第8章回归分析

合集下载

第八章 相关分析与回归分析

第八章 相关分析与回归分析
第8章 回归分析
下一页
返回本节首页
19
③在数据区域中输入B2:C11,选择“系列产 生在—列”,如下图所示,单击“下一步” 按钮。
上一页
第8章 回归分析
下一页
返回本节首页
20
④打开“图例”页面,取消图例,省略标题,如 下图所示。
上一页
第8章 回归分析
下一页
返回本节首页
21
⑤单击“完成”按钮,便得到XY散点图如下图 所示。
n 8, x 36.4, x 207.54 , y 104214 y 880, . xy 4544 6
2 2
r
n xy x y n x2 x 2 n y2 y 2 8 4544 6 36.4 880 .
第8章 回归分析
40
(二)回归分析的种类: 1、按自变量 x 的多少,分为一元回归和多 元回归; 2、按 y 与 x 关系的形式,分为线性回归和 非线性回归。
第8章 回归分析
41
二、一元线性回归分析
x y 62 86 80 110 115 132 135 160
42
(一)一元线性回归方程:
2、非线性相关:当一个变量变动时, 另一个变量也相应发生变动,但这种变 动是不均等的。
第8章 回归分析
9
㈢根据相关关系的方向 1、正相关:两个变量间的变化方向一 致,都是增长趋势或下降趋势。 2、负相关:两个变量变化趋势相反。
上一页
第8章 回归分析
下一页
返回本节首页
10
(四)根据相关关系的程度 1、完全相关:两个变量之间呈函数关系 2、不相关:两个变量彼此互不影响,其 数量的变化各自独立

第八章 相关与回归分析

第八章 相关与回归分析

相关系数的特点:
相关系数的取值在-1与1之间。 相关系数的取值在之间。 =0时 表明X 没有线性相关关系。 当r=0时,表明X与Y没有线性相关关系。 表明X 当 时,表明X与Y存在一定的线性相关关 系; 表明X 为正相关; 若 表明X与Y 为正相关; 表明X 为负相关。 若 表明X与Y 为负相关。 表明X 完全线性相关; 当 时,表明X与Y完全线性相关; r=1, 完全正相关; 若r=1,称X与Y完全正相关; r=完全负相关。 若r=-1,称X与Y完全负相关
25 20 15 10 5 0 0 2 4 6 8 10 12
11.2 11 10.8 10.6 10.4 10.2 10 0 5 10
相关关系的类型
25
● 从变量相关关系变化的方向 方向看 方向 正相关——变量同方向变化 正相关 负相关——变量反方向变化 负相关 ● 从变量相关的程度看 完全相关 不完全相关 不相关
x
最小二乘法 ˆ ˆ (α 和 β 的计算公式)
根据最小二乘法, 根据最小二乘法,可得求解 和 的公式如下
最小二乘估计的性质 ——高斯 马尔可夫定理 高斯—马尔可夫定理 前提: 在基本假定满足时
最小二乘估计是因变量的线性函数 线性函数 最小二乘估计是无偏估计 无偏估计,即 无偏估计 在所有的线性无偏估计中,回归系数的最小二 乘估计的方差最小 方差最小。 方差最小
结论:
回归系数的最小二乘估计是最佳线性无偏估计 最佳线性无偏估计
四、简单线性回归模型的检验
回归模型的检验包括: 回归模型的检验包括: 理论意义检验: 理论意义检验:主要涉及参数估计值的符号和取 值区间,检验它们与实质性科学的理论以及人们 的实践经验是否相符。 一级检验: 一级检验:又称统计学检验,利用统计学的抽样 理论来检验样本回归方程的可靠性,具体分为拟 合优度检验和显著性检验。 二级检验: 二级检验:又称计量经济学检验,它是对标准线 性回归模型的假设条件是否满足进行检验,包括 自相关检验、异方差检验、多重共线性检验等。

《SPSS数据分析与应用》第8章 逻辑回归分析

《SPSS数据分析与应用》第8章 逻辑回归分析
准确率=TP TN / TP TN FP FN
➢ TPR—在所有真实值为阳性的样本中,被正确地判断为阳性的样本所占的比例。
TPR=TP / TP FN
➢ FPR—在所有真实值为阴性的样本中,被正确地判断为阳性的样本所占的比例。
FPR=FP / FP TN
Part 8.2
逻辑回归分析模型 的实现与解读
定性变量 (3水平)
定量变量
定性变量
取值范围 1代表幸存 0代表死亡 1=男、2=女 [0.42,80]
1代表一等舱, 2代表二等舱, 3代表三等舱
[0, 512.3292]
C = 瑟堡港, Q =昆士敦,S = 南安普顿
定性变量
0代表无家庭成员,1代表成员为1~3人的中 型家庭,2代表成员为4人及以上的大型家庭
2.逻辑回归分析模型
逻辑回归分析模型
在经过Logit变换之后,就可以利用线性回归模型建立因 变量与自变量之间的分析模型,即
经过变换,有
Sigmoid函数 (S型生长曲线)
逻辑回归分析模型
Sigmoid函数
➢ Sigmoid函数,表示概率P和自变量之间 的非线性关系。通过这个函数,可以计 算出因变量取1或者取0的概率。
总计
混淆矩阵
预测值
Y=0(N)
Y=1(P)
TN
FP
FN
TP
总计 TN+FP FN+TP TP+FP+FN+TN
➢ TP:预测为1,预测正确,即实际1; ➢ FP:预测为1,预测错误,即实际0; ➢ FN:预测为0,预测错确,即实际1; ➢ TN:预测为0,预测正确即,实际0。
4.模型评价
➢ 准确率

第8章 相关与回归分析

第8章 相关与回归分析

32
估计标准误差
估计标准误差(standard error of estimate)是 对各观测数据在回归直线周围分散程度的一个度 量值,它是对误差项ε的标准差σ的估计。 估计标准误差Sy可以看作是在排除了X对Y的线性 影响后,Y随机波动大小的一个估计量。
33
从估计标准误差的实际意义看,它反映了用估计 的回归方程预测因变量Y时预测误差的大小。若 各观测数据越靠近回归直线,Sy越小,回归直线 对各观测数据的代表性就越好,根据估计的回归 方程进行预测也就越准确。
当一个变量取一定数值时,另一个变量有确定值 与之相对应,这种关系称为确定性的函数关系。 当一个变量取一定数值时,与之相对应的另一变 量的数值虽然不确定,但它仍按某种规律在一定 的范围内变化,这种关系称为不确定性的相关关 系。
7
变量间的关系: 函数关系
y


ห้องสมุดไป่ตู้





x
是一一对应的确定关系 记为 y = f (x), x 称为自变 量,y 称为因变量 – 某种商品的销售额(y)与 销售量(x)之间的关系可 表示为 y = p x (p 为单 价) – 圆的面积(S)与半径之间 的关系: S = R2
19
复相关系数和偏相关系数
复相关系数反映一个变量Y与其他多个变量X1, X2,…Xk之间的线性相关程度 偏相关系数 反映在X2,…Xk不变的情况下,变量 Y与X1之间的线性相关程度
20
第三节 简单线性回归分析
回归分析的内容
回归分析的特点
相关分析与回归分析的区别与联系
21
相关分析研究变量之间相关的方向和相关的程度, 但是相关分析不能指出变量间相互关系的具体形 式,也无法从一个变量的变化来推测另一个变量 的变化情况。 回归分析则是研究变量之间相互关系的具体形式, 它对具有相关关系的变量之间的数量联系进行测 定,确定一个回归方程,根据这个回归方程可以 从已知量来推测未知量,从而为估算和预测提供 了一个重要的方法。

第8章--回归分析预测法概要

第8章--回归分析预测法概要

其表达F式 S余 为 ( /S回 n /m : m1)
20
❖ 将通过上式计算F的值,与F分布表查到的Fc 临界值比较,从而判断回归方程是否具有显 著性。
❖ ①当 F> Fc (α,m,n-m-1),则回归方程与实际 直线方程拟和的程度好,x和y之间的变化是 符合回归模型;
❖ ②当F ≤ FC(α,m,n-m-1)时,则回归模型与 实际直线方程拟和程度不好,x和y之间的变 化不符合实际直线的变化,预测模型无效。
i1
i1
i1
min (3)
即对(3)求极值,有:
Q
a
2
n i1
(
yi
a
bxi
)
0
Q
b
n
2
i1
( yi
a
bxi )xi
0
(4) (5)
15
由( 4 )得:
n
n
n
y i a bx i 0
i1
i1
i1
y i na b x i
由( 5)得:
n
n
n
x i y i ax i x i bx i 0
❖ ②确定变量之间的相关密切程度,这是相关 分析的主要目的和主要内容。
7
3、建立回归预测模型 ❖ 就是依据变量之间的相关关系,用恰当的数
学表达式表示出来。 4、回归方程模型检验 ❖ 建立回归方程的目的是预测,但方程用于预
测之前需要检验回归方程的拟合程度和回归 参数的显著性,只有通过了有关的检验后, 回归方程才可用于预测。常用的检验方法有 相关系数r检验、F检验、t检验等。
36
二、多元线性回归预测法 ❖ 一般形式:ŷi=a+b1X1+b2X2+……+bnXn ❖ 其中: X1,X2,……,Xn 为自变量, ❖ a, b1, b2, ……, bn为回归方程的参数 ❖ 存在两个自变量条件下的多元线性回归方程

[课件]第八章 直线回归与相关分析PPT

[课件]第八章 直线回归与相关分析PPT
Q SS U 283 176 . 4 106 . 6 y
(2)F检验:
U 176 . 4 F ( n 2 ) ( 5 2 ) 4 . 96 Q 106 . 6
因为 F , 4 . 96 F 10 . 13 0 . 05 ( 1 , 3 ) .05 。说明小白鼠体重和日龄间 所以, p 0 的直线关系不显著。
相关分析(correlation analysis)3
研究“一因一果”,即一个自变量与一个依 变量的回归分析称为一元回归分析;
直线回归分析 曲线回归分析
研究“多因一果”,即多个自变量与一个依 变量的回归分析称为多元回归分析。
多元线性回归分析
多元非线性回归分析
第二节:直线回归
Linear Regression
回归和相关分析结果仅适用于自变量的试验取值 范围。
9
2. 进行直线回归分析时应符合的基本条件 (基本假定) (1)x是没有误差的固定变量;而y是随机 变量,具有随机误差。 (2)x的任一值都对应着一个y的总体,且 呈正态分布。
(3)随机误差是相互独立的,且呈正态分
布。
10
对两个变量间的线性关系的显著性进行检验时, 采用的方法是 F 检验或 t 检验。 直线回归中,只有一个自变量,所以回归平方和 的自由度为1,离回归平方和的自由度为n-2 。 1. 计算回归平方和U和离回归平方和Q:
序号 日龄 x 体重 y 1 6 12 2 9 17 3 12 22 4 15 25 5 18 29
13
(一)求回归方程: (1)由观测值计算6个一级数据
n 5
x 6 9 12 15 18 60 x 6 9 12 15 18 810

第八章 相关分析与回归分析习题答案

第八章 相关分析与回归分析习题答案

第八章 相关分析与回归分析习题参考答案一、名词解释函数关系:函数关系亦称确定性关系,是指变量(现象)之间存在的严格确定的依存关系。

在这种关系中,当一个或几个相互联系的变量取一定的数值时,必定有另一个且只有一个变量有确定的值与之对应。

相关关系:是指变量(现象)之间存在着非严格、不确定的依存关系。

在这种关系中,当一个或几个相互联系的变量取一定的数值时,可以有另一变量的若干数值与之相对应。

这种关系不能用完全确定的函数来表示。

相关分析:相关分析主要是研究两个或者两个以上随机变量之间相互依存关系的方向和密切程度的方法,直线相关用相关系数表示,曲线相关用相关指数表示,多元相关用复相关系数表示。

回归分析:回归分析是研究某一随机变量关于另一个(或多个)非随机变量之间数量关系变动趋势的方法。

其目的在于根据已知非随机变量来估计和预测随机变量的总体均值。

单相关:单相关是指仅涉及两个变量的相关关系。

复相关:复相关是指一个变量对两个或者两个以上其他变量的相关关系。

正相关:正相关是指两个变量的变化方向是一致的,当一个变量的值增加(或减少)时,另一变量的值也随之增加(或减少)。

负相关:负相关是指两个变量的变化方向相反,即当一个变量的值增加(或减少)时,另一个变量的值会随之减少(或增加)。

线性相关:如果相关的两个变量对应值在直角坐标系中的散点图近似呈一条直线,则称为线性相关。

非线性相关:如果相关的两个变量对应值在直角坐标系中的散点图近似呈现出某种曲线形式,则为非线性相关。

相关系数:相关系数是衡量变量之间线性相关密切程度及相关方向的统计分析指标。

取值在-1到1之间。

两个变量之间的简单样本相关系数的计算公式为:()()niix x y y r --∑二、单项选择1.B;2.D;3.D;4.C;5.A;6.D 。

三、判断题(正确的打“√”,错误的打“×”) 1.×; 2.×; 3.√; 4.×; 5.×; 6.×; 7.×; 8.√. 四、简答题1、什么是相关关系?相关关系与函数关系有什么区别?答:相关关系,是指变量(现象)之间存在着非严格、不确定的依存关系。

应用回归分析,第8章课后习题参考答案讲解

应用回归分析,第8章课后习题参考答案讲解

第8章 非线性回归思考与练习参考答案8.1 在非线性回归线性化时,对因变量作变换应注意什么问题?答:在对非线性回归模型线性化时,对因变量作变换时不仅要注意回归函数的形式, 还要注意误差项的形式。

如:(1) 乘性误差项,模型形式为e y AK L αβε=, (2) 加性误差项,模型形式为y AK L αβε=+对乘法误差项模型(1)可通过两边取对数转化成线性模型,(2)不能线性化。

一般总是假定非线性模型误差项的形式就是能够使回归模型线性化的形式,为了方便通常省去误差项,仅考虑回归函数的形式。

8.2为了研究生产率与废料率之间的关系,记录了如表8.15所示的数据,请画出散点图,根据散点图的趋势拟合适当的回归模型。

表8.15生产率x (单位/周) 1000 2000 3000 3500 4000 4500 5000 废品率y (%)5.26.56.88.110.2 10.3 13.0解:先画出散点图如下图:5000.004000.003000.002000.001000.00x12.0010.008.006.00y从散点图大致可以判断出x 和y 之间呈抛物线或指数曲线,由此采用二次方程式和指数函数进行曲线回归。

(1)二次曲线 SPSS 输出结果如下:Model Summ ary.981.962.942.651R R SquareAdjusted R SquareStd. E rror of the EstimateThe independent variable is x.ANOVA42.571221.28650.160.0011.6974.42444.2696Regression Residual TotalSum of Squares dfMean SquareF Sig.The independent variable is x.Coe fficients-.001.001-.449-.891.4234.47E -007.0001.4172.812.0485.843 1.3244.414.012x x ** 2(Constant)B Std. E rror Unstandardized Coefficients BetaStandardizedCoefficientstSig.从上表可以得到回归方程为:72ˆ 5.8430.087 4.4710yx x -=-+⨯ 由x 的系数检验P 值大于0.05,得到x 的系数未通过显著性检验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第8章回归分析第8章回归分析8.1线性回归分析的基本原理8.2图表分析与回归函数分析8.3Excel回归分析工具8.4多元回归分析8.5非线性回归分析本章学习目标u?回归分析的基本思想u?利用Excel图表进行线性回归分析u利用Excel回归分析工作表函数进行线性回归分析u利用Excel回归分析工具进行一元及多元线性回归分析u?非线性回归分析的基本思路8.1线性回归分析的基本原理8.1.1回归分析的概念8.1.2回归分析的主要内容8.1.1回归分析的概念首先要区分两种主要类型的变量:一种变量相当于通常函数关系中的自变量,对这样的变量能够赋予一个需要的值(如室内的温度、施肥量)或者能够取到一个可观测但不能人为控制的值(如室外的温度),这样的变量称为自变量;自变量的变化能引起另一些变量(如水稻亩产量)的变化,这样的变量称为因变量。

由一个或一组非随机变量来估计或预测某一个随机变量的观测值时,所建立的数学模型及所进行的统计分析,称为回归分析。

因此,回归分析是研究随机变量与非随机变量之间的数量关系的一种数学方法。

如果所建立的模型是线性的就称为线性回归分析。

线性回归分析不仅告诉我们怎样建立变量间的数学表达式,即经验公式,而且还利用概率统计知识进行分析讨论,判断出所建立的经验公式的有效性,从而可以进行预测或估计。

8.1.2回归分析的主要内容回归分析的内容包括如何确定因变量与自变量之间的回归模型;如何根据样本观测数据,估计并检验回归模型及未知参数;在众多的自变量中,判断哪些变量对因变量的影响是显著的,哪些变量的影响是不显著的;根据自变量的已知值或给定值来估计和预测因变量的值。

Excel提供了许多回归分析的方法与工具,它们可用于不同的分析目的。

8.2图表分析与回归函数分析8.2.1利用图表进行分析8.2.2Excel中的回归分析工作表函数8.2.3利用工作表函数进行回归分析8.2.1利用图表进行分析例8-1某种合成纤维的强度与其拉伸倍数之间存在一定关系,图8-1所示(“线性回归分析”工作表)是实测12个纤维样品的强度y与相应的拉伸倍数x的数据记录。

试求出它们之间的关系。

(1)打开“线性回归分析”工作表。

(2)在工具栏上选择“图表向导”按钮,单击打开图表向导对话框,如图8-2所示,在“图表类型”列表框中选择“XY散点图”,单击“下一步”按钮进入图表向导步骤2。

(3)在图表向导步骤2对话框的“数据区域”中输入“B2:C13”,选择“系列产生在”为“列”,如图8-3所示,单击“下一步”按钮进入步骤3。

(4)在图表向导步骤3的对话框中,打开“图例”页面,取消“显示图例”,省略标题,如图8-4所示。

(5)单击“完成”按钮,得到XY散点图如图8-5所示。

(6)在散点图中,把鼠标放在任一数据点上,右击,在快捷菜单中选择“添加趋势线”,打开趋势线对话框。

(7)在“添加趋势线”对话框中打开“类型”页面,选择“线性”选项,在“选项”页面中选择“显示公式”和“显示R平方”选项,单击“确定”按钮,得到趋势回归图,如图8-6所示。

8.2.2Excel中的回归分析工作表函数Excel提供的回归分析工作表函数主要有以下几个:(1)截距函数。

(2)斜率函数。

(3)测定系数函数。

(4)估计标准误差函数。

(1)截距函数。

其功能是利用现有的x值与y值计算直线与y轴的截距。

截距为穿过已知的known_x''s和known_y''s数据点的线性回归线与y轴的交点。

当自变量为0时,使用INTERCEPT函数可以决定因变量的值。

例如,当所有的数据点都是在室温或更高的温度下取得的,可以用INTERCEPT函数预测在0°C时金属的电阻。

语法:INTERCEPT(known_y''s,known_x''s)(2)斜率函数。

该函数返回根据known_y''s和known_x''s中的数据点拟合的线性回归直线的斜率。

斜率为直线上任意两点的垂直距离与水平距离的比值,也就是回归直线的变化率。

语法:SLOPE(known_y''s,known_x''s)其中:Known_y''s为数字型因变量数据点数组或单元格区域;Known_x''s为自变量数据点集合。

(3)测定系数函数。

(3)测定系数函数。

该函数返回根据k nown_y''s和known_x''s中数据点计算得出的乘积矩相关系数的平方。

R平方值可以解释为y方差与x方差的比例。

语法:RSQ (known_y''s,known_x''s)回归直线的斜率计算公式如下:(4)估计标准误差函数。

该函数返回通过线性回归法计算每个x的y预测值时所产生的标准误差。

标准误差用来度量根据单个x变量计算出的y预测值的误差量。

语法:STEYX(known_y'' s,known_x''s)其中:Known_y''s为因变量数据点数组或区域,Known_x''s为自变量数据点数组或区域。

预测值y的标准误差计算公式如下:8.2.3利用工作表函数进行回归分析例8-4在某大学一年级新生体检表中随机抽取10张,得到10名大学生的身高(x)和体重(y)的数据,如图8-10(“身高体重”工作表)所示。

用Excel提供的工作表函数进行相关计算。

(1)在单元格A12~A15中分别输入“截距”、“斜率”、“测定系数”、“估计标准误差”。

(2)在单元格B12中输入公式“=INT ERCEPT(C2:C11,B2:B11)”,回车后显示-79.42015。

(3)在单元格B13中输入公式“=SLOPE(C2:C11,B2:B11)”,回车后显示0.8041825。

(4)在单元格B14中输入公式“=RSQ(C2:C11,B2:B11)”,回车后显示0.6817018。

(5)在单元格B15中输入公式“=STEYX(C2:C11,B2:B11)”,回车后显示2.8180738。

计算结果如图8-8所示。

8.3Excel回归分析工具8.3.1回归分析工具的主要内容8.3.2回归分析工具的应用8.3.3回归分析工具的输出解释8.3.1回归分析工具的主要内容回归分析工具是通过对一组观察值使用“最小平方法”进行直线拟合,以分析一个或多个自变量对单个因变量的影响方向与影响程度的方法。

它是Excel中数据分析工具的一个内容。

在“工具”菜单中选择“数据分析”选项,会出现“数据分析”对话框,在分析工具中选择“回归”,单击“确定”按钮就会进入“回归”对话框,如图8-12所示。

在此对话框中主要包括以下内容:Y值输入区域:X 值输入区域:标志:置信度:常数为零:输出区域:新工作表组:新工作簿:残差:标准残差:残差图:线形拟合图:正态概率图:8.3.2回归分析工具的应用例8-5以例8-4资料为例,利用回归分析工具进行回归分析。

(1)打开“身高体重”工作表。

(2)在“工具”菜单中选择“数据分析”选项,在“分析工具”列表中选择“回归”,单击“确定”按钮,打开“回归”对话框。

(3)在“Y值输入区域”中输入“$C$1:$C$11”,在“X值输入区域”中输入“$B$1:$B$11”;选择“标志”,置信度默认;在“输出选项”中选择“输出区域”,在其右边输入“$D$ 1”,如图8-13所示,单击“确定”按钮输出结果,如图8-14所示。

8.3.3回归分析工具的输出解释Excel回归分析工具的输出结果包括3个部分:1.回归统计表2.方差分析表3.回归参数表回归统计表包括以下几部分内容:(1)MultipleR(复相关系数R):(2)RSquare(复测定系数R2):(3)AdjustedRSquare(调整复测定系数R2):(4)标准误差:(5)观测值:8.4多元回归分析例8-6有一个工厂会计部门在估计每月管理费y时,用工人的劳动日数x1与机器的开工台数x2作自变量,现将当年10个月的数据搜集起来,如图8-15(“多元回归分析”工作表)所示,估计y对x1与x2的线性回归方程(α=0.05)。

(1)在“工具”菜单中选择“数据分析”选项,在“分析工具”列表中选择“回归”,单击“确定”按钮,打开“回归”对话框。

(2)在“Y值输入区域”中输入“D1:D11”,在“X值输入区域”中输入“B1:C11”;选择“标志”,置信度默认;在“输出选项”中选择“输出区域”,在其右边输入“A12”,单击“确定”按钮输出结果,如图8-16所示。

8.5 非线性回归分析以最小平方法分析非线性关系资料在数量变化上的规律叫做非线性回归分析。

从非线性回归的角度看,线性回归仅是其中的一个特例。

一个恰当的非线性回归方程的确定不是很容易的,一般要经过变量转换,将非线性问题转化为线性问题解决。

下面讨论几种非线性方程线性化的情况。

1.(1)添加趋势线。

(2)利用回归分析工具。

2.3.返回本节图8-13“回归”对话框图8-14回归分析结果返回本节返回本节返回首页图8-15“多元回归分析”工作表图8-16二元线性回归分析计算结果返回本节返回首页表8-1微量元素超标量与患病人数返回首页返回本节返回本节返回首页图8-1“线性回归分析.xls”工作表图8-2图表向导(步骤1)图8-3图表向导(步骤2)图8-4图表向导(步骤3)图8-5XY散点图图8-6趋势回归直线返回本节图8-7x、y数据图8-8计算截距图8-9计算斜率返回本节图8-10“身高体重”工作表图8-11“身高体重”回归计算结果返回本节返回首页。

相关文档
最新文档