,那么被测电阻R x 的数值及R 1与R 2的比值分别为 ( )A. 120Ω 3:4B. 125Ω 4:3C. 160Ω 16:9D. 250Ω 9:16解析: 此题中的电路图是电桥电路图,其中R 、R x 、R 1、R 2称为电桥的四个臂,调节电阻箱R 适当时,使电压表的读数为零,此时称电桥平衡;这时要满足的条件为12xR R R R =,由该条件即可求出R x 及R 1、R 2的比值;当R =90Ω时,即1290xR R R =,R 1、R 2互换后,R =160Ω,即12160x R R R =,所以90160xxR R =得R x =120Ω.进一步求出1234R R =.A 对.【调研2】如图甲所示电路称为惠斯通电桥,当通过灵敏电流计G 的电流I g =0时,电桥平衡,可R 1 R 2 R 4R 3 Rd c ab E r I aI a I bI b R 1 R 2R xRV S 2 R 3S 1以证明电桥的平衡条件为:1324R RR R=.图乙是实验室用惠斯通电桥测量未知电阻R x 的电路原理图,其中R 是已知电阻, S 是开关,G是灵敏电流计,AC是一条粗细均匀的长直电阻丝,D 是滑动头,按下D 时就使电流计的一端与电阻丝接通,L是米尺.(1)简要说明测量R x 的实验步骤,并写出计算R x的公式;(2)如果滑动触头D从A向C移动的整个过程中,每次按下D时,流过G的电流总是比前一次增大,已知A、C间的电阻丝是导通的,那么,电路可能在哪里出现断路了.解析:(1)闭合开关,把滑动触头放在AC中点附近,按下D,观察电流表指针的偏转方向;向左或向右移动D,直到按下D时,电流表指针不偏转;用刻度尺量出AD、DC的长度l1和l2;根据公式R x=21llR,求出R x的值;(2) BC断了.【调研3】如图所示电路,电源的电动势E=10 V,内阻不计,电阻R1=R2=R3=2 Ω,R4=6 Ω,电容器的电容C=7.5 μF,G为灵敏电流计。
惠斯登电桥的原理

惠斯登电桥的原理一、什么是惠斯登电桥惠斯登电桥(Wheatstone bridge)是一种用来测量未知电阻的电路,该电路由英国物理学家查尔斯·惠斯登(Charles Wheatstone)于1843年发明。
惠斯登电桥是一种平衡电桥,通过平衡原理来测量未知电阻。
二、平衡电桥的原理平衡电桥是基于平衡原理的一种电路,通过调节电桥的各个部分,使得电桥中的电流为零,从而达到平衡的状态。
惠斯登电桥也是一种平衡电桥。
惠斯登电桥由四个电阻和一个潜在变阻器(未知电阻)组成。
电桥的基本原理是通过调节电桥中的潜在变阻器,使得电桥中的电流为零,从而确定未知电阻的值。
当电桥中的电流为零时,可以使用已知的电阻值来计算出未知电阻的阻值。
三、惠斯登电桥的工作原理惠斯登电桥的工作原理可以通过以下步骤来解释:1.设置电桥的初始状态:将已知电阻分别接到电桥的两个相对端点上,并将未知电阻连接到电桥的两个相邻端点。
2.调节潜在变阻器:通过调节潜在变阻器的电阻值,使得电桥的电流为零。
3.检测电流为零的条件:使用电流表等仪器来检测电桥中的电流是否为零。
如果电流为零,则表示已经达到平衡状态。
4.计算未知电阻:根据已知电阻的阻值和电桥达到平衡时潜在变阻器的电阻值,可以使用惠斯登电桥的公式来计算未知电阻的值。
四、惠斯登电桥的公式惠斯登电桥的计算公式为:其中,R1、R2、R3为已知电阻的阻值,而R为未知电阻的阻值。
五、应用领域惠斯登电桥在科学实验、电子工程等领域有着广泛的应用。
1. 科学实验在科学实验中,惠斯登电桥被用来测量物质的电阻,从而获得有关材料特性的信息。
例如,在材料科学中,可以使用惠斯登电桥来测量材料的电导率、电阻率等。
2. 电子工程在电子工程中,惠斯登电桥被用来测量电路中的未知电阻。
通过测量电阻,可以更好地设计和优化电路,提高电路的性能。
惠斯登电桥还可以应用于传感器的设计和测试中。
3. 物理实验在物理实验中,惠斯登电桥被用来测量电阻与其它物理量之间的关系。
电桥原理详解分析

电感测量
同样利用电桥电路,可以测量电感器的电感值,对于电子设备和系统的性能评 估具有重要意义。
在通信系统中的应用
信号传输
在通信系统中,电桥可以用于信号的传输和处理,例如在无线通信网络中实现信 号的定向传输。
频率选择
电桥还可以用于通信系统的频率选择,通过调整电桥的参数,实现对特定频率信 号的选择和过滤。
电桥的误差主要来源于电阻元件的精度、电源电压的稳定性、温度变化等因素。这些因素会导致电桥的平衡条件 发生变化,从而影响电桥的测量精度。
误差消除方法
为了减小误差,可以采用高精度的电阻元件、稳压电源、温度补偿等方法。同时,在电桥使用过程中,应注意避 免外界干扰和防止环境温度变化对电桥的影响。
05 电桥的优化设计
提高电桥灵敏度的方法
选择高精度测量元件
平衡电桥电路
使用高精度的电阻、电容和电感等元 件,可以减小测量误差,提高电桥的 灵敏度。
通过调整电桥电路中的元件参数,使 电桥达到平衡状态,从而提高电桥的 灵敏度。
减小连接线路的电阻
尽量缩短连接线路,选择低阻抗的导 线,以减小线路电阻对两个 为测量臂,另两个为比较臂。
通过调整比较臂的元件参数, 使得电桥达到平衡状态,此时 测量臂的元件参数值即为被测 元件的参数值。
02 电桥的工作原理
电阻电桥的工作原理
01
02
03
平衡条件
在电阻电桥中,当电桥达 到平衡状态时,流过电桥 的电流为零,此时电桥的 输出电压也为零。
平衡条件的应用
通过调整电桥中电阻的阻 值,使得电桥达到平衡状 态,可以测量电阻的阻值。
测量精度
电阻电桥的测量精度取决 于电桥平衡状态的稳定性 以及测量电路的精度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电桥电路特点
电桥电路是一种常用的电路,它的特点是能够测量电阻、电容、电感
等物理量,具有高精度、高灵敏度、高稳定性等优点。
下面将从电桥
电路的原理、分类、应用等方面进行详细介绍。
一、电桥电路的原理
电桥电路是利用电桥平衡原理来测量电阻、电容、电感等物理量的一
种电路。
电桥电路由四个电阻组成,其中两个电阻相等,称为标准电阻,另外两个电阻则为待测电阻。
当电桥电路平衡时,待测电阻与标
准电阻的比值即为所求物理量的值。
二、电桥电路的分类
根据电桥电路的不同特点,可以将其分为以下几类:
1. 直流电桥电路:直流电桥电路是利用直流电源作为电桥电路的电源,适用于测量电阻、电容等物理量。
2. 交流电桥电路:交流电桥电路是利用交流电源作为电桥电路的电源,适用于测量电感等物理量。
3. 数字电桥电路:数字电桥电路是利用数字信号处理技术来实现电桥
电路的测量,具有高精度、高速度等优点。
4. 模拟电桥电路:模拟电桥电路是利用模拟电路来实现电桥电路的测量,具有低成本、易实现等优点。
三、电桥电路的应用
电桥电路广泛应用于科学研究、工程设计、生产制造等领域,具有以
下几个方面的应用:
1. 测量电阻:电桥电路可以测量电阻的值,广泛应用于电子元器件的
测试、电路设计等领域。
2. 测量电容:电桥电路可以测量电容的值,广泛应用于电容器的测试、电路设计等领域。
3. 测量电感:电桥电路可以测量电感的值,广泛应用于电感器的测试、电路设计等领域。
4. 测量温度:电桥电路可以利用热敏电阻、热电偶等元件来测量温度
的值,广泛应用于温度传感器的测试、温度控制等领域。
总之,电桥电路是一种重要的电路,具有高精度、高灵敏度、高稳定性等优点,广泛应用于科学研究、工程设计、生产制造等领域。