(人教版)初中数学:《实数》教学案
七年级数学下册(人教版)6.3.1实数的相关概念及分类(第一课时)优秀教学案例

五、案例亮点
1.生活情境的创设:通过购物找零的实际例子,让学生感受到实数的实际意义,激发学生的学习兴趣,提高学生对实数的理解和运用能力。
2.问题导向的设计:通过设计具有启发性和针对性的问题,引导学生进行思考和探究,激发学生的思维活力,培养学生的解决问题的能力。
4.运用实际例子,引导学生将实数知识应用到生活中,培养学生的实践能力和创新意识。
(三)情感态度与价值观
1.培养学生对数学的兴趣和热情,使学生感受到数学的趣味性和魅力,激发学生学习数学的内在动力。
2.培养学生的团队合作意识,使学生在合作交流中体验到学习的乐趣,增强学习的自信心。
3.培养学生严谨治学的态度,使学生养成认真思考、细致观察的学习习惯,提高学生的学习效果。
2.利用数轴情境导入:在数轴上标出几个关键点,如0, 1, -1等,引导学生观察实数在数轴上的位置,引出实数的分类。
3.利用故事情境导入:讲述“兔子与胡萝卜”的故事,引发学生对实数的思考,如兔子每天跑的距离是无理数,胡萝卜的数量是有理数,引出实数的概念和分类。
(二)讲授新知
1.实数的定义和分类:讲解实数的概念,引导学生理解实数是包括有理数和无理数两大类的数,并讲解实数与数轴的关系。
5.教学策略的灵活运用:结合学生的认知水平和学习兴趣,设计丰富的教学活动,注重引导学生通过自主探究、合作交流,深入理解实数的本质特征和分类依据,提高实数知识的系统性和灵活运用能力。同时,运用多媒体教学手段,直观地展示实数的性质和规律,帮助学生更好地理解和掌握实数知识。
(二)过程与方法
1.通过自主探究、合作交流,培养学生的动手操作能力和思维能力,提高学生对实数概念和分类的理解。
(人教版)七年级下册数学配套教案:6.3 第1课时 《实数》

(人教版)七年级下册数学配套教案:6.3 第1课时《实数》一. 教材分析人教版七年级下册数学第6.3节《实数》是学生在掌握了有理数的相关知识后,进一步扩大知识面,认识实数的概念。
本节内容主要包括实数的定义、实数的分类和实数的性质。
通过本节课的学习,学生能够理解实数的概念,掌握实数的分类和性质,为后续的函数、方程等知识的学习打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了有理数的相关知识,具备了一定的数学基础。
但是,对于实数的定义和性质,可能还比较陌生。
因此,在教学过程中,需要引导学生从已有的知识出发,逐步理解和掌握实数的概念和性质。
三. 教学目标1.理解实数的概念,掌握实数的分类和性质。
2.能够运用实数的概念和性质解决一些简单的实际问题。
3.培养学生的逻辑思维能力和数学表达能力。
四. 教学重难点1.实数的定义和性质。
2.实数的分类。
五. 教学方法采用讲授法、引导法、讨论法等教学方法。
通过教师的讲解和引导,学生的思考和讨论,使学生理解和掌握实数的概念和性质。
六. 教学准备1.教师准备教案、PPT等教学资料。
2.学生准备笔记本、文具等学习用品。
七. 教学过程1.导入(5分钟)教师通过复习有理数的相关知识,引导学生思考有理数的局限性,引出实数的概念。
2.呈现(15分钟)教师通过PPT或者黑板,呈现实数的定义、性质和分类。
引导学生理解和记忆实数的概念和性质,掌握实数的分类。
3.操练(15分钟)教师布置一些有关实数的练习题,让学生独立完成。
通过练习,巩固学生对实数的理解和掌握。
4.巩固(10分钟)教师选取一些典型的练习题,进行讲解和分析,帮助学生巩固对实数的理解和掌握。
5.拓展(10分钟)教师引导学生思考实数在实际生活中的应用,让学生举例说明实数在生活中的作用。
6.小结(5分钟)教师对本节课的内容进行小结,强调实数的概念、性质和分类,提醒学生注意实数的应用。
7.家庭作业(5分钟)教师布置一些有关实数的家庭作业,让学生进一步巩固和理解实数的概念和性质。
人教版七年级数学下册实数《实数(第3课时)》示范教学设计

实数(第3课时)教学目标1.能够灵活应用本章知识解决实数中相关问题.2.能够借助数轴利用数形结合解决实数中相关问题.教学重点灵活应用本节知识解决实数中相关问题.教学难点能够借助数轴利用数形结合解决实数中相关问题.教学过程知识回顾新知探究一、探究学习【重点】1.实数的分类(1)实数在分类时应将原数化简,然后进行分类;(2)有理数包括整数和分数;(3)无限不循环小数是无理数.2.实数的性质相反数、绝对值、倒数的运算及运算律同有理数一样.【师生活动】在知识回顾中,对有理数的相反数和绝对值定义进行了复习,教师在此可以引导学生仿照有理数的规定方法,对实数的相反数和绝对值进行猜测,完成填空,教师提问,并根据学生的答案进行总结:有理数关于相反数和绝对值的意义同样适合于实数.【问题】1.下列说法正确的是( ).A .2π是有理数B 是有理数C D【师生活动】教师引导学生对每个选项中的数进行分析:2π虽然都含有分母,但分子π2π也是无理数,所以选项A ,B 10,10是有理数,所以选项C 34-,34-是分数,所以选项D 正确. 【答案】D【归纳】掌握无理数的概念是进行判断的关键,要注意带根号的数不一定都是无理数,含分母的数也不一定都是有理数.【提醒】常见的三种无理数(1)经过化简后,仍然含有π的数;(2)含有根号,且被开方数开方开不尽的数;(3)无限不循环小数.【问题】2.在实数0 3.140.909 009 000 9--,(每两个9之间的0的个数依次增加1)中,无理数有____个,有理数有____个,负数有_____个. 【师生活动】教师给出学生分析方向:根据无理数是无限不循环小数,有理数是有限小数或无限循环小数以及小于零的数是负数得到答案.学生自己对所给出的几个数字进行分析0.909 009 000 9…(每两个9之间的0的个数依次增加1)3个;0,-3.14是有理数,共3个;-3.14,-0.909 009 000 9…(每两个9之间的0的个数依次增加1)3个. 【答案】3 3 3【归纳】掌握好实数的分类以及无理数、有理数包括的几种类型,是解决此类题的关键.在分类时要明确分类标准,保证不重不漏.【问题】3.若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2,求210a b m cd m++-的值.【师生活动】结合前面学过的知识,学生对该题进行分析:遇到两数互为相反数,就要想到两数之和为0;遇到两数互为倒数,就要想到两数之积为1;遇到绝对值是一个正数,就要想到原数可能有两个.根据互为相反数、互为倒数和绝对值的意义,求出a +b ,cd 及m 的取值.【答案】解:由a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是2,得a +b =0,cd =1,m =±2.所以210a b m cd m++-=0+4-|1=41=5 【总结】(1)此类问题中a ,b ,c ,d 的值不确定,需要运用整体思想求a +b ,cd 的值.(2)在化简|m |时,需要注意m 的符号.【设计意图】设置这三道题目,主要让学生熟练掌握实数的分类,及考查学生能否类似有理数的绝对值等概念对实数进行计算.【重点】3.实数与数轴——数轴的三大作用(1)根据点在数轴上的位置判断其所表示的实数的符号,在原点的左侧为负数,在原点的右侧为正数;(2)根据点在数轴上的位置判断其所表示的实数的绝对值的大小,离原点远的绝对值大,离原点近的绝对值小;(3)根据点在数轴上的位置比较其所表示的实数的大小,数轴上右边的点表示的实数总大于左边的点表示的实数.【问题】4.如图,M ,N 两点在数轴上表示的数分别是m ,n ,则化简式子|m +n |-m 的结果是__________.【师生活动】学生独立对数轴进行分析,得出如下结论:由数轴可知,m <0,n >0,|m |<|n |,所以m +n >0,所以|m +n |-m =m +n -m =n .【答案】n【归纳】实数与数轴上的点是一一对应的,它体现了数形结合的思想.利用实数在数轴上所对应的点的位置可以判断出实数或相关式子的值的正负,进而去掉绝对值符号或二次根号,使实数大小的比较更具有直观性.【问题】5.若将三个数表示在数轴上,则其中能被如图所示的墨迹覆盖的数是__________.【师生活动】教师引导学生结合数轴,对实数的大小比较进行复习:可以看到覆盖的数大致范围在1和3之间,很明显即<,,2334【归纳】利用数轴比较实数大小的方法:先由表示实数a的点在数轴上的位置判断出a的取值范围,再根据各数的特征或采用特殊值法比较出几个数的大小.【问题】6.如图,在正方形ODBC中,OB OA=OB,则数轴上点A表示的数是__________.【师生活动】学生以小组为单位,对图形进行分析,得出结论如下:因为OA=OB,所以OA=OB A在数轴上原点的左边,所以点A【设计意图】这几道题目主要考查实数和数轴结合的相关问题,巩固学生对数形结合解决该类问题的掌握程度.【重点】4.实数的运算有理数的运算法则和运算律同样适用于实数,包括运算顺序.实数有加、减、乘、除、乘方、开方等运算,混合运算的顺序是先乘方、开方,再乘除,最后加减,同级运算按照从左到右的顺序进行,有括号要先算括号里的.【问题】7.已知表示实数a,b,c的点在数轴上的位置如图.化简:|a+b|-|b+c|+|b-c|-|b|.【师生活动】教师引导学生找到解决该类问题的关键点在于根据数轴判断实数a,b,c 的取值范围及其绝对值的大小关系,然后据此判断绝对值中的多项式的符号.由表示实数a,b,c的点在数轴上的位置可知,a+b<0,b+c>0,b-c<0,b<0,据此化简即可.【答案】解:根据表示实数a,b,c的点在数轴上的位置,得a<b<0<c,且|a|>|c|>|b|,所以a+b<0,b+c>0,b-c<0.所以|a+b|-|b+c|+|b-c|-|b|=-(a+b)-(b+c)-(b-c)+b=-a-b-b-c -b+c+b=-a-2b.【提醒】如果绝对值符号里面是个多项式,那么去绝对值符号后一般要加上括号,否则在变号时容易出错.【问题】8.现有一面积为150 m2的正方形鱼池,为了增加养鱼量,如果把鱼池的边长增加6 m,那么扩建后鱼池的面积为多少平方米(精确到0.1 m2)?【师生活动】学生独立分析题意,解决问题,教师巡视纠错.【答案】解:因为原正方形鱼池的面积为150 m212.25(m).由题意可得,扩建后的正方形鱼池的边长约为12.25+6=18.25(m),所以扩建后鱼池的面积约为18.252≈333.1(m2).答:扩建后鱼池的面积约为333.1 m2.【提醒】实际问题中的实数运算,可以利用计算器进行,当问题中要求近似值时,在计算过程中要注意对结果精确度的要求.【问题】9.计算下列各式的值:(1);(2)13(3 3.34π+(精确到0.01).【师生活动】学生以组为单位解决该题,并派出学生代表回答.【答案】解:(1)原式336322 =-++=-;(2)原式133|235+=+(3)原式11.732 3.142 3.340.866 3.142 3.34 1.064 1.062≈⨯-+=-+=≈.【归纳】在进行实数的混合运算时,首先要观察算式的特点,选择合适的方法进行计算.注意运算顺序和运算符号.【设计意图】对实数的运算进行巩固,确保学生能够熟练准确解决该类问题.课堂小结板书设计一、实数的相关概念二、实数与数轴三、实数的运算课后任务完成教材第57页习题6.3第1~5题.。
人教版数学七年级下册教学设计6.3《 实数》

人教版数学七年级下册教学设计6.3《实数》一. 教材分析人教版数学七年级下册第6.3节《实数》是学生在学习了有理数和无理数的基础上,进一步对实数进行系统认识的一节内容。
本节内容主要包括实数的定义、实数与数轴的关系以及实数的分类。
通过本节课的学习,使学生了解实数的丰富性和广泛性,培养学生对实数的认识和理解。
二. 学情分析七年级的学生已经掌握了有理数和无理数的基本概念,对数轴也有了一定的认识。
但学生在实数的分类方面可能会存在一定的困难,因此,在教学过程中,需要教师耐心引导,让学生充分理解实数的内涵和外延。
三. 教学目标1.理解实数的定义,掌握实数与数轴的关系。
2.能够对实数进行分类,了解实数的丰富性和广泛性。
3.培养学生的逻辑思维能力和抽象思维能力。
四. 教学重难点1.实数的定义和实数与数轴的关系。
2.实数的分类和各类实数的特征。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生思考和探索,激发学生的学习兴趣;通过案例分析,使学生直观地理解实数的概念;通过小组合作学习,培养学生的团队协作能力和表达能力。
六. 教学准备1.准备与实数相关的案例和图片,以便在教学中进行展示和分析。
2.准备实数的分类表格,方便学生理解和记忆。
3.准备数轴的道具或图片,帮助学生直观地理解实数与数轴的关系。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾有理数和无理数的概念,为新课的学习做好铺垫。
例如:“同学们,我们已经学习了有理数和无理数,那么你们能总结一下有理数和无理数的特征吗?”2.呈现(10分钟)教师通过PPT或板书,呈现实数的定义和实数与数轴的关系。
同时,结合案例和图片,使学生直观地理解实数的概念。
例如:“同学们,今天我们要学习的是实数。
实数包括有理数和无理数,它们都可以用数轴上的点来表示。
请大家观察这个数轴,找出一些特殊的点,并试着解释它们的含义。
”3.操练(10分钟)学生分组讨论,根据实数的定义和实数与数轴的关系,对给定的实数进行分类。
七年级数学下《实数》教学设计

七年级数学下《实数》教学设计
一、教学目标
1.知识与技能:学生能够理解实数的概念,掌握实数的性质和运算方法。
2.过程与方法:通过探究活动,培养学生的数学思维能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们认真思考、勇于探索的
精神。
二、教学内容与过程
1.导入:回顾有理数的概念,通过与有理数对比,引出实数的概念。
2.知识讲解:详细讲解实数的定义、性质和运算方法,强调实数与有理数的区别
与联系。
3.探究活动:设计探究活动,如比较实数的大小、进行实数的四则运算等,让学
生通过实际操作深入理解实数的性质和运算方法。
4.应用实践:引导学生运用所学知识解决实际问题,如测量长度或质量时产生的
误差等,让学生体会实数在实际生活中的应用。
5.总结与提升:总结实数的主要知识点,通过综合性题目提升学生运用知识解决
实际问题的能力。
三、教学方法与手段
1.教学方法:采用启发式、探究式和合作学习的方法,引导学生主动探索和思考。
2.教学手段:利用实物模型、PPT演示、数学软件等辅助教学工具,帮助学生更
好地理解实数的概念和性质。
四、教学评价与反馈
1.课堂互动:通过课堂提问、小组讨论等方式了解学生的学习情况,调整教学策
略。
2.作业评价:布置相关练习题,要求学生按时完成,并进行批改和反馈。
3.测试与反馈:组织阶段性测试,检测学生对实数知识的掌握程度,及时发现问
题并进行针对性辅导。
五、作业布置
1.完成相关练习题,巩固所学知识。
2.预习下一节内容,了解无理数的基本概念。
人教版数学七年级下册第6章第3课实数实数(教案)

-直观教学:利用数轴模型,将实数与数轴上的点进行对应,通过动画或实物演示,帮助学生建立直观的几何概念。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《实数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过无法用分数表示的数?”(如足球的面积计算)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索实数的奥秘。
课堂上,我尝试了多种教学方法,比如小组讨论和实验操作,让学生们动手动脑,这样可以提高他们的参与度和兴趣。从学生的反馈来看,这种互动式的学习方式效果不错,他们能够更直观地理解实数与数轴的关系。
然而,我也注意到,在实数的运算环节,尤其是涉及无理数的计算时,学生们还是感到有些困惑。我意识到,我需要提供更多的例题和练习,特别是那些能够逐步引导他们理解无理数运算规则的问题。
人教版数学七年级下册第6章第3课实数实数(教案)
一、教学内容
人教版数学七年级下册第6章第3课实数。本节课将涵盖以下内容:
1.实数的定义:有理数和无理数的统称,包括整数、分数以及无理数。
2.无理数的理解:介绍无理数的概念,如π、√2等,并解释其与有理数的区别。
3.实数的性质:探讨实数的封闭性、可比较性、可运算性等。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与实数相关的实际问题,如无理数的近似计算。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用剪刀和直尺制作一个π的近似计算模型。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
《实数》精品教案

《实数》精品教案一、教学内容本节课选自人教版数学教材八年级下册第十六章《实数》的第一节,内容包括实数的定义、分类及性质。
详细内容如下:1. 实数的定义:有理数和无理数的统称,表示为R。
2. 实数的分类:整数、分数、无理数。
3. 实数的性质:实数具有有序性、稠密性和完备性。
二、教学目标1. 知识与技能:理解实数的定义和分类,掌握实数的性质。
2. 过程与方法:通过例题讲解和随堂练习,提高学生的实数运算能力和解决问题的能力。
3. 情感态度与价值观:培养学生对实数概念的理解,激发学生学习数学的兴趣。
三、教学难点与重点1. 教学难点:实数的定义和性质,尤其是无理数的理解。
2. 教学重点:实数的分类和实数运算。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:练习本、铅笔、橡皮。
五、教学过程1. 引入:通过生活实例,如测量物体长度、计算面积等,引导学生体会实数的必要性。
2. 新课导入:讲解实数的定义、分类及性质,结合多媒体课件进行演示。
3. 例题讲解:选取具有代表性的例题,如实数运算、比较大小等,详细讲解解题思路和方法。
4. 随堂练习:设计具有梯度的问题,让学生独立完成,巩固所学知识。
六、板书设计1. 实数的定义2. 实数的分类1. 整数2. 分数3. 无理数3. 实数的性质4. 实数运算5. 例题及解题方法七、作业设计1. 作业题目:(3)计算:2/3 + √5,(√3 √2)²。
2. 答案:(1)实数:0,3/4,√2,5.6,π,e,…(2)从大到小:e,π,√5,3/2,√3,2(3)2/3 + √5 = 2/3 + √5;(√3 √2)² = 5 2√6。
八、课后反思及拓展延伸1. 课后反思:本节课学生对实数的定义和性质掌握较好,但在实数运算方面还需加强练习。
2. 拓展延伸:引导学生研究实数与数轴的关系,了解实数在数轴上的表示方法,为后续学习函数打下基础。
同时,鼓励学生探索实数在实际问题中的应用,提高学生的数学素养。
人教版数学七年级下册6.3《实数》优秀教学案例

3.采用小组合作学习法,让学生在讨论和交流中,共同完成实数性质的探究,培养学生的合作意识和团队精神。
4.设计丰富的教学活动,让学生在实践中感受实数的性质,提高学生的动手操作能力和实践能力。
(三)情感态度与价值观
1.培养学生对数学的兴趣,使学生树立自信心,相信自己能够掌握实数的知识。
4.引导学生总结实数的性质,培养学生的归纳总结能力,例如“实数的性质有哪些?如何描述有理数和无理数?”
(三)小组合作
1.让学生分组讨论实数的性质,鼓励学生发表自己的观点,培养学生的合作意识和团队精神。
2.设计小组活动,让学生共同探究实数的运算规则,例如“以小组为单位,总结实数的加法、减法、乘法、除法规则。”
在教学设计上,我遵循了由浅入深、循序渐进的原则,将知识点进行合理划分,使得学生能够逐步理解和掌握实数的概念和性质。在教学方法上,我采用了启发式教学法和小组合作学习法,鼓励学生主动发现问题、解决问题,培养学生的合作意识和团队精神。
在教学评价上,我注重过程性评价与终结性评价相结合,全面了解学生的学习情况,及时调整教学策略,提高教学效果。通过本节课的教学,希望学生能够熟练掌握实数的相关知识,提高他们的数学素养。
三、教学策略
(一)情景创设
1.利用生活实例引入实数的概念,例如身高、体重、温度等,让学生感受到实数与生活的紧密联系。
2.通过设计有趣的数学问题,激发学生的学习兴趣,例如“小明身高1.6米,小红身高1.5米,请问小明比小红高多少?”
3.利用多媒体课件展示实数的应用场景,例如在平面直角坐标系中,展示实数表示的点的位置。
4.创设问题情境,引导学生思考实数的性质,例如“为什么实数可以分为有理数和无理数?”
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《实数》
㈠创设情景,导入新课
复习导入:1、用字母来表示有理数的乘法交换律、乘法结合律、乘法分配律
2、用字母表示有理数的加法交换律和结合律
3、平方差公式、完全平方公式
4、有理数的混合运算顺序
㈡合作交流,解读探究
自主探索 独立阅读,自习教材
总结 当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开方运算,任意一个实数可以进行开立方运算。
在进行实数的运算时,有理数的运算法则及运算性质等同样适用。
讨论 下列各式错在哪里?
1、2133993393-⨯÷⨯=⨯÷= 2
1=3
=
4、当x =2202
x x -=-
【练一练】计算下列各式的值:
⑴--
⑵ 总结 实数范围内的运算方法及运算顺序与在有理数范围内都是一样的 试一试 计算:
(1π (精确到0.01)
(
2 (结果保留3个有效数字) 总结 在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算
【练一练】计算
⑴
⑶)2
1
⑷(
11- 提示 ⑴式的结构是平方差的形式 ⑶式的结构是完全平方的形式 总结 在实数范围内,乘法公式仍然适用
㈢应用迁移,巩固提高
例1
a 为何值时,下列各式有意义?
解:⑴
-
0==
⑵
(
32=+=
(
1(
2 (
3(
4(
5 (
6例2 计算
⑴求5的算术平方根于的平方根之和(保留3位有效数字)
0.01)
⑶a a π-+
a π<<)(精确到0.01) 例 3 已知实数a
b
c 、、在数轴上的位置如下,化简
a b ++ 例4 计算20
22223-⎛⎛⎫⎛⎫-+-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ㈣总结反思,拓展升华
总结 1、实数的运算法则及运算律。
2、实数的相反数和绝对值的意义
㈤课堂跟踪反馈
1、a b 、是实数,下列命题正确的是( )
A. a b ≠,则22a b ≠
B. 若22a b >,则a b >
C. 若a b >,则a b >
D. 若a b >,则22a b >
2、如果3a =成立,那么实数a 的取值范围是( )
A. 0a ≤
B. 3a ≤
C. 3a ≥-
D. 3a ≥
3的相反数是 4、当17a >时,a = =
5、已知a 、b 、c a b b c ++
+ 6a 和b 之间,即a b <<,那么a 、b 的值是 3 、4
7、计算下列各题
(1 (2 (3 (4
c
a O b
实数(第2课时)
一、学习目标
1、了解实数范围内,相反数、倒数、绝对值的意义。
2、会按要求用近似有限小数代替无理数,再进行计算。
二、重点与难点
重点:在实数内会求一个数的相反数、倒数、绝对值。
难点:简单的无理数计算。
三、合作探究
㈠ 学前准备
1、用字母来表示有理数的乘法交换律、乘法结合律、乘法分配律
2、用字母表示有理数的加法交换律和结合律
3、有理数的混合运算顺序
㈡自主探索 独立阅读,自习教材
总结 当数从有理数扩充到实数以后,
1、数a 的相反数是 ;
2、一个正实数的绝对值是它 ;一个负实数的绝对值是它的 ;0的绝对值是 。
3、实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开方运算,任意一个实数可以进行开立方运算。
在进行实数的运算时,有理数的运算法则及运算性质等同样适用。
讨论 下列各式错在哪里?
1、213399339
-⨯÷⨯
=⨯÷= 2
1=3
=
02x =- 四、精讲精练
例1
、计算下列各式的值:
⑴
⑵
总结
实数范围内的运算方法及运算顺序与在有理数范围内都是一样的
练习(1
π (精确到
0.01) (
2
(结果保留3个有效数字) 总结 在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确
解:⑴
-
0==
⑵ (32=+=
度用相应的近似有限小数去代替无理数,再进行计算
计算
⑴
-
⑶
)21
㈢应用迁移,巩固提高
例2
⑴求5的算术平方根于的平方根之和(保留3位有效数字)
0.01)
a π<
<)(精确到0.01) 例3 已知实数a b c 、、在数轴上的位置如下,化简
a b a b +++
例4 计算2022223-⎛⎛⎛⎫-+--
⎪
⎝⎭
⎝⎭⎝⎭ 五、课堂小结
1、实数的运算法则及运算律。
2、实数的相反数和绝对值的意义 六、作业
1
的相反数是 , 的相反数是
2、当17a >a =
,
= 3、已知a 、b 、c
a b b c ++ 6
a 和
b 之间,即
a b <<,那么a 、b 的值是
7
、计算下列各题
(1
(2 (3(4仔细观察上面几道题及其计算结果,你能发现什么规律吗?
根据这个规律先写出下面的结果,并说明理由
解得()13 ()233 ()3333 ()43333
212311*********n n n -=个个个
c
a O
b c
a O b。