初中数学丨二次函数的动点问题总结例题解析,两个问题一次解决

合集下载

二次函数的动点问题(含答案)

二次函数的动点问题(含答案)

72x =B(0,4)A(6,0)EFxyO 二次函数与四边形一.二次函数与四边形的形状例1.(浙江义乌市) 如图,抛物线223y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2.(1)求A 、B 两点的坐标及直线AC 的函数表达式; (2)P 是线段AC 上的一个动点,过P 点作y 轴的平 行线交抛物线于E 点,求线段PE 长度的最大值;(3)点G 是抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、G 这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由.练习1.(河南省实验区) 23.如图,对称轴为直线72x =的抛物线经过点 A (6,0)和 B (0,4). (1)求抛物线解析式及顶点坐标;(2)设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形.求平行四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;①当平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形?②是否存在点E ,使平行四边形OEAF 为正方形?若存在,求出点E 的坐标;若不存在,请说明理由.练习 2.(四川省德阳市)25.如图,已知与x 轴交于点(10)A ,和(50)B ,的抛物线1l 的顶点为(34)C ,,抛物线2l 与1l 关于x 轴对称,顶点为C '.(1)求抛物线2l 的函数关系式;(2)已知原点O ,定点(04)D ,,2l 上的点P 与1l 上的点P '始终关于x 轴对称,则当点P 运动到何处时,以点D O P P ',,,为顶点的四边形是平行四边形?(3)在2l 上是否存在点M ,使ABM △是以AB 为斜边且一个角为30的直角三角形?若存,求出点M 的坐标;若不存在,说明理由.A5-4- 3-2-1- 1 2 3 455 4 3 2 1 A EBC '1- O 2l 1lx y练习3.(山西卷)如图,已知抛物线1C 与坐标轴的交点依次是(40)A -,,(20)B -,,(08)E ,. (1)求抛物线1C 关于原点对称的抛物线2C 的解析式; (2)设抛物线1C 的顶点为M ,抛物线2C 与x 轴分别交于C D ,两点(点C 在点D 的左侧),顶点为N ,四边形MDNA 的面积为S .若点A ,点D 同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M ,点N 同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A 与点D 重合为止.求出四边形MDNA 的面积S 与运动时间t 之间的关系式,并写出自变量t 的取值范围;(3)当t 为何值时,四边形MDNA 的面积S 有最大值,并求出此最大值;(4)在运动过程中,四边形MDNA 能否形成矩形?若能,求出此时t 的值;若不能,请说明理由.二.二次函数与四边形的面积例1.(资阳市)25.如图10,已知抛物线P :y=ax 2+bx+c(a ≠0)与x 轴交于A 、B 两点(点A 在x 轴的正半轴上),与y 轴交于点C ,矩形DEFG 的一条边DE 在线段AB 上,顶点F 、G 分别在线段BC 、AC 上,抛物线P 上部分点的横坐标对应的纵坐标如下:x … -3 -2 1 2 … y…-52-4-52…(1) 求A 、B 、C 三点的坐标;(2) 若点D 的坐标为(m ,0),矩形DEFG 的面积为S ,求S 与m 的函数关系,并指出m 的取值范围;(3) 当矩形DEFG 的面积S 取最大值时,连接DF 并延长至点M ,使FM=k ·DF ,若点M 不在抛物线P 上,求k 的取值范围.练习1.(辽宁省十二市第26题).如图,平面直角坐标系中有一直角梯形OMNH ,点H 的坐标为(-8,0),点N 的坐标为(-6,-4).(1)画出直角梯形OMNH 绕点O 旋转180°的图形OABC ,并写出顶点A ,B ,C 的坐标(点M 的对应点为A , 点N 的对应点为B , 点H 的对应点为C );(2)求出过A ,B ,C 三点的抛物线的表达式;(3)截取CE =OF =AG =m ,且E ,F ,G 分别在线段CO ,OA ,AB 上,求四边形BEFG 的面积S 与m 之间的函数关系式,并写出自变量m 的取值范围;面积S 是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由;(4)在(3)的情况下,四边形BEFG 是否存在邻边相等的情况,若存在,请直接写出此时m 的值,并指出相等的邻边;若不存在,说明理由.图10练习3.(吉林课改卷)如图,正方形ABCD 的边长为2cm ,在对称中心O 处有一钉子.动点P ,Q 同时从点A 出发,点P 沿A B C →→方向以每秒2cm 的速度运动,到点C 停止,点Q 沿A D →方向以每秒1cm 的速度运动,到点D 停止.P ,Q 两点用一条可伸缩的细橡皮筋联结,设x 秒后橡皮筋扫过的面积为2cm y .(1)当01x ≤≤时,求y 与x 之间的函数关系式; (2)当橡皮筋刚好触及钉子时,求x 值;(3)当12x ≤≤时,求y 与x 之间的函数关系式,并写出橡皮筋从触及钉子到运动停止时POQ ∠的变化范围;(4)当02x ≤≤时,请在给出的直角坐标系中画出y 与x 之间的函数图象.练习4.(四川资阳卷)如图,已知抛物线l 1:y =x 2-4的图象与x 轴相交于A 、C 两点,B 是抛物线l 1上的动点(B 不与A 、C 重合),抛物线l 2与l 1关于x 轴对称,以AC 为对角线的平行四边形ABCD 的第四个顶点为D .(1) 求l 2的解析式;(2) 求证:点D 一定在l 2上;(3) □ABCD 能否为矩形?如果能为矩形,求这些矩形公共部分的面积(若只有一个矩形符合条件,则求此矩形的面积);如果不能为矩形,请说明理由. 注:计算结果不取近似值.三.二次函数与四边形的动态探究例1.(荆门市)28. 如图1,在平面直角坐标系中,有一张矩形纸片OABC ,已知O (0,0),A (4,0),C (0,3),点P 是OA 边上的动点(与点O 、A 不重合).现将△PAB 沿PB 翻折,得到△PDB ;再在OC 边上选取适当的点E ,将△POE 沿PE 翻折,得到△PFE ,并使直线PD 、PF 重合.(1)设P (x ,0),E (0,y ),求y 关于x 的函数关系式,并求y 的最大值;(2)如图2,若翻折后点D 落在BC 边上,求过点P 、B 、E 的抛物线的函数关系式;(3)在(2)的情况下,在该抛物线上是否存在点Q ,使△PEQ 是以PE 为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q 的坐标.B CPO D QA BPCO DQ A y321 O1 2 x例2.已知抛物线y =ax2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB <OC )是方程x 2-10x +16=0的两个根,且抛物线的对称轴是直线x =-2.(1)求A 、B 、C 三点的坐标; (2)求此抛物线的表达式;(3)连接AC 、BC ,若点E 是线段AB 上的一个动点(与点A 、点B 不重合),过点E 作EF ∥AC 交BC 于点F ,连接CE ,设AE 的长为m ,△CEF 的面积为S ,求S 与m 之间的函数关系式,并写出自变量m 的取值范围;(4)在(3)的基础上试说明S 是否存在最大值,若存在,请求出S 的最大值,并求出此时点E 的坐标,判断此时△BCE 的形状;若不存在,请说明理由.例3..(湖南省郴州)如图,矩形ABCD 中,AB =3,BC =4,将矩形ABCD 沿对角线A 平移,平移后的矩形为EFGH (A 、E 、C 、G 始终在同一条直线上),当点E 与C 重时停止移动.平移中EF 与BC 交于点N ,GH 与BC 的延长线交于点M ,EH 与DC 交于点P ,FG 与DC 的延长线交于点Q .设S 表示矩形PCMH 的面积,S '表示矩形NFQC 的面积.(1) S 与S '相等吗?请说明理由.(2)设AE =x ,写出S 和x 之间的函数关系式,并求出x 取何值时S 有最大值,最大值是多少? (3)如图11,连结BE ,当AE 为何值时,ABE ∆是等腰三角形.练习1.如图12, 四边形OABC 为直角梯形,A (4,0),B (3,4),C (0,4). 点M 从O 出发以每秒2个单位长度的速度向A 运动;点N 从B 同时出发,以每秒1个单位长度的速度向C 运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N 作NP 垂直x 轴于点P ,连结AC 交NP 于Q ,连结MQ .(1)点 (填M 或N )能到达终点;(2)求△AQM 的面积S 与运动时间t 的函数关系式,并写出自 变量t 的取值范围,当t 为何值时,S 的值最大;(3)是否存在点M ,使得△AQM 为直角三角形?若存在,求出点M 的坐标,图2 OC A Bxy DPE F 图1 FE PD y xBA C OxN MQ PHGFEDCBA图11QPN M HGFED CBA图10图12yxP QBCNMOA若不存在,说明理由.练习2..(江西省) 25.实验与探究(1)在图1,2,3中,给出平行四边形ABCD 的顶点A B D ,,的坐标(如图所示),写出图1,2,3中的顶点C 的坐标,它们分别是(52),, , ;(2)在图4中,给出平行四边形ABCD 的顶点A B D ,,的坐标(如图所示),求出顶点C 的坐标(C 点坐标用含a b c d e f ,,,,,的代数式表示);归纳与发现(3)通过对图1,2,3,4的观察和顶点C 的坐标的探究,你会发现:无论平行四边形ABCD 处于直角坐标系中哪个位置,当其顶点坐标为()()()()A a b B c d C m n D e f ,,,,,,,(如图4)时,则四个顶点的横坐标a c m e ,,,之间的等量关系为 ;纵坐标b d n f ,,,之间的等量关系为 (不必证明);运用与推广(4)在同一直角坐标系中有抛物线2(53)y x c x c =---和三个点15192222G c c S c c ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,,,,(20)H c ,(其中0c >).问当c 为何值时,该抛物线上存在点P ,使得以G S H P ,,,为顶点的四边形是平行四边形?并求出所有符合条件的P 点坐标.yC()A(40)D ,(12)B ,O x图1yC()A(0)D e ,()B c d ,O x图2yC()A a b , ()D e b ,()B c d ,Ox图3yC()A a b ,()D e f ,()B c d ,Ox图472x =B(0,4)A(6,0)EFxyO答案:一.二次函数与四边形的形状例1.解:(1)令y=0,解得11x =-或23x =∴A (-1,0)B (3,0);将C 点的横坐标x=2代入223y x x =--得y=-3,∴C (2,-3)∴直线AC 的函数解析式是y=-x-1 (2)设P 点的横坐标为x (-1≤x ≤2)则P 、E 的坐标分别为:P (x ,-x-1), E (2(,23)x x x --∵P 点在E 点的上方,PE=22(1)(23)2x x x x x -----=-++ ∴当12x =时,PE 的最大值=94(3)存在4个这样的点F ,分别是1234(1,0),(3,0),(470),(47,0)F F F F -+-, 练习 1.解:(1)由抛物线的对称轴是72x =,可设解析式为27()2y a x k =-+.把A 、B 两点坐标代入上式,得227(6)0,27(0) 4.2a k a k ⎧-+=⎪⎪⎨⎪-+=⎪⎩ 解之,得225,.36a k ==- 故抛物线解析式为22725()326y x =--,顶点为725(,).26-(2)∵点(,)E x y 在抛物线上,位于第四象限,且坐标适合22725()326y x =--,∴y<0,即 -y>0,-y 表示点E 到OA 的距离.∵OA 是OEAF 的对角线, ∴2172264()2522OAES SOA y y ==⨯⨯⋅=-=--+.因为抛物线与x 轴的两个交点是(1,0)的(6,0),所以,自变量x 的 取值范围是1<x <6. ①根据题意,当S = 24时,即274()25242x --+=.化简,得271().24x -=解之,得123, 4.x x == 故所求的点E 有两个,分别为E 1(3,-4),E 2(4,-4). 点E 1(3,-4)满足OE = AE ,所以OEAF 是菱形; 点E 2(4,-4)不满足OE = AE ,所以OEAF 不是菱形. ② 当OA ⊥EF ,且OA = EF 时,OEAF 是正方形,此时点E 的 坐标只能是(3,-3).而坐标为(3,-3)的点不在抛物线上,故不存在这样的点E , 使OEAF 为正方形.5-4- 3- 2- 1- 12 3 4 554321 A EBC '1- O 2l1lxy5-4-3-2-1-12 3D554 32 1 ACEM BC '1-O 2l 1l xy练习2.解:(1)由题意知点C '的坐标为(34)-,.设2l 的函数关系式为2(3)4y a x =--. 又点(10)A ,在抛物线2(3)4y a x =--上,2(13)40a ∴--=,解得1a =.∴抛物线2l 的函数关系式为2(3)4y x =--(或265y x x =-+).(2)P 与P '始终关于x 轴对称, PP '∴与y 轴平行.设点P 的横坐标为m ,则其纵坐标为265m m -+,4OD =,22654m m ∴-+=,即2652m m -+=±.当2652m m -+=时,解得36m =±.当2652m m -+=-时,解得32m =±.∴当点P 运动到(362)-,或(362)+,或(322)--,或(322)+-,时, P P OD ' ∥,以点D O P P ',,,为顶点的四边形是平行四边形.(3)满足条件的点M 不存在.理由如下:若存在满足条件的点M 在2l 上,则90AMB ∠=,30BAM ∠=(或30ABM ∠=),114222BM AB ∴==⨯=.过点M 作ME AB ⊥于点E ,可得30BME BAM ∠=∠=.112122EB BM ∴==⨯=,3EM =,4OE =. ∴点M 的坐标为(43)-,. 但是,当4x =时,246451624533y =-⨯+=-+=-≠-.∴不存在这样的点M 构成满足条件的直角三角形.练习3. [解] (1)点(40)A -,,点(20)B -,,点(08)E ,关于原点的对称点分别为(40)D ,,(20)C ,,(08)F -,. 设抛物线2C 的解析式是2(0)y ax bx c a =++≠,则16404208a b c a b c c ++=⎧⎪++=⎨⎪=-⎩,,.解得168a b c =-⎧⎪=⎨⎪=-⎩,,.所以所求抛物线的解析式是268y x x =-+-.(2)由(1)可计算得点(31)(31)M N --,,,. 过点N 作NH AD ⊥,垂足为H .当运动到时刻t 时,282AD OD t ==-,12NH t =+.根据中心对称的性质OA OD OM ON ==,,所以四边形MDNA 是平行四边形.所以2ADN S S =△.所以,四边形MDNA 的面积2(82)(12)4148S t t t t =-+=-++. 因为运动至点A 与点D 重合为止,据题意可知04t <≤.所以,所求关系式是24148S t t =-++,t 的取值范围是04t <≤. (3)781444S t ⎛⎫=--+ ⎪⎝⎭,(04t <≤). 所以74t =时,S 有最大值814. 提示:也可用顶点坐标公式来求.(4)在运动过程中四边形MDNA 能形成矩形. 由(2)知四边形MDNA 是平行四边形,对角线是AD MN ,,所以当AD MN =时四边形MDNA 是矩形.所以OD ON =.所以2222OD ON OH NH ==+.所以22420t t +-=.解之得126262t t =-=--,(舍). 所以在运动过程中四边形MDNA 可以形成矩形,此时62t =-.[点评]本题以二次函数为背景,结合动态问题、存在性问题、最值问题,是一道较传统的压轴题,能力要求较高。

二次函数动点问题解答方法技巧(含例解答案)(可编辑修改word版)

二次函数动点问题解答方法技巧(含例解答案)(可编辑修改word版)

所以 S 2S△ADN .
所以,四边形 MDNA 的面积 S (8 2t)(1 2t) 4t2 14t 8 . 因为运动至点 A 与点 D 重合为止,据题意可知 0 ≤ t 4 . 所以,所求关系式是 S 4t2 14t 8 , t 的取值范围是 0 ≤ t 4 .
单位的速度沿水平方向分别向右、向左运动;与此同时,
点 M ,点 N 同时以每秒 2 个单位的速度沿坚直方向分别 向下、向上运动,直到点 A 与点 D 重合为止.求出四边 形 MDNA 的面积 S 与运动时间 t 之间的关系式,并写出 自变量 t 的取值范围; (3)当 t 为何值时,四边形 MDNA 的面积 S 有最大值,
函数解题思路方法总结:
⑴ 求二次函数的图象与 x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶 点式; ⑶ 根据图象的位置判断二次函数 ax²+bx+c=0 中 a,b,c 的符号,或由二次函
数中 a,b,c 的符号判断图象的位置,要数形结合; ⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的
二次函数的动态问题(动点)
1.如图,已知抛物线 C1 与坐标轴的交点依次是 A(4,0) , B(2,0) , E(0,8) .
(1)求抛物线 C1 关于原点对称的抛物线 C2 的解析式;
(2)设抛物线 C1 的顶点为 M ,抛物线 C2 与 x 轴分别交
于 C, D 两点(点 C 在点 D 的左侧),顶点为 N ,四边 形 MDNA 的面积为 S .若点 A ,点 D 同时以每秒 1 个
并求出此最大值;
(4)在运动过程中,四边形 MDNA 能否形成矩形?若 能,求出此时 t 的值;若不能,请说明理由.

初三复习二次函数动点问题(含答案)

初三复习二次函数动点问题(含答案)

二次函数的动态问题(动点)1.如图①,正方形ABCD 的顶点A B ,的坐标分别为()()01084,,,,顶点C D ,在第一象限.点P 从点A 出发,沿正方形按逆时针方向匀速运动,同时,点Q 从点()40E ,出发,沿x 轴正方向以相同速度运动.当点P 到达点C 时,P Q ,两点同时停止运动,设运动的时间为t 秒. (1)求正方形ABCD 的边长.(2)当点P 在AB 边上运动时,OPQ △的面积S (平方单位)与时间t (秒)之间的函数图象为抛物线的一部分(如图②所示),求P Q ,两点的运动速度.(3)求(2)中面积S (平方单位)与时间t (秒)的函数关系式及面积S 取最大值时点P 的坐标. (4)若点P Q ,保持(2)中的速度不变,则点P 沿着AB 边运动时,OPQ ∠的大小随着时间t 的增大而增大;沿着BC 边运动时,OPQ ∠的大小随着时间t 的增大而减小.当点P 沿着这两边运动时,使90OPQ =∠的点P 有 个.(抛物线()20y ax bx c a =++≠的顶点坐标是2424b ac b aa ⎛⎫-- ⎪⎝⎭,.[解] (1)作BF y ⊥轴于F .()()01084A B ,,,,86FB FA ∴==,.10AB ∴=.(2)由图②可知,点P 从点A 运动到点B 用了10秒. 又1010101AB =÷=,.P Q ∴,两点的运动速度均为每秒1个单位.(3)方法一:作PG y ⊥轴于G ,则PG BF ∥.图①图②GA AP FA AB ∴=,即610GA t=.35GA t ∴=.3105OG t ∴=-.4OQ t =+,()113410225S OQ OG t t ⎛⎫∴=⨯⨯=+- ⎪⎝⎭.即231920105S t t =-++. 19195323210b a -=-=⎛⎫⨯- ⎪⎝⎭,且190103≤≤, ∴当193t =时,S 有最大值. 此时4763311051555GP t OG t ===-=,,∴点P 的坐标为7631155⎛⎫⎪⎝⎭,.(8分)方法二:当5t =时,1637922OG OQ S OG OQ ====,,. 设所求函数关系式为220S at bt =++.抛物线过点()63102852⎛⎫ ⎪⎝⎭,,,,1001020286325520.2a b a b ++=⎧⎪∴⎨++=⎪⎩,31019.5a b ⎧=-⎪⎪∴⎨⎪=⎪⎩,231920105S t t ∴=-++.19195323210b a -=-=⎛⎫⨯- ⎪⎝⎭,且190103≤≤, ∴当193t =时,S 有最大值. 此时7631155GP OG ==,,∴点P 的坐标为7631155⎛⎫⎪⎝⎭,.(4)2.[点评]本题主要考查函数性质的简单运用和几何知识,是近年来较为流行的试题,解题的关键在于结合题目的要求动中取静,相信解决这种问题不会非常难。

二次函数动点问题解答方法技巧(含例解答案)

二次函数动点问题解答方法技巧(含例解答案)

函数解题思路方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数ax ²+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式ax ²+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:动点问题题型方法归纳总结动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

二、 抛物线上动点5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C .(1) 求抛物线的解析式;(2) 设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.(3) 如图②,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标.注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为顶点时,以C为圆心CM 为半径画弧,与对称轴交点即为所求点P,②M为顶点时,以M为圆心MC为半径画弧,与对称轴交点即为所求点P,③P为顶点时,线段MC的垂直平分线与对称轴交点即为所求点P。

二次函数动点问题解答方法技巧(含例解答案)

二次函数动点问题解答方法技巧(含例解答案)

函数解题思路方法总结:⑴求二次函数的图象与x轴的交点坐标,需转化为一元二次方程;⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶根据图象的位置判断二次函数ax2+bx+c=0中a,b,c的符号,或由二次函数中a,b,c的符号判断图象的位置,要数形结合;⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸与二次函数有关的还有二次三项式,二次三项式ax2+bx+c﹙a≠0﹚本身就是所含字母x的二次函数;下面以a>0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:动点问题题型方法归纳总结动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

二、抛物线上动点5、(湖北十堰市)如图①,已知抛物线32+axy(a≠0)与x轴交于点A(1,=bx+0)和点B (-3,0),与y轴交于点C.(1) 求抛物线的解析式;(2) 设抛物线的对称轴与x轴交于点M ,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.(3) 如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE 面积的最大值,并求此时E点的坐标.注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为顶点时,以C为圆心CM为半径画弧,与对称轴交点即为所求点P,②M为顶点时,以M为圆心MC为半径画弧,与对称轴交点即为所求点P,③P为顶点时,线段MC的垂直平分线与对称轴交点即为所求点P。

二次函数动点问题解答方法技巧(含例解答案)

二次函数动点问题解答方法技巧(含例解答案)

函数解题思路方法总结:⑴ 求二次函数的图象与x 轴的交点坐标.需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数ax ²+bx+c=0中a,b,c 的符号.或由二次函数中a,b,c 的符号判断图象的位置.要数形结合;⑷ 二次函数的图象关于对称轴对称.可利用这一性质.求和已知一点对称的点坐标.或已知与x 轴的一个交点坐标.可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式.二次三项式ax ²+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例.揭示二次函数、二次三项式和一元二次方程之间的内在联系:动点问题题型方法归纳总结动态几何特点----问题背景是特殊图形.考查问题也是特殊图形.所以要把握好一般与特殊的关系;分析过程中.特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点.近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍.解题方法、关键给以点拨。

二、 抛物线上动点5、(湖北十堰市)如图①. 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1.0)和点B (-3.0).与y 轴交于点C .(1) 求抛物线的解析式;(2) 设抛物线的对称轴与x轴交于点M .问在对称轴上是否存在点P.使△CMP为等腰三角形?若存在.请直接写出所有符合条件的点P的坐标;若不存在.请说明理由.(3) 如图②.若点E为第二象限抛物线上一动点.连接BE、CE.求四边形BOCE面积的最大值.并求此时E点的坐标.注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为顶点时.以C为圆心CM为半径画弧.与对称轴交点即为所求点P.②M为顶点时.以M为圆心MC为半径画弧.与对称轴交点即为所求点P.③P为顶点时.线段MC的垂直平分线与对称轴交点即为所求点P。

二次函数动点问题解答方法技巧含例解答案

二次函数动点问题解答方法技巧含例解答案

函数解题思路方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大小值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数ax2+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式ax2+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:动点问题题型方法归纳总结动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性特殊角、特殊图形的性质、图形的特殊位置;动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值;下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨;二、 抛物线上动点5、湖北十堰市如图①, 已知抛物线32++=bx ax y a ≠0与x 轴交于点A 1,0和点B -3,0,与y 轴交于点C . 1 求抛物线的解析式;2 设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.3 如图②,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标. 注意:第2问按等腰三角形顶点位置分类讨论画图再由图形性质求点P 坐标----①C 为顶点时,以C 为圆心CM 为半径画弧,与对称轴交点即为所求点P,②M 为顶点时,以M 为圆心MC 为半径画弧,与对称轴交点即为所求点P,③P 为顶点时,线段MC 的垂直平分线与对称轴交点即为所求点P;第3问方法一,先写出面积函数关系式,再求最大值涉及二次函数最值; 方法二,先求与BC 平行且与抛物线相切点的坐标涉及简单二元二次方程组,再求面积;共同点:⑤探究存在性问题时,先画出图形,再根据图形性质探究答案;二次函数的动态问题动点1.如图,已知抛物线1C 与坐标轴的交点依次是(40)A -,,(20)B -,,(08)E ,.1求抛物线1C 关于原点对称的抛物线2C 的解析式; 2设抛物线1C 的顶点为M ,抛物线2C 与x 轴分别交于C D ,两点点C 在点D 的左侧,顶点为N ,四边形MDNA 的面积为S .若点A ,点D 同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M ,点N 同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A 与点D 重合为止.求出四边形MDNA 的面积S 与运动时间t 之间的关系式,并写出自变量t 的取值范围; 3当t 为何值时,四边形MDNA 的面积S 有最大值,并求出此最大值;4在运动过程中,四边形MDNA 能否形成矩形若能,求出此时t 的值;若不能,请说明理由.解 1点(40)A -,,点(20)B -,,点(08)E ,关于原点的对称点分别为(40)D ,,(20)C ,,(08)F -,. 设抛物线2C 的解析式是2(0)y ax bx c a =++≠,则16404208a b c a b c c ++=⎧⎪++=⎨⎪=-⎩,,. 考 点 ①菱形性质 ②特殊角三角函数 ③求直线、抛物线解析式 ④相似三角形 ⑤不等式 ①求直线解析式 ②四边形面积的表示③动三角形面积函数④矩形性质 ①求抛物线顶点坐标②探究平行四边形③探究动三角形面积是定值④探究等腰三角形存在性特 点①菱形是含60°的特殊菱形; △AOB 是底角为30°的等腰三角形;②一个动点速度是参数字母; ③探究相似三角形时,按对应角不同分类讨论;先画图,再探究; ④通过相似三角形过度,转化相似比得出方程;⑤利用a 、t 范围,运用不等式求出a 、t 的值;①观察图形构造特征适当割补表示面积②动点按到拐点时间分段分类③画出矩形必备条件的图形探究其存在性①直角梯形是特殊的一底角是45°②点动带动线动③线动中的特殊性两个交点D 、E 是定点;动线段PF 长度是定值,PF=OA④通过相似三角形过度,转化相似比得出方程;⑤探究等腰三角形时,先画图,再探究按边相等分类讨论①特殊四边形为背景; ②点动带线动得出动三角形; ③探究动三角形问题相似、等腰三角形、面积函数关系式; ④求直线、抛物线解析式;解得168a b c =-⎧⎪=⎨⎪=-⎩,,.所以所求抛物线的解析式是268y x x =-+-. 2由1可计算得点(31)(31)M N --,,,.过点N 作NH AD ⊥,垂足为H .当运动到时刻t 时,282AD OD t ==-,12NH t =+. 根据中心对称的性质OA OD OM ON ==,,所以四边形MDNA 是平行四边形. 所以2ADN S S =△.所以,四边形MDNA 的面积2(82)(12)4148S t t t t =-+=-++. 因为运动至点A 与点D 重合为止,据题意可知04t <≤.所以,所求关系式是24148S t t =-++,t 的取值范围是04t <≤. 3781444S t ⎛⎫=--+ ⎪⎝⎭,04t <≤. 所以74t =时,S 有最大值814. 提示:也可用顶点坐标公式来求.4在运动过程中四边形MDNA 能形成矩形.由2知四边形MDNA 是平行四边形,对角线是AD MN ,,所以当AD MN =时四边形MDNA 是矩形. 所以OD ON =.所以2222OD ON OH NH ==+. 所以22420t t +-=.解之得1222t t ==,舍. 所以在运动过程中四边形MDNA 可以形成矩形,此时2t =.点评本题以二次函数为背景,结合动态问题、存在性问题、最值问题,是一道较传统的压轴题,能力要求较高; 2. 06福建龙岩卷如图,已知抛物线234y x bx c =-++与坐标轴交于A B C ,,三点,点A 的横坐标为1-,过点(03)C ,的直线334y x t=-+与x 轴交于点Q ,点P 是线段BC 上的一个动点,PH OB ⊥于点H .若5PB t =,且01t <<.1确定b c ,的值:__________b c ==,;2写出点B Q P ,,的坐标其中Q P ,用含t 的式子表示:(______)(______)(______)B Q P ,,,,,;3依点P 的变化,是否存在t 的值,使PQB △为等腰三角形若存在,求出所有t 的值;若不存在,说明理由. 解 194b =2(40)B ,3存在t 的值,有以下三种情况 ①当PQ PB =时PH OB ⊥,则GH HB =②当PB QB =时 得445t t -= ③当PQ QB =时,如图解法一:过Q 作QD BP ⊥,又PQ QB = 则522BP BD t == 又BDQ BOC △∽△ 解法二:作Rt OBC △斜边中线OE 则522BC OE BE BE ===,, 此时OEB PQB △∽△解法三:在Rt PHQ △中有22QH PH+32057t t ∴==,舍去 又01t <<∴当13t =或49或3257时,PQB △为等腰三角形.解法四: 数学往往有两个思考方向:代数和几何,有时可以独立思考,有时需要综合运用; 代数讨论:计算出△PQB 三边长度,均用t 表示,再讨论分析Rt △PHQ 中用勾股定理计算PQ 长度,而PB 、BQ 长度都可以直接直接用t 表示,进行分组讨论即可计算;点评此题综合性较强,涉及函数、相似性等代数、几何知识,1、2小题不难,第3小题是比较常规的关于等腰三角形的分类讨论,需要注意的是在进行讨论并且得出结论后应当检验,在本题中若求出的t 值与题目中的01t <<矛盾,应舍去3.如图1,已知直线12y x =-与抛物线2164y x =-+交于AB ,两点. 1求AB ,两点的坐标; 2求线段AB 的垂直平分线的解析式;3如图2,取与线段AB 等长的一根橡皮筋,端点分别固定在AB ,两处.用铅笔拉着这根橡皮筋使笔尖P 在直线AB 上方的抛物线上移动,动点P 将与AB ,构成无数个三角形,这些三角形中是否存在一个面积最大的三角形如果存在,求出最大面积,并指出此时P 点的坐标;如果不存在,请简要说明理由.解 1解:依题意得y y ⎧=⎪⎪⎨⎪=⎪⎩2=-=2作AB 的垂直平分线交x 轴,y 轴于C D ,两点,交AB 于M 如图1 由1可知:3525OA OB == 过B 作BE x ⊥轴,E 为垂足 由BEO OCM △∽△,得:54OC OM OC OB OE =∴=,, 同理:55500242OD C D ⎛⎫⎛⎫=∴- ⎪ ⎪⎝⎭⎝⎭,,,,设CD 的解析式为(0)y kx b k =+≠AB ∴的垂直平分线的解析式为:522y x =-.3若存在点P 使APB △的面积最大,则点P 在与直线AB 平行且和抛物线只有一个交点的直线12y x m =-+上,并设该直线与x 轴,y 轴交于G H ,两点如图2.抛物线与直线只有一个交点,2114(6)024m ⎛⎫∴--⨯-= ⎪⎝⎭,在直线12524GH y x =-+:中, 设O 到GH 的距离为d ,P ∴到AB 的距离等于O 到GH 的距离d .另解:过P 做PC ∥y 轴,PC 交AB 于C,当PC 最大时△PBA 在AB 边上的高h 最大h 与PC 夹角固定,则S △PBA 最大 → 问题转化为求PC 最大值,设Px,,Cx,,从而可以表示PC 长度,进行极值求取; 最后,以PC 为底边,分别计算S △PBC 和S △PAC 即可;点评这是一道涉及二次函数、方程、几何知识的综合压轴题,有一定的能力要求,第3小题是一个最值问题,解此类题时需数形结合方可较轻松的解决问题;4.如图①,正方形ABCD 的顶点A B ,的坐标分别为()()01084,,,,顶点C D ,在第一象限.点P 从点A 出发,沿正方形按逆时针方向匀速运动,同时,点Q 从点()40E ,出发,沿x 轴正方向以相同速度运动.当点P 到达点C 时,P Q ,两点同时停止运动,设运动的时间为t 秒. 1求正方形ABCD 的边长.2当点P 在AB 边上运动时,OPQ △的面积S 平方单位与时间t 秒之间的函数图象为抛物线的一部分如图②所示,求P Q ,两点的运动速度.3求2中面积S 平方单位与时间t 秒的函数关系式及面积S 取最大值时点P 的坐标.4若点P Q ,保持2中的速度不变,则点P 沿着AB 边运动时,OPQ ∠的大小随着时间t 的增大而增大;沿着BC 边运动时,OPQ ∠的大小随着时间t 的增大而减小.当点P 沿着这两边运动时,使90OPQ =∠的点P 有 个.P A 图2 HGB图1 DM AC B第26题E抛物线()20y ax bx c a =++≠的顶点坐标是2424b ac b a a ⎛⎫-- ⎪⎝⎭,.解 1作BF y ⊥()(010A B ,,8FB FA ∴==,10AB ∴=.2由图②可知,点10秒.又1010AB =,P Q ∴,两点的运动速度均为每秒1个单位.3方法一:作PG y ⊥轴于G ,则PG BF ∥.GA AP FA AB ∴=,即610GA t=.35GA t ∴=.3105OG t ∴=-.4OQ t =+, ()113410225S OQ OG t t ⎛⎫∴=⨯⨯=+- ⎪⎝⎭. 即231920105S t t =-++. 19195323210b a -=-=⎛⎫⨯- ⎪⎝⎭,且190103≤≤, ∴当193t =时,S 有最大值. 此时4763311051555GP t OG t ===-=,,∴点P 的坐标为7631155⎛⎫⎪⎝⎭,.8分方法二:当5t =时,1637922OG OQ S OG OQ ====,,. 设所求函数关系式为220S at bt =++.抛物线过点()63102852⎛⎫ ⎪⎝⎭,,,,图①图②231920105S t t ∴=-++. 19195323210b a -=-=⎛⎫⨯- ⎪⎝⎭,且190103≤≤, ∴当193t =时,S 有最大值. 此时7631155GP OG ==,,∴点P 的坐标为7631155⎛⎫⎪⎝⎭,.42.点评本题主要考查函数性质的简单运用和几何知识,是近年来较为流行的试题,解题的关键在于结合题目的要求动中取静,相信解决这种问题不会非常难;.5. 如图①,Rt ABC △中,90B ∠=,30CAB∠=.它的顶点A 的坐标为(100),,顶点B 的坐标为(5,10AB =,点P 从点A 出发,沿A B C →→的方向匀速运动,同时点Q 从点(02)D ,出发,沿y 轴正方向以相同速度运动,当点P 到达点C 时,两点同时停止运动,设运动的时间为t 秒.1求BAO ∠的度数.2当点P 在AB 上运动时,OPQ △的面积S 平方单位与时间t 秒之间的函数图象为抛物线的一部分,如图②,求点P 的运动速度.3求2中面积S 与时间t 之间的函数关系式及面积S 取最大值时点P 的坐标.4如果点P Q ,保持2中的速度不变,那么点P 沿AB 边运动时,OPQ ∠的大小随着时间t 的增大而增大;沿着BC 边运动时,OPQ ∠的大小随着时间t 的增大而减小,当点P 沿这两边运动时,使90OPQ ∠=的点P 有几个请说明理由.解: 160BAO=∠.2点P 的运动速度为2个单位/秒. 3(10)P t -05t ≤≤2912124t ⎛⎫=--+⎪⎝⎭. 第29题图①x t 第29题图②∴当92t =时,S 有最大值为1214,此时112P ⎛ ⎝⎭.4当点P 沿这两边运动时,90OPQ =∠的点P 有2个. ①当点P 与点A 重合时,90OPQ <∠,当点P 运动到与点B 重合时,OQ 的长是12单位长度, 作90OPM =∠交y 轴于点M ,作PH y ⊥轴于点H ,由OPH OPM △∽△得:11.53OM ==, 所以OQ OM >,从而90OPQ >∠.所以当点P 在AB 边上运动时,90OPQ =∠的点P 有1个.②同理当点P 在BC 边上运动时,可算得1217.8OQ =+=. 而构成直角时交y轴于03⎛⎫ ⎪ ⎪⎝⎭,,20.217.83=>, 所以90OCQ <∠,从而90OPQ =∠的点P 也有1个. 所以当点P 沿这两边运动时,90OPQ =∠的点P 有2个. 6. 本题满分14分如图12,直线434+-=x y 与x 轴交于点A ,与y 轴交于点C ,已知二次函数的图象经过点A 、C 和点()0,1-B .1求该二次函数的关系式;2设该二次函数的图象的顶点为M ,求四边形AOCM 的面积; 3有两动点D 、E 同时从点O 出发,其中点D 以每秒23个单位长度的速度沿折线OAC 按O →A →C 的路线运动,点E 以每秒4个单位长度的速度沿折线OCA 按O →C →A 的路线运动,当D 、E 两点相遇时,它们都停止运动.设D 、E 同时从点O 出发t 秒时,ODE ∆的面积为S .①请问D 、E 两点在运动过程中,是否存在DE ∥OC ,若存在,请求出此时t 的值;若不存在,请说明理由; ②请求出S 关于t 的函数关系式,并写出自变量t 的取值范围;③设0S 是②中函数S 的最大值,那么0S = .解:1令0=x ,则4=y ;令0=y 则3=x .∴()30A ,.()04C ,第29题图①∵二次函数的图象过点()04C ,, ∴可设二次函数的关系式为又∵该函数图象过点()30A ,.()10B -,∴093404a b a b =++⎧⎨=-+⎩,.解之,得34-=a ,38=b . ∴所求二次函数的关系式为438342++-=x x y 2∵438342++-=x x y =()3161342+--x∴顶点M 的坐标为1613⎛⎫ ⎪⎝⎭, 过点M 作MF x ⊥轴于F∴AFM AOCM FOCM S S S =+△四边形梯形 =()1013164213161321=⨯⎪⎭⎫⎝⎛+⨯+⨯-⨯ ∴四边形AOCM 的面积为10 3①不存在DE ∥OC∵若DE ∥OC ,则点D ,E 应分别在线段OA ,CA 上,此时12t <<,在Rt AOC △中,5AC =. 设点E 的坐标为()11x y ,∴54431-=t x ,∴512121-=t x ∵DE OC ∥, ∴t t 2351212=- ∴38=t∵38=t >2,不满足12t <<.∴不存在DE OC ∥.②根据题意得D ,E 两点相遇的时间为1124423543=+++秒 现分情况讨论如下: ⅰ当01t <≤时,2134322S t t t =⨯=; ⅱ当12t <≤时,设点E 的坐标为()22x y ,∴()544542--=t y ,∴516362ty -=∴t t t t S 5275125163623212+-=-⨯⨯=ⅲ当2 <t <1124时,设点E 的坐标为()33x y ,,类似ⅱ可得16363ty -=设点D 的坐标为()44,y x∴532344-=t y , ∴51264-=t y∴AOE AOD S S S =-△△=572533+-t ③802430=S7.关于x 的二次函数22(4)22y x k x k =-+-+-以y 轴为对称轴,且与y 轴的交点在x 轴上方. 1求此抛物线的解析式,并在下面的直角坐标系中画出函数的草图;2设A 是y 轴右侧抛物线上的一个动点,过点A 作AB 垂直于x 轴于点B ,再过点A 作x 轴的平行线交抛物线于点D ,过点D 作DC 垂直于x 轴于点C ,得到矩形ABCD .设矩形ABCD 的周长为l ,点A 的横坐标为x ,试求l 关于x 的函数关系式;3当点A 在y 轴右侧的抛物线上运动时,矩形ABCD 能否成为正方形.若能,请求出此时正方形的周长;若不能,请说明理由.参考资料:抛物线2(0)y ax bx c a =++≠的顶点坐标是2424b ac b a a ⎛⎫-- ⎪⎝⎭,,对称轴是直线2bx a =-. 解:1据题意得:240k -=,2k ∴=±.当2k =时,2220k -=>. 当2k =-时,2260k -=-<.又抛物线与y 轴的交点在x 轴上方,2k ∴=.∴抛物线的解析式为:22y x =-+.函数的草图如图所示.只要与坐标轴的三个交点的位置及图象大致形状正确即可2解:令220x -+=,得x =不0x <<,112A D x =,2112A B x =-+,211112()244l A B A D x x ∴=+=-++.当x >,222A D x =,第26题2222(2)2A B x x =--+=-. 222222()244l A D A B x x ∴=+=+-.l ∴关于x 的函数关系是:当0x <<,2244l x x =-++;当x >,2244l x x =+-.3解法一:当0x <<,令1111A B A D =,得2220x x +-=.解得1x =-,或1x =-+将1x =-+2244l x x =-++,得8l =.当x >,令2222A B A D =,得2220x x --=.解得1x =,或1x =+将1x =+2244l x x =+-,得8l =.综上,矩形ABCD 能成为正方形,且当1x =时正方形的周长为8;当1x =时,正方形的周长为8.解法二:当0x <<,同“解法一”可得1x =-+.∴正方形的周长11488l A D x ===.当x >,同“解法一”可得1x =+∴正方形的周长22488l A D x ===.综上,矩形ABCD 能成为正方形,且当1x =时正方形的周长为8;当1x =时,正方形的周长为8.解法三:点A 在y 轴右侧的抛物线上,0x ∴>,且点A 的坐标为2(2)x x -+,. 令AB AD =,则222x x -+=.∴222x x -+=,①或222x x-+=-②由①解得13x =--舍,或13x =-+; 由②解得13x =-舍,或13x =+. 又8l x =,∴当13x =-+时838l =-;当13x =+时838l =+.综上,矩形ABCD 能成为正方形,且当31x =-时正方形的周长为838-;当31x =+时,正方形的周长为838+.8.已知抛物线y =ax 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长OB <OC 是方程x 2-10x +16=0的两个根,且抛物线的对称轴是直线x =-2.1求A 、B 、C 三点的坐标; 2求此抛物线的表达式;3连接AC 、BC ,若点E 是线段AB 上的一个动点与点A 、点B 不重合,过点E 作EF ∥AC 交BC 于点F ,连接CE ,设AE 的长为m ,△CEF 的面积为S ,求S 与m 之间的函数关系式,并写出自变量m 的取值范围;4在3的基础上试说明S 是否存在最大值,若存在,请求出S 的最大值,并求出此时点E 的坐标,判断此时△BCE 的形状;若不存在,请说明理由.解:1解方程x 2-10x +16=0得x 1=2,x 2=8∵点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,且OB <OC ∴点B 的坐标为2,0,点C 的坐标为0,8又∵抛物线y =ax 2+bx +c 的对称轴是直线x =-2 ∴由抛物线的对称性可得点A 的坐标为-6,0 2∵点C 0,8在抛物线y =ax 2+bx +c 的图象上 ∴c =8,将A -6,0、B 2,0代入表达式,得第26题图错误! 解得错误!∴所求抛物线的表达式为y =-错误!x 2-错误!x +8 3依题意,AE =m ,则BE =8-m , ∵OA =6,OC =8,∴AC =10 ∵EF ∥AC ∴△BEF ∽△BAC ∴错误!=错误! 即错误!=错误! ∴EF =错误!过点F 作FG ⊥AB ,垂足为G ,则sin ∠FEG =sin ∠CAB =错误! ∴错误!=错误! ∴FG =错误!·错误!=8-m ∴S =S △BCE -S △BFE =错误!8-m ×8-错误!8-m 8-m =错误!8-m 8-8+m =错误!8-mm =-错误!m 2+4m 自变量m 的取值范围是0<m <84存在.理由:∵S =-错误!m 2+4m =-错误!m -42+8 且-错误!<0, ∴当m =4时,S 有最大值,S 最大值=8 ∵m =4,∴点E 的坐标为-2,0 ∴△BCE 为等腰三角形.9.14分如图:抛物线经过A-3,0、B0,4、C4,0三点. 1 求抛物线的解析式.2已知AD = ABD 在线段AC 上,有一动点P 从点A 沿线段AC 以每秒1个单位长度的速度移动;同时另一个动点Q 以某一速度从点B 沿线段BC 移动,经过t 秒的移动,线段PQ 被BD 垂直平分,求t 的值;3在2的情况下,抛物线的对称轴上是否存在一点M,使MQ+MC 的值最小若存在,请求出点M 的坐标;若不存在,请说明理由;注:抛物线2y ax bx c =++的对称轴为2b x a=-1解法一:设抛物线的解析式为y = a x +3 x - 4因为B0,4在抛物线上,所以4 = a 0 + 3 0 - 4 解得a= -1/3 所以抛物线解析式为2111(3)(4)4333y x x x x =-+-=-++ 解法二:设抛物线的解析式为2(0)y ax bx c a =++≠,第26题图批卷教师用图依题意得:c=4且934016440a b a b -+=⎧⎨++=⎩ 解得1313a b ⎧=-⎪⎪⎨⎪=⎪⎩所以 所求的抛物线的解析式为211433y x x =-++ 2连接DQ,在Rt △AOB 中,5AB ===所以AD=AB= 5,AC=AD+CD=3 + 4 = 7,CD = AC - AD =7 – 5 = 2因为BD 垂直平分PQ,所以PD=QD,PQ ⊥BD,所以∠PDB=∠QDB 因为AD=AB,所以∠ABD=∠ADB,∠ABD=∠QDB,所以DQ ∥AB 所以∠CQD=∠CBA;∠CDQ=∠CAB,所以△CDQ ∽ △CABDQ CD AB CA = 即210,577DQ DQ ==所以AP=AD – DP = AD – DQ=5 –107=257 ,2525177t =÷=所以t 的值是2573答对称轴上存在一点M,使MQ+MC 的值最小理由:因为抛物线的对称轴为122b x a =-= 所以A- 3,0,C4,0两点关于直线12x =对称连接AQ 交直线12x =于点M,则MQ+MC 的值最小过点Q 作QE ⊥x 轴,于E,所以∠QED=∠BOA=900 DQ ∥AB,∠ BAO=∠QDE, △DQE ∽△ABOQE DQ DEBO AB AO == 即 107453QE DE ==所以QE=87,DE=67,所以OE = OD + DE=2+67=207,所以Q 207,87设直线AQ 的解析式为(0)y kx m k =+≠则2087730k m k m ⎧+=⎪⎨⎪-+=⎩ 由此得 8412441k m ⎧=⎪⎪⎨⎪=⎪⎩ 所以直线AQ 的解析式为8244141y x =+联立128244141x y x ⎧=⎪⎪⎨⎪=+⎪⎩由此得128244141x y x ⎧=⎪⎪⎨⎪=+⎪⎩ 所以M 128(,)241则:在对称轴上存在点M 128(,)241,使MQ+MC 的值最小; 10. 如图9,在平面直角坐标系中,二次函数)0(2>++=a c bx ax y 的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为3,0,OB =OC ,tan ∠ACO =31. 1求这个二次函数的表达式.2经过C 、D 两点的直线,与x 轴交于点E,在该抛物线上是否存在这样的点F,使以点A 、C 、E 、F 为顶点的四边形为平行四边形若存在,请求出点F 的坐标;若不存在,请说明理由.3若平行于x 轴的直线与该抛物线交于M 、N 两点,且以MN 为直径的圆与x 轴相切,求该圆半径的长度.4如图10,若点G2,y 是该抛物线上一点,点P 是直线AG 下方的抛物线上一动点,当点P 运动到什么位置时,△APG 的面积最大求出此时P 点的坐标和△APG 的最大面积. 1方法一:由已知得:C0,-3,A -1,0 …1分将C 点的坐标代入得:1=a ……………………3分 所以这个二次函数的表达式为:322--=x x y ……………………3分 注:表达式的最终结果用三种形式中的任一种都不扣分2方法一:存在,F 点的坐标为2,-3 ……………………4分 理由:易得D1,-4,所以直线CD 的解析式为:3--=x y∴E 点的坐标为-3,0 ……………………4分 由A 、C 、E 、F 四点的坐标得:AE =CF =2,AE ∥CF ∴以A 、C 、E 、F 为顶点的四边形为平行四边形∴存在点F,坐标为2,-3 ……………………5分 方法二:易得D1,-4,所以直线CD 的解析式为:3--=x y∴E 点的坐标为-3,0 ………………………4分 ∵以A 、C 、E 、F 为顶点的四边形为平行四边形 ∴F 点的坐标为2,-3或―2,―3或-4,3 代入抛物线的表达式检验,只有2,-3符合∴存在点F,坐标为2,-3 ………………………5分 3如图,①当直线MN 在x 轴上方时,设圆的半径为RR>0,则NR+1,R, 代入抛物线的表达式,解得2171+=R …………6分②当直线MN 在x 轴下方时,设圆的半径为rr>0, 则Nr+1,-r,代入抛物线的表达式,解得2171+-=r ………7分∴圆的半径为2171+或2171+-. ……………74过点P 作y 轴的平行线与AG 交于点Q,易得G2,-3,直线AG 为1--=x y .……………8分 设P x ,322--x x ,则Q x ,-x -1,PQ 22++-=x x .3)2(212⨯++-=+=∆∆∆x x S S S GPQ APQ APG ……………………9分 当21=x 时,△APG 的面积最大 此时P 点的坐标为⎪⎭⎫ ⎝⎛-415,21,827的最大值为APG S ∆. ……………………10分 11.本小题12分解:1解方程x 2-10x +16=0得x 1=2,x 2=8∵点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,且OB <OC ∴点B 的坐标为2,0,点C 的坐标为0,8又∵抛物线y =ax 2+bx +c 的对称轴是直线x =-2 ∴由抛物线的对称性可得点A 的坐标为-6,0 ∴A 、B 、C 三点的坐标分别是A -6,0、B2,0、C0,8 2∵点C 0,8在抛物线y =ax 2+bx +c 的图象上 ∴c =8,将A -6,0、B 2,0代入表达式y =ax 2+bx +8,得 错误! 解得错误!∴所求抛物线的表达式为y =-错误!x 2-错误!x +8 3∵AB =8,OC =8∴S △ABC =错误!×8×8=32 4依题意,AE =m ,则BE =8-m , ∵OA =6,OC =8, ∴AC =10 ∵EF ∥AC ∴△BEF ∽△BAC∴错误!=错误! 即错误!=错误! ∴EF =错误! 过点F 作FG ⊥AB ,垂足为G ,则sin ∠FEG =sin ∠CAB =错误! ∴错误!=错误! ∴FG =错误!·错误!=8-m ∴S =S △BCE -S △BFE =错误!8-m ×8-错误!8-m 8-m=错误!8-m 8-8+m =错误!8-mm =-错误!m 2+4m 自变量m 的取值范围是0<m <85存在. 理由:∵S =-错误!m 2+4m =-错误!m -42+8 且-错误!<0, ∴当m =4时,S 有最大值,S 最大值=8 ∵m =4,∴点E 的坐标为-2,0 ∴△BCE 为等腰三角形. 12.12分已知:如图14,抛物线2334y x =-+与x 轴交于点A ,点B ,与直线34y x b =-+相交于点B ,点C ,直线34y x b =-+与y 轴交于点E .1写出直线BC 的解析式. 2求ABC △的面积.3若点M 在线段AB 上以每秒1个单位长度的速度从A 向B 运动不与A B ,重合,同时,点N 在射线BC 上以每秒2个单位长度的速度从B 向C 运动.设运动时间为t 秒,请写出MNB △的面积S 与t 的函数关系式,并求出点M 运动多少时间时,MNB △的面积最大,最大面积是多少解:1在2334y x =-+中,令0y = 12x ∴=,22x =-(20)A ∴-,,(20)B ,··········································· 1分 又点B 在34y x b =-+上 BC ∴的解析式为3342y x =-+ ···········································2由23343342y x y x ⎧=-+⎪⎪⎨⎪=-+⎪⎩,得11194x y =-⎧⎪⎨=⎪⎩2220x y =⎧⎨=⎩ ···················································· 4分 914C ⎛⎫∴- ⎪⎝⎭,,(20)B ,4AB ∴=,94CD =··················································································· 5分 1994242ABC S ∴=⨯⨯=△ ············································································ 6分 3过点N 作NP MB ⊥于点PBNP BEO ∴△∽△ ·················································································· 7分 BN NPBE EO∴=··························································································· 8分 由直线3342y x =-+可得:302E ⎛⎫ ⎪⎝⎭, ∴在BEO △中,2BO =,32EO =,则52BE =25322t NP∴=,65NP t ∴= ············································································· 9分 2312(04)55S t t t =-+<< ········································································ 10分 2312(2)55S t =--+ ················································································ 11分 此抛物线开口向下,∴当2t =时,125S =最大∴当点M 运动2秒时,MNB △的面积达到最大,最大为125. ···························· 12分。

二次函数动点问题解答方法技巧(含例解答案)

二次函数动点问题解答方法技巧(含例解答案)

二次函数动点问题解答方法技巧(含例解答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN函数解题思路方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数ax2+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式ax2+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:动点问题题型方法归纳总结动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

二、 抛物线上动点5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;(2) 设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.(3) 如图②,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标.注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为顶点时,以C为圆心CM为半径画弧,与对称轴交点即为所求点P,②M为顶点时,以M为圆心MC为半径画弧,与对称轴交点即为所求点P,③P为顶点时,线段MC的垂直平分线与对称轴交点即为所求点P。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学丨二次函数的动点问题总结例题解析,两个问题一次
解决
动点问题一直是初中热点,近几年往往考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

今天老师针对初中数学的二次函数及动点问题整理了这篇文章,并通过中考真题的详细讲解让同学们掌握所有知识点。

内容较长,由于篇幅限制,上传不完整,老师已整理好word打印版,需要的同学或家长可以在文末免费获取。

也可以关注后,发送私信“学习”来免费领取。

动点问题题型方法归纳总结
动态几何特点——问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。


共同点:
1.特殊四边形为背景
2.点动带线动得出动三角形;
3.探究动三角形问题(相似、等腰三角形、面积函数关系式);
4.求直线、抛物线解析式;
5.探究存在性问题时,先画出图形,再根据图形性质探究答案。

解法四:数学往往有两个思考方向:代数和几何,有时可以独立思考,有时需要综合运用。

代数讨论:计算出△PQB三边长度,均用 t 表示,在讨论分析R t
△PHQ中用勾股定理计算PQ长度,而PB、BQ长度都可以直接用 t 表示,进行分组讨论即可计算。

点评:此题综合性较强,涉及函数、相似性等代数、几何知识,1,2小题不难,第3小题是比较常规的关于等腰三角形的分类讨论,需要注意的事在进行讨论并且得出结论后应当检验,在本题中若求出的 t 值与题目中的0<t<1矛盾,应舍去
点评:这是一道涉及二次函数、方程、几何知识的综合压轴题,有一定的能力要求,第3小题是一个最值问题,解此类题时需数形结合方可较轻松的解决问题。

由于文章篇幅限制,完整word版老师已整理好,内容免费获取方式如下:
关注后,发送私信“学习”即可免费获取。

除以上内容,老师还整理了关于初中数学各模块题型的精讲,上面展示的题型库+配套练习,课堂中关于如何学好数学的视频课,希望你们认真领会并按照课程中所讲坚持下去,必见成效。

相关文档
最新文档