概率论与数理统计第2讲
概率论与数理统计教案第2章 随机变量及其分布

概率论与数理统计教学教案 第2章 随机变量及其分布授课序号01教 学 基 本 内 容一.随机变量1. 随机变量:设E 是随机试验,样本空间为S ,如果对随机试验的每一个结果ω,都有一个实数()X ω与之对应,那么把这个定义在S 上的单值实值函数()X X ω=称为随机变量.随机变量一般用大写字母,,X Y Z ,…表示.2.随机变量的两种常见类型:离散型随机变量和连续型随机变量. 二.分布函数1. 分布函数:设X 是一个随机变量,x 是任意实数,称函数{}(),F x P X x x =≤-∞<<∞为随机变量X 的分布函数,显然,()F x 是一个定义在实数域R 上,取值于[0,1]的函数.2.几何意义:在数轴上,将X 看成随机点的坐标,则分布函数()F x 表示随机点X 落在阴影部分(即X x ≤)内的概率,如下图.3.对任意的实数,,()a b c a b <,都有:授课序号02(,)B n p ,其中在二项分(1,)B p X 服从(0-1)分布是二项分布的特例,简记0,1,2,...,其中λ为大于()P λ.在一次试验中出现的概率为(12,kk nnC p p -.)说明:泊松定理表明,泊松分布为二项分布的极限分布,即在试验次数很大,而n np 不太大时,()G p.)说明:几何分布描述的是试验首次成功的次数次才取得第一次成功,前)超几何分布:若随机变量X的分布律为H n N(,,件不合格,从产品中不放回)超几何分布与二项分布之间的区别:超几何分布是不放回抽取,二项分布是放回抽取,因此,二项两个分布之间也有联系,当总体的容量授课序号03(,)U a b .内的任一个子区间()E λ.1,0,xe x λ-⎧->⎪⎨⎪⎩其它.)定理:(指数分布的无记忆性)设随机变量()E λ,则对于任意的正数{}{P X s t t P X >+>=为连续型随机变量,若概率密度为2(,N μσ处取到最大值,并且对于同样长度(iii )当参数μ固定时,σ的值越大,()f x 的图形就越平缓;σ的值越小,()f x 的图形就越尖狭,由此可见参数σ的变化能改变图形的形状,称σ为形状参数.(iv )当参数σ固定时,随着μ值的变化,()f x 图形的形状不改变,位置发生左右平移,由此可见参数μ的变化能改变图形的位置,称μ为位置参数.(4)标准正态分布(0,1)XN(i )概率密度221(),2x x e x ϕπ-=-∞<<∞(ii )分布函数221(),.2t xx e dt x π--∞Φ=-∞<<∞⎰(iii )根据概率密度()x ϕ的对称性,有()1().x x Φ-=-Φ (5)定理:(标准化定理)若2(,)XN μσ,则(0,1).X Z N μσ-=(6)标准化定理的应用:设,,()x a b a b <为任意实数,则(){}{}{}(),X x x x F x P X x P P Z μμμμσσσσ----=≤=≤=≤=Φ{}{}()().a X b b a P a X b P μμμμμσσσσσ-----<≤=<≤=Φ-Φ6.“3σ”法则:设2(,)XN μσ,则{33}(3)(3)2(3)10.997,P X μσμσ-<<+=Φ-Φ-=Φ-≈即正态分布2(,)N μσ的随机变量以99.7%的概率落在以μ为中心、3σ为半径的区间内,落在区间以外的概率非常小,可以忽略不计,这就是“3σ”法则. 三.例题讲解例1.车流中的“时间间隔”是指一辆车通过一个固定地点与下一辆车开始通过该点之间的时间长度.设X 表示在大流量期间,高速公路上相邻两辆车的时间间隔,X 的概率密度描述了高速公路上的交通流量规律,其表达式为:0.15(0.5)0.15,0.5,()0,x e x f x --⎧≥⎪=⎨⎪⎩其它.概率密度()f x 的图形如下图,求时间间隔不大于5秒的概率.例2.设随机变量X 表示桥梁的动力荷载的大小(单位:N ),其概率密度为13,02;()880,x x f x ⎧+≤≤⎪=⎨⎪⎩其它.求:(1)分布函数()F x ;(2)概率{1 1.5}P X ≤≤及{1}P X >.例3.某食品厂生产一种产品,规定其重量的误差不能超过3克,即随机误差X 服从(-3,3)上的均匀分布.现任取出一件产品进行称重,求误差在-1~2之间的概率.例4.设随机变量X 在(1,4)上服从均匀分布,对X 进行三次独立的观察,求至少有两次观察值大于2的概率.例5.设随机变量X 表示某餐馆从开门营业起到第一个顾客到达的等待时间(单位:min ),则X 服从指数分布,其概率密度为0.40.4,0,()0,xex f x -⎧>⎪=⎨⎪⎩其它.求等待至多5分钟的概率以及等待3至4分钟的概率.例6.汽车驾驶员在减速时,对信号灯做出反应所需的时间对于帮助避免追尾碰撞至关重要.有研究表明,驾驶员在行车过程中对信号灯发出制动信号的反应时间服从正态分布,其中μ=1.25秒,σ=0.46秒.求驾驶员的制动反应时间在1秒至1.75秒之间的概率?如果2秒是一个非常长的反应时间,那么实际的制动反应时间超过这个值的概率是多少?例7.设某公司制造绳索的抗断强度服从正态分布,其中μ=300千克,σ=24千克.求常数a ,使抗断强度以不小于95%的概率大于a .授课序号0450。
概率论与数理统计第二章 随机变量及其分布

15
例4: 甲、乙两名棋手约定进行10盘比赛,以赢的盘数 较多者为胜. 假设每盘棋甲赢的概率都为0.6,乙赢的概 率为0.4,且各盘比赛相互独立,问甲、乙获胜的概率 各为多少? 解 每一盘棋可看作0-1试验. 设X为10盘棋赛中甲赢的 盘数,则 X ~ b(10, 0.6) . 按约定,甲只要赢6盘或6盘 以上即可获胜. 所以
定义:若随机变量X所有可能的取值为x1,x2,…,xi,…,且 X 取这些值的概率为 P(X=xi)= pi , i=1, 2, ... (*)
则称(*)式为离散型随机变量X 的分布律。 分布律的基本性质: (1) 表格形式表示: pi 0, i=1,2,... (2)
i
pi 1
X pk
x1 p1
这里n=500值较大,直接计算比较麻烦. 利用泊松定理作近似计算: n =500, np = 500/365=1.3699>0 ,用 =1.3699 的泊松分布作近似 计算:
(1.3669) 5 1.3669 P{ X 5} e 0.01 5!
23
例2: 某人进行射击,其命中率为0.02,独立射击400次,试求击 中的次数大于等于2的概率。 解 将每次射击看成是一次贝努里试验,X表示在400次射击中 击的次数,则X~B(400, 0.02)其分布律为
k 0,1
14
(2) 二项分布 设在一次伯努利试验中有两个可能的结果,且有 P(A)=p 。则在 n 重伯努利试验中事件 A发生的次数 X是一个 离散型随机变量,其分布为
P ( X k ) C nk p k q n k
k =0, 1, 2 ,, n
称X 服从参数为n,p的二项分布,记为 X~b(n, p) 对于n次重复一个0-1试验. 随机变量X表示: n次试验中, A发生的次数. 如: 掷一枚硬币100次, 正面出现的次数X服从二项分布. b(100, 1/2) 事件 X~
概率论与数理统计-第6章-第2讲-最大似然估计法

P(X1 1)P(X2 0)P(X3 1)
3
本讲内容
01 求最大似然估计的一般步骤 02 典型例题
01 求最大似然估计的一般步骤
(1) 构造似然函数 L(θ)
设X1, , X n是来自X 的样本, x1, , xn是其一组样本值,
若总体X 属离散型,其分布律 P( X x) p(x; ),
概率论与数理统计
第6章 参数估计
第2讲 最大似然估计法
主讲教师 |
第2讲 最大似然估计法
上一讲介绍了矩估计,这一讲介绍点估计的另外一种方法— —最大似然估计法,它是在总体类型已知条件下使用的一种参数 估计方法 .
它首先是由数学家高斯在1821年提出的,费歇在1922年重 新发现了这一方法,并研究了它的一些性质 ,从而得到广泛应 用.
即
L(
x1
,,
xn
;ˆ)
max
L(
x1,,
xn
;
)
ˆ(x1, , xn )称为参数的最大似然估计值.
ˆ( X1, , X n )称为参数的最大似然估计量.
一般, 可由下式求得:
dL( ) 0或 d ln L( ) 0.
d
d
似然方程
6
01 求最大似然估计的一般步骤
注1
未知参数可以不止一个, 如1,…, k
ln
L
n
i1
(xi )2 2 2
n 2
ln(2
)
n 2
ln(
2)
似然 方程 组为
ln
L
1
2
n
(xi
i1
)
0
(
2 ) ln
L
1
概率论与数理统计(茆诗松)第二章讲义(PDF)

第二章 随机变量及其分布上一章研究内容: 事件(集合A )→ 概率(数).本章将用函数研究概率,函数是数与数的关系,即需要用数反映事件——随机变量.事件(数)→ 概率(数).§2.1 随机变量及其分布2.1.1.随机变量的概念随机试验的样本点有些是定量的:如掷骰子掷出的点数,电子元件使用寿命的小时数.有些是定性的:如掷硬币正面或反面,检查产品合格或不合格.对于定性的结果也可以规定其数量性质:如掷硬币,正面记为1,反面记为0;检查产品,合格记为1,不合格记为0.随机试验中,可将每一个样本点ω 都对应于一个实数X (ω),称为随机变量(Random Variable ),常用大写英文字母X , Y , Z 等表示随机变量,而随机变量的具体取值通常记为小写英文字母x , y , z .对于随机变量首先应掌握它的全部可能取值:如掷硬币,⎩⎨⎧=反面正面,0,1X ,X 的全部可能取值为0, 1;掷两枚骰子,X 表示掷出的点数之和,X 的全部可能取值为2, 3, 4, … , 12 ;观察某商店一小时内的进店人数X ,X 的全部可能取值为0, 1, 2, … ;电子元件使用寿命,用X 表示使用的小时数,X 的全部可能取值为 ),0[∞+; 一场足球比赛(90分钟),用X 表示首次进球时间(分钟),若为0:0,记X = 100,X 的全部可能取值为 (0, 90 )∪{100};注意:1. 每个样本点都必须对应于一个实数,2.不同样本点可以对应于同一个实数,3.随机变量的每一取值或取值范围都表示一个事件.应掌握将随机变量的取值或取值范围描述为事件,又能将事件用随机变量表达的方法. 例 掷一枚骰子,用X 表示出现的点数,则 X = 1表示出现1点;X > 4表示点数大于4,即出现5点或6点;X ≤ 0为不可能事件.又出现奇数点,即X = 1, 3, 5;点数不超过3,即X ≤ 3. 例 X 表示商店一天中某商品的销售件数(顾客的需求件数), 则 X = 0表示没有销售;X ≤ 10表示销售不超过10件.又销售5件以上(不含5件)即X > 5;若该商店准备了a 件该商品,事件“能满足顾客需要”,即X ≤ a . 例 X 表示一只电子元件的使用寿命(小时), 则 X = 1000表示该元件恰好使用了1000小时,X ≥ 800表示该元件使用寿命在800小时以上. 例 90分钟足球比赛,X 表示首次进球时间(分钟),且0:0时,记X = 100, 则 X = 10表示上半场第10分钟首次进球.又上半场不进球即X > 45;开场1分钟内进球即X ≤ 1.如果随机变量X 的全部可能取值是有限个或可列个,则称为离散型随机变量.(注:可列个即可以排成一列,一个一个往下数,如非负整数0, 1, 2, 3, … )离散型随机变量的全部可能取值是实数轴上一些离散的点,而连续型随机变量的全部可能取值是实数轴上一个区间或多个区间的并,如电子元件使用寿命X (小时),全部可能取值是),0[∞+.下面按离散型和连续型分别进行讨论.2.1.2. 离散随机变量的概率分布列对于随机变量还应该掌握它的每一取值或取值范围表示事件的概率.定义 如果随机变量X 的全部可能取值是有限个或可列个,则称为离散型随机变量.设离散型随机变量X 的全部可能取值为x 1, x 2, …, x k , …,则X 取值x k 的概率p k = p (x k ) = P {X = x k }, k = 1, 2, …… 称为离散型随机变量的概率分布函数(Probability Distribution Function ,PDF ),简称概率分布或概率函数.直观上,又写为L LLL)()()(2121k kx p x p x p Px x x X 或 ⎟⎟⎠⎞⎜⎜⎝⎛L L L L)()()(~2121k k x p x p x p x x x X , 称为X 的概率分布列.如掷一枚骰子,X 表示出现的点数,X 的分布列为616161616161654321PX . 概率函数基本性质:(1)非负性 p (x k ) ≥ 0 , k = 1, 2, ……; (2)正则性1)(1=∑∞=k kxp .这是因为事件X = x 1 , X = x 2 , … , X = x k , … 是一个完备事件组, 故P {X = x 1} + P {X = x 2} + … + P {X = x k } + … = P (Ω) = 1,即p (x 1) + p (x 2) + … + p (x k ) + … = 1. 例 设盒中有2个红球3个白球,从中任取3球,以X 表示取得的红球数.求X 的分布列. 解:X 的全部可能取值0, 1, 2 ,样本点总数为1035=⎟⎟⎠⎞⎜⎜⎝⎛=n ,X = 0表示“取到3个白球”,所含样本点个数为1330=⎟⎟⎠⎞⎜⎜⎝⎛=k ,有1.0101)0(==p , X = 1表示“取到1个红球2个白球”,所含样本点个数为612231=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,有6.0106)1(==p , X = 2表示“取到2个红球1个白球”,所含样本点个数为322132=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,有3.0103)2(==p . 故X 的分布列为3.06.01.0210P X.求离散型随机变量X 的概率分布步骤: (1)找出X 的全部可能取值,(2)将X 的每一取值表示为事件, (3)求出X 的每一取值的概率.例 现有10件产品,其中有3件不合格.若不放回抽取,每次取一件,直到取得合格品为止.用X 表示抽取次数,求X 的概率分布. 解:X 的全部可能取值1, 2, 3, 4 ,X = 1表示“第1次就取得合格品”,有107)1(=p , X = 2表示“第2次取得合格品且第1次是不合格品”,有30797103)2(=⋅=p , X = 3表示“第3次取得合格品且前两次是不合格品”,有12078792103)3(=⋅⋅=p , X = 4表示“第4次取得合格品且前三次是不合格品”,有1201778192103)4(=⋅⋅⋅=p , 故X 的分布列为120112073071074321PX . 例 上例若改为有放回地抽取,又如何? 解:X 的全部可能取值1 , 2 , … , n , … ,7.0107)1(==p ,21.0107103)2(=⋅=p ,7.03.0)3(2×=p ,…,7.03.0)(1×=−k k p ,…, 故X 的概率函数为L ,2,1,7.03.0)(1=×=−k k p k ;X 的分布列为LL L L 7.03.07.03.021.07.032112××−k PkX .例 若离散型随机变量的概率函数为kCk p =)(,k = 1, 2, 3, 4,且C 为常数. 求:(1)C 的值,(2)P {X = 3},(3)P {X < 3}.解:(1)由正则性知:1432)4()3()2()1(=+++=+++CC C C p p p p ,即11225=C ,故2512=C .(2)254)3(}3{===p X P , (3)25182562512)2()1(}3{=+=+=<p p X P . 2.1.3.随机变量的分布函数连续型随机变量在单个点取值概率为零,如电子元件使用寿命恰好为1000小时这个事件的概率就等于零,因此连续型随机变量不能考虑概率函数.为了用单独一个变量表示一个区间,特别地取区间 (−∞, x ].定义 随机变量X 与任意实数x ,称F (x ) = P {X ≤ x },−∞ < x < +∞为X 的累积分布函数(Cumulative Distribution Function ,CDF ),简称分布函数.P {a < X ≤ b } = P {X ≤ b } − P {X ≤ a } = F (b ) − F (a ),P {X > a } = 1 − P {X ≤ a } = 1 − F (a ),由概率的连续性知)0()(lim }{lim }{−==≤=<−−→→a F x F x X P a X P ax ax ,且P {X = a } = P {X ≤ a } − P {X < a } = F (a ) − F (a – 0),可见X 在任一区间上或任一点取值的概率都可用分布函数表示. 例 已知随机变量X 的分布列为3.05.02.0210PX ,求X 的分布函数.解:X 的全部可能取值为0, 1, 2,当x < 0时,F (x ) = P {X ≤ x } = P (∅) = 0, 当0 ≤ x < 1时,F (x ) = P {X ≤ x } = p (0) = 0.2,当1 ≤ x < 2时,F (x ) = P {X ≤ x } = p (0) + p (1) = 0.7, 当x ≥ 2时,F (x ) = P {X ≤ x } = P (Ω ) = 1,故⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=.2,1,21,7.0,10,2.0,0,0)(x x x x x F若离散型随机变量的全部可能取值为x 1, x 2, ……,概率函数p (x k ) = p k ,k = 1, 2, ……,则分布函数∑≤=≤=xx kk xp x X P x F )(}{)(.且离散型随机变量的分布函数F (x )是单调不减的阶梯形函数,X 的每一可能取值x k 是F (x )的跳跃点,跳跃高度是相应概率p (x k ).例 已知某离散型随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<≤−−<=,5,1,52,6.0,20,4.0,01,3.01,0)(x x x x x x F 求X 的分布列. 解:X 的全部可能取值是F (x )的跳跃点,即 −1, 0, 2, 5,跳跃高度依次为:p (−1) = 0.3 − 0 = 0.3; p (0) = 0.4 − 0.3 = 0.1; p (2) = 0.6 − 0.4 = 0.2; p (5) = 1 − 0.6 = 0.4.故X 的分布列为4.02.01.03.05201PX −.分布函数的基本性质:(1)单调性,F (x ) 单调不减,即x 1 < x 2时,F (x 1) ≤ F (x 2); (2)正则性,F (−∞) = 0,F (+∞) = 1;(3)连续性,F (x ) 右连续,即)()(lim 00x F x F x x =+→. 证:(1)当x 1 < x 2时,{X ≤ x 1} ⊂ {X ≤ x 2},有F (x 1) ≤ F (x 2);(2)F (−∞) = P {X < −∞} = P (∅) = 0,F (+∞) = P {X < +∞} = P (Ω ) = 1;(3)任取单调下降且趋于x 0的数列{x n },有}{}{}{lim 01x X x X x X n n n n ≤=≤=≤∞=∞→I ,根据概率的连续性知}{}{}{lim 01x X P x X P x X P n n n n ≤=⎟⎟⎠⎞⎜⎜⎝⎛≤=≤∞=∞→I ,即)()(lim 00x F x F x x =+→. 但F (x )不一定左连续,任取单调增加且趋于x 0的数列{x n },有}{}{}{lim 01x X x X x X n n n n <=≤=≤∞=∞→U ,得}{}{}{lim 01x X P x X P x X P n n n n <=⎟⎟⎠⎞⎜⎜⎝⎛≤=≤∞=∞→U , 故}{)(}{)(lim 0000x X P x F x X P x F x x =−=<=−→.2.1.4. 连续随机变量的概率密度函数离散型随机变量的全部可能取值是有限或可列个点,连续型随机变量的全部可能取值是实数区间.但连续型随机变量在单独一个点取值的概率为0,其概率函数无实际意义,对于连续随机变量通常考虑其在某个区间上取值的概率,这就需要讨论分布函数.连续型随机变量的分布函数是连续函数. 注意:概率为0的事件不一定是不可能事件.定义 随机变量X 的分布函数F (x ),若存在函数p (x ),使 ∫∞−=xdu u p x F )()(,则称X 为连续型随机变量,p(x )为X 的概率密度函数(可以理解为:p (u )为概率密度,p (u )du 为X 在该小区间内取值的概率,∫∞−x 为从−∞ 到x 无限求和.几何意义:在平面上作出密度函数p (x )的图形,则阴影部分的面积即为F (x )的值.密度函数基本性质:(1)非负性 p (x ) ≥ 0;(2)正则性 1)(=∫∞+∞−dx x p .因)()(x F du u p x =∫∞−,有1)()(=+∞=∫∞+∞−F dx x p .连续型随机变量的性质:设连续型随机变量X 的概率密度函数为p (x ),分布函数为F (x ),则有 (1)∫=−=≤<21)()()(}{1221x x dx x p x F x F x X x P ;(2)当p (x ) 连续时,p (x ) = F ′(x ); 因∫∞−=x du u p x F )()(,当p (x ) 连续时,有)(])([)(x p du u p x F x=′=′∫∞−(3)X 在单独一个点取值的概率为0,其分布函数为连续函数;(4)P {x 1 < X ≤ x 2} = P {x 1 ≤ X ≤ x 2} = P {x 1 < X < x 2} = P {x 1 ≤ X < x 2},即连续型...随机变量在某区间内的概率与区间开闭无关,离散型则不成立;(5)只在有限个点上取值不相同的密度函数对应于同一个分布函数,一般,只在概率为0的数集上取值不相同的密度函数都对应于同一个分布函数.例 设F (x ) = A + B arctan x 为某连续型随机变量X 的分布函数. 求:(1)A , B ; (2)}31{≤≤−X P ; (3)密度函数p (x ). 解:(1)由正则性 F (−∞) = 0,F (+∞) = 1,得:02π)arctan (lim =−=+−∞→B A x B A x ,12π)arctan (lim =+=++∞→B A x B A x ,故21=A ,π1=B ;(2)x x F arctan π121)(+=,得1274ππ1213ππ121)1()3(}31{=⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛−⋅+−⎟⎠⎞⎜⎝⎛⋅+=−−=≤≤−F F X P . (3)密度函数)1π(1)()(2x x F x p +=′=.例 已知⎩⎨⎧<<−=,,0,10),()(32其它x x x C x p是某连续型随机变量X 的密度函数,求:(1)C , (2)}211{<<−X P , (3)分布函数F (x ).解:(1)由正则性:1)(=∫∞+∞−dx x p ,得1120)4131()43()(10431032==−−=−=−∫C C x x C dx x x C ,故C = 12;(2)165)641241(12)43(12)(12)(}211{2104321032211=−=−=−==<<−∫∫−x x dx x x dx x p X P ;(3)X 的全部可能取值为 [0, 1],分段点0, 1,当x < 0时,0)()(==∫∞−xdu u p x F ,当0 ≤ x < 1时,4304303234)43(12)(12)()(x x u u du u u du u p x F xxx−=−=−==∫∫∞−,当x ≥ 1时, 1)(12)()(132=−==∫∫∞−du u u du u p x F x,故⎪⎩⎪⎨⎧≥<≤−<=.1,1,10,34,0,0)(43x x x x x x F例 已知⎩⎨⎧<<−=,,0,11|,|)(其它x x x p是某连续型随机变量X 的密度函数,求分布函数F (x ).解:分段点−1, 0, 1,当x < −1时,0)()(==∫∞−xdu u p x F ;当−1 ≤ x < 0时, 212122)()()(22121x x u du u du u p x F xxx−=+−=−=−==−−∞−∫∫; 当0 ≤ x < 1时,21221022)()()(220212001x x u u udu du u du u p x F xxx+=++=+−=+−==−−∞−∫∫∫;当x ≥ 1时, 1)()()(101=+−==∫∫∫−∞−udu du u du u p x F x.故⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤+<≤−−<=.1,1,10,21,01,21,0,0)(22x x x x xx x F§2.2 随机变量的数学期望对于随机变量,还应当掌握反映其平均值、分散程度等的指标,这就需要引入数学期望和方差等概念. 2.2.1.数学期望的概念例 甲、乙两个射击选手,在射击训练中甲射了10次,其中3次10环,1次9环,4次8环,2次7环;乙射了15次,其中2次10环,9次9环,2次8环,2次7环.问谁的表现更好? 分析:比较他们射中的平均环数甲共射中3 × 10 + 1 × 9 + 4 × 8 + 2 × 7 = 85环,平均每次射中5.81085=环; 乙共射中2 × 10 + 9 × 9 + 2 × 8 + 2 × 7 = 131环,平均每次射中73.815131=&环. 故乙的表现更好.一般地,若在n 次试验中,出现了m 1次x 1,m 2次x 2,…,m k 次x k ,(其中m 1 + m 2 + … + m k = n ),则平均值为∑==+++ki i i k k n mx n x m x m x m 12211L ,即平均值等于取值与频率乘积之和.因n 很大时,频率稳定在概率附近,即平均值将稳定在取值与概率乘积之和附近. 2.2.2.数学期望的定义定义 设离散型随机变量X 的分布列是⎟⎟⎠⎞⎜⎜⎝⎛L L L L )()()(~2121k kx p x p x p x x x X ,如果级数∑∞=1)(k k k x p x 绝对收敛,则称之为X 的数学期望(Expectation ),记为E (X ). 数学期望的实际意义是反映随机变量的平均取值,是其全部可能取值以相应概率为权数的加权平均.如X 的分布列为⎟⎟⎠⎞⎜⎜⎝⎛−2.04.01.03.04102,则E (X) = (−2) × 0.3 + 0 × 0.1 + 1 × 0.4 + 4 × 0.2 = 0.6. 例 某人有4发子弹,现在他向某一目标射击,若命中目标就停止射击,否则直到子弹用完为止.设每发子弹命中率为0.4,以X 表示射击次数,求E (X ). 解:先求X 的分布列,X 的全部可能取值为1, 2, 3, 4,X = 1,第一枪就命中, p (1) = 0.4;X = 2,第一枪没有命中,第二枪命中,p (2) = 0.6 × 0.4 = 0.24; X = 3,前两枪没有命中,第三枪命中,p (3) = 0.6 2 × 0.4 = 0.144; X = 4,前三枪没有命中, p (4) = 0.6 3 = 0.216.则X 的分布列为⎟⎟⎠⎞⎜⎜⎝⎛216.0144.024.04.04321,故E (X ) = 1 × 0.4 + 2 × 0.24 + 3 × 0.144 + 4 × 0.216 = 2.176.例 若X 的概率函数为L ,2,1,21)2(==⎟⎟⎠⎞⎜⎜⎝⎛−k kp k k,求E (X ). 解:因∑∑∞=∞=−=⋅−11)1(21)2(k kk k k k k 收敛但不是绝对收敛,故E (X ) 不存在.离散型随机变量的数学期望是取值乘概率求和:∑∞=1)(k k k x p x ,类似可定义连续型随机变量的数学期望是取值乘密度积分:∫+∞∞−dx x xp )(.定义 设连续型随机变量X 的密度函数为p (x ).如果广义积分∫+∞∞−dx x xp )(绝对收敛,则称之为X 的数学期望,记为E (X ).例 已知连续型随机变量X 的密度函数为⎩⎨⎧<<=.,0,10,2)(其它x x x p 求E (X ).解:32322)()(1310=⋅=⋅==∫∫∞+∞−x xdx x dx x xp X E . 例 已知X 的密度函数为⎩⎨⎧<<+=.,0,20,)(其它x bx a x p 且32)(=X E ,求a , b . 解:由正则性得122)2()()(2220=+=⋅+=+=∫∫∞+∞−b a x b ax dx bx a dx x p ,又32382)32()()()(20322=+=⋅+⋅=+==∫∫∞+∞−b a x b x a dx bx a x dx x xp X E ,故21,1−==b a . 例 已知X 的密度函数为+∞<<∞−+=x x x p ,)1π(1)(2,求E (X ).解:因+∞∞−+∞∞−+∞∞−+∞∞−+=⋅+=+=∫∫∫)1ln(π21)(21)1π(1)1π()(2222x x d x dx x x dx x xp 发散, 故E (X )不存在. 2.2.3.数学期望的性质设X 为随机变量,g (x ) 为函数,则称Y = g (X ) 为随机变量函数,Y 也是一个随机变量.下面不加证明地给出随机变量函数的数学期望计算公式.定理 设X 为随机变量,Y = g (X ) 为随机变量函数,则(1)若X 为离散型随机变量,概率函数为p(x k ), k = 1, 2, …,则∑∞===1)()()]([)(k k k x p x g X g E Y E ;(2)若X 为连续型随机变量,密度函数为p (x ),则∫+∞∞−==dx x p x g X g E Y E )()()]([)(.数学期望具有以下性质:(1)常数的期望等于其自身,即E (c ) = c ;(2)常数因子可移到期望符号外,即E (aX ) = a E (X );(3)随机变量和的期望等于期望的和,即E [g 1 (X ) + g 2 (X )] = E [g 1 (X )] + E [g 2 (X )]. 证明:(1)将常数c 看作是单点分布p (c ) = 1,故E (c ) = c p (c ) = c ;(2)以连续型为例加以证明,)()()()(X aE dx x xp a dx x axp aX E ===∫∫+∞∞−+∞∞−;(3)以连续型为例加以证明,∫∫∫+∞∞−+∞∞−+∞∞−+=+=+dx x p x g dx x p x g dx x p x g x g X g X g E )()()()()()]()([)]()([212121= E [g 1 (X )] + E [g 2 (X )].由性质(2)、(3)知随机变量线性组合的期望等于期望的线性组合,可见数学期望具有线性性质. 例 设X 的分布列为⎟⎟⎠⎞⎜⎜⎝⎛−3.04.01.02.02101, 求E (2X +1),E (X 2).解:E (2X +1) = −1 × 0.2 + 1 × 0.1 + 3 × 0.4 + 5 × 0.3 = 2.6;E (X 2) = 1 × 0.2 + 0 × 0.1 + 1 × 0.4 + 4 × 0.3 = 1.8. 例 已知圆的半径X 是一个随机变量,密度函数为⎪⎩⎪⎨⎧<<=.,0,31,21)(其他x x p 求圆面积Y 的数学期望. 解:圆面积Y = π X 2,故3π1332π21π)(π)(3133122=⋅=⋅==∫∫∞+∞−xdx x dx x p x Y E . 例 设国际市场对我国某种出口商品的需求量X (吨)的密度函数为⎪⎩⎪⎨⎧<<=.,0,40002000,20001)(其他x x p 设每售出一吨,可获利3万美元,但若销售不出,每积压一吨将亏损1万美元,问如何计划年出口量,能使国家获利的期望最大.解:设计划年出口量为a 吨,每年获利Y 万美元.当X ≥ a 时,销售a 吨,获利3a 万美元;当X < a 时,销售X 吨,积压a − X 吨,获利3X − (a − X ) = 4X − a 万美元;即⎩⎨⎧<≤−≤≤==.2000,4,4000,3)(a X a X X a a X g Y则4000200024000200020003)2(2000120001320001)4()()()(aa a a x a ax x dx a dx a x dx x p x g Y E +−=⋅+⋅−==∫∫∫+∞∞− 8250)3500(10001400071000122+−−=−+−=a a a , 故计划年出口量为3500吨时,使国家获利的期望最大.§2.3 随机变量的方差与标准差数学期望反映平均值,方差反映波动程度.如甲、乙两台包装机,要求包装重量为每袋500克,现各取5袋,重量为甲:498,499,500,501,502; 乙:490,495,500,505,510.二者平均值相同都是500克,但显然甲比乙好.此时比较的是它们的偏差(即取值与平均值之差).偏差:甲:−2,−1,0,1,2;乙:−10,−5,0,5,10. 2.3.1.方差的定义定义 随机变量X 与其数学期望E (X ) 之差X − E (X ) 称为偏差.偏差有大有小,可正可负,比较时需要去掉符号,但绝对值函数进行微积分处理不方便,因此考虑偏差平方的数学期望.定义 随机变量X ,若E [X − E (X )]2存在,则称之为X 的方差(Variance ),记为Var (X ) 或D (X ).即Var (X ) = E [X − E (X )]2.显然方差Var (X ) ≥ 0,称)Var(X 为X 的标准差(Standard Deviation ).在实际问题中,标准差与随机变量有相同的量纲.方差与标准差反映波动程度.方差越大,取值越分散;方差越小,取值越集中. 例 设X 的分布列为⎟⎟⎠⎞⎜⎜⎝⎛4.04.02.0321, 求E (X ), Var (X ).解:E (X ) = 1 × 0.2 + 2 × 0.4 + 3 × 0.4 = 2.2;Var (X ) = (−1.2)2 × 0.2 + (−0.2)2 × 0.4 + 0.82 × 0.4 = 0.56. 例 已知X 的密度函数为⎩⎨⎧<<=.,0,10,2)(其他x x x p求E (X ), Var (X ).解:32322)()(1310=⋅=⋅==∫∫∞+∞−x xdx x dx x xf X E ; 181949821949842)98382()()32()Var(1023410232=+−=⎟⎠⎞⎜⎝⎛+−=+−=−=∫∫∞+∞−x x x dx x x x dx x p x X .例 已知X 的全部可能取值为0, 1, 2,且E (X ) = 1.3,Var (X ) = 0.81.求X 的分布列.解:设X 的分布列为⎟⎟⎠⎞⎜⎜⎝⎛c b a 210,由正则性得:a + b + c = 1,且E (X ) = 0 × a + 1 × b + 2 × c = b + 2c = 1.3,Var (X ) = (−1.3)2 × a + (−0.3)2 × b + 0.72 × c = 1.69a + 0.09b + 0.49c = 0.81, 解得a = 0.3,b = 0.1,c = 0.6,故X 的分布列为⎟⎟⎠⎞⎜⎜⎝⎛6.01.03.0210.2.3.2. 方差的性质方差具有以下性质:(1)方差计算公式:Var (X ) = E (X 2) − [E (X )]2; (2)常数的方差等于零,即Var (c ) = 0;(3)设a , b 为常数,则Var (a X + b ) = a 2 Var (X ). 证:(1)Var (X ) = E [X − E (X )]2 = E [X 2 − 2X ⋅ E (X ) + E (X )2] = E (X 2 ) − 2E (X ) ⋅ E (X ) + [E (X )]2.= E (X 2) − [E (X )]2;(2)Var (c ) = E [c − E (c )]2 = E (c − c )2 = E (0) = 0;(3)Var (a X + b ) = E [(a X + b ) − E (a X + b )]2 = E [a X + b − a E (X ) − b ]2 = a 2 E [X − E (X )]2 = a 2 Var (X ). 由性质(1),显然有以下推论:推论 对于随机变量X ,如果E (X 2) 存在,则E (X 2) ≥ [E (X )]2.以后常利用方差计算公式Var (X ) = E (X 2) − [E (X )]2计算随机变量的方差.通常用公式计算比直接用定义计算方差要方便. 例 设X 的分布列为⎟⎟⎠⎞⎜⎜⎝⎛4.04.02.0321, 求Var (X ).解:前面已求得E (X ) = 2.2,因E (X 2) = 1 2 × 0.2 + 2 2 × 0.4 + 3 2 × 0.4 = 5.4, 故Var (X ) = E (X 2) − [E (X )]2 = 5.4 − 2.22 = 0.56. 例 已知X 的密度函数为⎩⎨⎧<<=.,0,10,2)(其他x x x p 求Var (X ).解:前面已求得32)(=X E , 因21422)(141022=⋅=⋅=∫x xdx x X E , 故1813221)]([)()Var(222=⎟⎠⎞⎜⎝⎛−=−=X E X E X . 对于随机变量X ,若方差Var (X ) 存在,且Var (X ) > 0.令)Var()(*X X E X X −=,有0)]()([)Var(1)]([)Var(1)Var()(*)(=−=−=⎟⎟⎠⎞⎜⎜⎝⎛−=X E X E X X E X E X X X E X E X E ; 1)Var()Var(1)](Var[)Var(1)Var()(Var *)Var(==−=⎟⎟⎠⎞⎜⎜⎝⎛−=X X X E X X X X E X X .称X *为X 的标准化随机变量.2.3.3. 切比雪夫不等式方差反映随机变量的分散程度,切比雪夫不等式给出其定量标准.切比雪夫不等式表明大偏差概率的上限与方差成正比.定理 设X 为随机变量,且方差Var (X ) 存在,则对于任何正数ε ,都有2)Var(}|)({|εεX X E X P ≤≥−.证明:以连续型随机变量为例证明,设X 的密度函数为p (x ),有∫≥−=≥−εε|)(|)(}|)({|X E x dx x p X E X P ,且∫∞+∞−−=−=dx x p X E x X E X E X )()]([)]([1)Var(22222εεε,故222|)(|22)Var()()]([)()]([}|)({|εεεεεX dx x p X E x dx x p X E x X E X P X E x =−≤−≤≥−∫∫∞+∞−≥−,得证.注:切比雪夫不等式的等价形式2)Var(1}|)({|εεX X E X P −≥<−.如随机变量X 的数学期望为E (X ) = 10,方差Var (X ) = 1,则由切比雪夫不等式可得43211}2|10{|}128{2=−≥<−=<<X P X P . 例 设随机变量X 的全部可能取值为),0[∞+,且数学期望E (X ) 存在,试证:对任何正数a ,都有)(1}{X E aa X P ≤≥. 证明:以连续型随机变量为例证明,设X 的密度函数为p (x ),有∫+∞=≥a dx x p a X P )(}{,且∫∫+∞+∞∞−==0)()(1)(1dx x p a x dx x xp a X E a ,故)(1)()(}{0X E adx x p a x dx x p a x a X P a =≤≤≥∫∫+∞+∞,得证.定理 设随机变量X 的方差存在,则Var (X ) = 0的充分必要条件是存在常数b ,使得X 几乎处处收敛于b ,即P {X = b } = 1.证:充分性,设存在常数b ,使得P {X = b } = 1,有P {X ≠ b } = 0,即E (X ) = b P {X = b } = b ,故Var (X ) = E [X − E (X )]2 = E (X − b )2 = 0 × P {X = b } = 0; 必要性,设X 的方差Var (X ) = 0,因事件U +∞=+∞→⎭⎫⎩⎨⎧≥−=⎭⎬⎫⎩⎨⎧≥−=>−11|)(|lim 1|)(|}0|)({|n n n X E X n X E X X E X ,则01)Var(lim 1|)(|lim 1|)(|}0|)({|21=⎟⎠⎞⎜⎝⎛≤⎭⎬⎫⎩⎨⎧≥−=⎟⎟⎠⎞⎜⎜⎝⎛⎭⎬⎫⎩⎨⎧≥−=>−+∞→+∞→+∞=n X n X E X P n X E X P X E X P n n n U , 可得P {| X − E (X )| > 0} = 0,即P {| X − E (X )| = 0} = 1,取b = E (X ),有b 为常数, 故P {X = b } = 1.注:如果P {X = b } = 1,记为X = b , a.e.(或a.s.),称为X = b 几乎处处成立(或几乎必然成立).这里,a.e.就是almost everywhere 的缩写,a.s.就是almost surely 的缩写.意味着不成立的情况是一个测度(或概率)等于零的集合(或事件).§2.4 常用离散分布对于一个给定的函数,只要满足概率函数的两条基本性质:非负性、正则性,都可以成为某个离散随机变量的概率函数.但绝大多数在实际工作中并不常见,下面是几种常用的概率函数. 2.4.1.两点分布与二项分布一.两点分布两点分布只可能在两个点取值,通常就是0或1.定义 随机变量的可能取值只有两个:0或1,且概率函数为p (0) = 1 − p ,p (1) = p , 其中0 < p < 1,称X 服从两点分布(Two-point Distribution )或0-1分布,记为X ~ (0-1).分布列为⎟⎟⎠⎞⎜⎜⎝⎛−p p110. 两点分布实际背景是一次伯努利试验.通常描述为:X 表示一次伯努利试验中事件A 发生的次数.非负性:p (0) = 1 − p > 0,p (1) = p > 0; 正则性:(1 − p ) + p = 1. 两点分布的数学期望为E (X ) = 0 × (1 − p ) + 1 × p = p .又因E (X 2 ) = 02 × (1 − p ) + 12 × p = p ,故方差为Var (X ) = E (X 2 ) − [E (X )]2 = p − p 2 = p (1 − p ).二.二项分布在n 重伯努利试验中,以X 表示事件A 的发生次数,则X 的全部可能取值为0, 1, 2, …, n ,且kn k p p k n k X P −−⎟⎟⎠⎞⎜⎜⎝⎛==)1(}{. 定义 若离散型随机变量X 的概率函数为kn k p p k n k p −−⎟⎟⎠⎞⎜⎜⎝⎛=)1()(, k = 0, 1, 2, …, n ;0 < p < 1, 则称X 服从二项分布(Binomial Distribution ),记为X ~ b (n , p ).二项分布的实际背景是n 重伯努利试验. 当n = 1时,二项分布就是两点分布.非负性:0)1()(>−⎟⎟⎠⎞⎜⎜⎝⎛=−kn k p p k n k p ; 正则性:1)]1([)1()(11=−+=−⎟⎟⎠⎞⎜⎜⎝⎛=∑∑=−=nnk k n k nk p p p p k n k p . 例 掷三枚硬币,X 表示正面朝上的次数,求X 的概率分布.解:X 的全部可能取值为0, 1, 2, 3 ,将掷每一枚硬币看作一次试验.每次试验两种结果:正面A ,反面A ;每次试验相互独立;每次试验概率5.0)(=A P . 即n 重伯努利试验,n = 3,5.0=p ,有X ~ b (3, 0.5),p (0) = 0.5 3 = 0.125,375.05.05.013)1(21=××⎟⎟⎠⎞⎜⎜⎝⎛=p , 375.05.05.023)2(12=××⎟⎟⎠⎞⎜⎜⎝⎛=p , p (3) = 0.5 3 = 0.125.例 现有5台机床,每台机床一小时内平均开动18分钟,且是否开动相互独立,以X 表示同一时刻开动的机床数,求X 的概率分布.解:X 的全部可能取值为0, 1, 2, 3, 4, 5 ,将每台机床是否开动看作一次试验.每次试验两种结果:开动A ,不开动A ;每次试验相互独立;每次试验概率P (A ) = 0.3. 即n 重伯努利试验,n = 5,p = 0.3,有X ~ b (5, 0.3).p (0) = 0.7 5 = 0.16807,36015.07.03.015)1(41=××⎟⎟⎠⎞⎜⎜⎝⎛=p , 3087.07.03.025)2(32=××⎟⎟⎠⎞⎜⎜⎝⎛=p , 1323.07.03.035)3(23=××⎟⎟⎠⎞⎜⎜⎝⎛=p , 02835.07.03.045)4(14=××⎟⎟⎠⎞⎜⎜⎝⎛=p , p (5) = 0.3 5 = 0.00243 .一般地,如果随机变量X 服从二项分布,概率函数值p (k ) 将随着k 的增加,先逐渐增加,达到最大值后,又逐渐减少.通常,一个随机变量X 的概率函数或密度函数的最大值点称为X 的最可能值.二项分布b (n , p )的最可能值为⎩⎨⎧+−++++=.)1(,1)1()1(,)1(],)1[(0是正整数时当或不是正整数时当p n p n p n p n p n k 这里[x ]表示不超过x 的最大整数.如[2.3] = 2,[3.14] = 3,[−1.2] = −2.证:若X ~ b (n , p ),有n k p p k n k n p p k n k p k n k kn k ≤≤−−=−⎟⎟⎠⎞⎜⎜⎝⎛=−−0,)1()!(!!)1()(, 则11)1()!1()!1(!)1()!(!!)1()(+−−−−+−−−−−=−−k n k k n k p p k n k n p p k n k n k p k p ⎟⎠⎞⎜⎝⎛+−−−⋅−−−=−−11)1()!()!1(!1k n p k pp p k n k n k n k)1()1()1()!()!1(!1+−−+⋅−−−=−−k n k k p n p p k n k n k n k , 当k < (n + 1) p 时,有p (k ) > p (k − 1);当k > (n + 1) p 时,有p (k ) < p (k − 1).如果(n + 1) p 不是正整数,取k 0 = [(n + 1) p ],有k 0 < (n + 1) p ,即p (k 0) > p (k 0 − 1);且k 0 + 1 > (n + 1) p ,即p (k 0 + 1) < p (k 0). 故p (k 0) 为最大值.如果(n + 1) p 是正整数,取k 0 = (n + 1) p ,即p (k 0) = p (k 0 − 1), 故p (k 0) 和p (k 0 − 1) 都是最大值.如X ~ B (3, 0.5),有(n + 1) p = 4 × 0.5 = 2是正整数,最可能值k 0 = 2或1;X ~ B (5, 0.3),有(n + 1) p = 6 × 0.3 = 1.8不是正整数,最可能值k 0 = [1.8] = 1.三.二项分布的数学期望和方差组合数公式⎟⎟⎠⎞⎜⎜⎝⎛−−⋅=−⋅−−⋅=−⋅=⎟⎟⎠⎞⎜⎜⎝⎛11)!()!1()!1()!(!!k n k n k n k n k n k n k n k n , (n ≥ k > 0). 二项分布b (n , p )的数学期望为∑∑∑=−−=−=−−⎟⎟⎠⎞⎜⎜⎝⎛−−=−⎟⎟⎠⎞⎜⎜⎝⎛−−⋅⋅=−⎟⎟⎠⎞⎜⎜⎝⎛⋅=nk k n k n k kn k nk k n k p p k n np p p k n k n k p p k n k X E 1110)1(11)1(11)1()( = np [ p + (1 − p )]n − 1 = np .又因∑∑∑=−=−=−−⎟⎟⎠⎞⎜⎜⎝⎛⋅+−⎟⎟⎠⎞⎜⎜⎝⎛−−⋅−=−⎟⎟⎠⎞⎜⎜⎝⎛⋅=nk k n k n k k n k nk k n k p p k n k p p k n k k p p k n k X E 002022)1()1(11)()1()( )()1(22)1()1()(22X E p p k n k k n n k k nk k n k+−⎟⎟⎠⎞⎜⎜⎝⎛−−−−⋅−=∑=− np p p k n pn n nk kn k +−⎟⎟⎠⎞⎜⎜⎝⎛−−−=∑=−−222)1(22)1( = n (n − 1) p 2 [ p + (1 − p )]n − 2 + np = (n 2 − n ) p 2 + np ,故方差为Var (X ) = E (X 2 ) − [E (X )]2 = (n 2 − n ) p 2 + np − (np )2 = − np 2 + np = np (1 − p ).2.4.2.泊松分布一.泊松分布泊松分布是一种理论推导的极限分布(成立的条件和推导过程见附录). 定义 若随机变量X 的概率函数为λλ−=e !)(k k p k, k = 0, 1, 2, …… ;λ > 0,则称X 服从参数为 λ 的泊松分布(Poisson’s Distribution ),记为X ~ P (λ).泊松分布的实际背景是已知平均发生次数为常数λ ,实际发生次数的概率分布.如足球比赛进球数,商店进店人数,电话接听次数等.非负性:λ > 0时,0e !>−λλk k;正则性:1e e e !=⋅=⋅−∞=−∑λλλλk kk .例 已知一场足球比赛的进球数X 服从参数λ = 2.3的泊松分布,求比分为0:0, 1:0以及总进球数超过5个的概率.解:因X ~ P(2.5),则3.2e !3.2)(−=k k p k , k = 0, 1, 2, …….比分0:0,即X = 0,100.0e e !03.2)0(3.23.20===−−p (查表);比分1:0,即X = 1,231.0100.0331.0e 3.2e !13.2)1(3.23.21=−===−−p (查表);总进球数超过5个,即X > 5,030.0970.01e !3.21e!3.2}5{53.263.2=−=−==>∑∑=−∞=−k k k k k k X P (查表). 例 已知某公用电话每小时内打电话的人数X 服从参数为λ = 8的泊松分布.求某一小时内无人打电话的概率,恰有10人打电话的概率,至少有10人打电话的概率.解:因X ~ P(8),有8e !8}{−==k k X P k . 无人打电话的概率0003.0e e !08}0{880====−−X P ,恰有10人打电话的概率099.0717.0816.0e !108}10{810=−===−X P (查表),至少有10人打电话的概率283.0717.01}9{1e !8}10{108=−=≤−==≥∑∞=−X P k X P k k (查表). 例 已知某商店一天中某种贵重商品的销售件数X 服从泊松分布P (7),问该商店每天应该准备多少件该商品才能以99.9%以上的概率满足顾客需要?解:设准备了a 件该商品,X ~ P(7),则7e !7)(−=k k p k .事件“满足顾客需要”,即X ≤ a ,有P {X ≤ a } ≥ 0.999,故查表可得a = 16. 泊松分布P (λ )的最可能值为⎩⎨⎧−=.,1,],[0是正整数时当或不是正整数时当λλλλλk 证:若X ~ P(λ),有L ,2,1,0,e !)(==−k k k p kλλ,故k k k k k k k k p k p k k k k−⋅−=⎟⎠⎞⎜⎝⎛−⋅−=−−=−−−−−−−−−λλλλλλλλλλe )!1(1e )!1(e)!1(e !)1()(111,当k < λ 时,有p (k ) > p (k − 1);当k > λ 时,有p (k ) < p (k − 1).如果λ 不是正整数,取k 0 = [λ ] ,有k 0 < λ ,即p (k 0) > p (k 0 − 1);且k 0 + 1 > λ ,即p (k 0 + 1) < p (k 0). 故p (k 0) 为最大值.如果λ 是正整数,取k 0 = λ ,即p (k 0) = p (k 0 − 1), 故p (k 0) 和p (k 0 − 1) 都是最大值. 二.泊松分布的数学期望和方差泊松分布P (λ )的数学期望为λλλλλλλλλλλ=⋅=−⋅=−=⋅=−∞=−−∞=−∞=−∑∑∑e e )!1(e e)!1(e!)(111k k k kk kk k k k X E ,即泊松分布的参数 λ 反映平均发生次数.又因)()!2(e e!e!)(e!)(222222X E k k k k k k k k X E k k k kk kk k+−⋅=⋅+⋅−=⋅=∑∑∑∑∞=−−∞=−∞=−∞=−λλλλλλλλλ= λ 2 e −λ ⋅ e λ + λ = λ 2 + λ ,故方差为Var (X ) = E (X 2 ) − [E (X )]2 = λ 2 + λ − (λ )2 = λ .三.二项分布的泊松近似二项分布与泊松分布的实际背景都是反映发生次数问题.下面的定理说明了二者之间的联系,泊松分布是二项分布的一种极限分布. 定理 (泊松定理)在n 重伯努利试验中,记事件A 在每次试验中发生的概率为与试验次数n 有关的数p n ,如果当n → +∞ 时,有n p n → λ ,则λλ−−+∞→=−⎟⎟⎠⎞⎜⎜⎝⎛e !)1(lim k p p k n k k n n k n n . 证:记λ n = n p n ,有λλ=+∞→n n lim ,因nk n n n kn n k n n n n n n p )(11)1(−−⋅−−−⎟⎠⎞⎜⎝⎛−+=⎟⎠⎞⎜⎝⎛−=−λλλλ,且e 1lim =⎟⎠⎞⎜⎝⎛−+−+∞→nnn n n λλ,λλ−=−−+∞→n k n n n )(lim , 则λλλλ−−−⋅−+∞→−+∞→=⎟⎠⎞⎜⎝⎛−+=−e 1lim )1(lim )(n k n n n n k n n n n n n p ,又因⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−=+−−=⎟⎟⎠⎞⎜⎜⎝⎛n k n k n k k n n n k n k 1111!!)1()1(L L ,且11111lim =⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−+∞→n k n n L , 故⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−−=−⎟⎟⎠⎞⎜⎜⎝⎛−+∞→−+∞→n k n p p k n p p k n k n nk n k n k n n k n n 1111)1(!lim )1(lim L λλ−+∞→−+∞→+∞→=⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−⋅−⋅=e !1111lim )1(lim !)(lim k n k n p k np k n k n n n k n n L . 此定理表明对于二项分布b (n , p ),当n 很大,p 很小时,可用泊松分布P (λ ) 近似,其中λ = n p .例 某地区每年人口意外死亡率为0.0001,现有60000人投保人身意外保险,求一年内因投保人意外死亡恰好赔付8人的概率以及赔付不超过5人的概率.解:设X 表示“一年内因投保人意外死亡而赔付的人数”,X ~ B (60000, 0.0001).则5999289999.00001.0860000}8{××⎟⎟⎠⎞⎜⎜⎝⎛==X P ,∑=−××⎟⎟⎠⎞⎜⎜⎝⎛=≤50600009999.00001.060000}5{k kk k X P , 但显然计算很繁琐,为便于计算,用泊松分布近似.因n = 60000很大,p = 0.0001很小,λ = np = 6,有)6(~P X &,故103.0744.0847.0e !86}8{68=−=≈=−X P ,446.0e !6}5{506=≈≤∑=−k k k X P .2.4.3. 超几何分布一.超几何分布在N 件产品中,有M 件次品,从中不放回地取n 件,以X 表示取得的次品数.设X 取值为k ,一方面,显然有k ≤ n 且k ≤ M ,即k ≤ min{n , M },另一方面,有k ≥ 0且n − k ≤ N − M ,可得k ≥ M + n − N ,即k ≥ max{0, M + n − N }.这样X 的全部可能取值为l , l + 1, …, L ,其中l = max{0, M + n − N },L = min{n , M },且⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛==n N k n M N k M k X P }{.定义 若随机变量X 的概率函数为⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛=n N k n M N k M k p )(,k = l , l + 1, …, L ,l = max(0, n + M − N ),L = min(M , n ),M < N ,n < N , 则称X 服从超几何分布(Hypergeometric Distribution ),记为X ~ h (n , N , M ).超几何分布的实际背景是古典概型中的不放回抽样检验问题. 注:有放回检验抽样问题对应的是二项分布.非负性:0>⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛n N k n M N k M ;正则性:10=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛∑∑==n N n N n N k n M N k M n N k n M N k M Ll k L k .注:比较(1 + x )M(1 + x )N − M与(1 + x )N中x n的系数可以证明⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛∑=n N k n M N k M Ll k .例 一袋中有3个红球,2个白球,不放回地取出3个球,X 表示取得的红球数.求X 的概率分布.解:不放回抽样,N = 3,M = 2,n = 3,则X ~ h (3, 5, 3).故X 的全部可能取值为1, 2, 3, (l = max (0, n + M − N ) = 1,L = min(n , M ) = 3),3.0352213}1{=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛==X P ,6.0351223}2{=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛==X P ,1.0350233}3{=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛==X P . 超几何分布h (n , N , M )的最可能值为⎪⎩⎪⎨⎧+++−++++++++++++=.21)1(,121)1(21)1(,21)1(],21)1[(0是正整数时当或不是正整数时当N M n N M n N M n N M n N M n k证:若X ~ h (n , N , M),有)!()!()!()!(!!1)(k n M N k n M N k M k M n N n N k n M N k M k p +−−−−⋅−⋅⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛=, 故p (k ) − p (k − 1))!1()!1()!1()!1()!(!)!()!()!(!)!(!−+−−+−+−−⎟⎟⎠⎞⎜⎜⎝⎛−−+−−−−⎟⎟⎠⎞⎜⎜⎝⎛−=k n M N k n k M k n N M N M k n M N k n k M k n N M N M)]()1)(1[()!()!1()!1(!)!(!k n M N k k n k M k n M N k n k M k n N M N M +−−−+−+−+−−+−+−⎟⎟⎠⎞⎜⎜⎝⎛−=)]2()1)(1[()!()!1()!1(!)!(!+−+++−−+−+−⎟⎟⎠⎞⎜⎜⎝⎛−=N k n M k n M N k n k M k n N M N M .当21)1(+++<N M n k 时,有p (k ) > p (k − 1);当21)1(+++>N M n k 时,有p (k ) < p (k − 1). 如果21)1(+++N M n 不是正整数,取21)1[(0+++=N M n k ,有21)1(0+++<N M n k ,即p (k 0) > p (k 0 − 1);且21)1(10+++>+N M n k ,即p (k 0 + 1) < p (k 0).故p (k 0) 为最大值.如果21)1(+++N M n 是正整数,取21)1(0+++=N M n k ,即p (k 0) = p (k 0 − 1),故p (k 0) 和p (k 0 − 1) 都是最大值. 二.超几何分布的数学期望和方差超几何分布h (n , N , M )的数学期望为N nM n N k n M N k M N nM n N n N k n M N k M k M k n N k n M N k M k X E Ll k L lk L l k =⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−−⋅=⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−−⋅=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛⋅=∑∑∑===11111111)(, 又因∑∑∑===⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛⋅+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛⋅−=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛⋅=L lk L l k Ll k n N k n M N k M k n N k n M N k M k k n N k n M N k M k X E )()(222 ∑=+⎟⎟⎠⎞⎜⎜⎝⎛−−−−⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−−−−⋅−=Llk X E n N n n N N k n M N k M k k M M k k )(22)1()1(22)1()1()(2N nM N N M M n n N nM n N k n M N k M N N M M n n Ll k +−−−=+⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−−⋅−−−=∑=)1()1()1(2222)1()1()1(, 故方差为)1())(()1()1)(1()]([)()Var(222222−−−=−+−−−=−=N N n N M N nM N M n N nM N N M n nM X E X E X . 为了便于记忆,可将超几何分布与二项分布的数学期望和方差进行比较.二项分布b (n , p ):数学期望E (X ) = np ,方差Var (X ) = np (1 − p );超几何分布h (n , N , M ):数学期望N M nX E =)(,方差11)Var(−−⎟⎠⎞⎜⎝⎛−=N n N N M N M n X ; 可见分布h (n , N , M )中的N M 相当于二项分布b (n , p )中的p ,方差修正因子为1−−N nN . 三.超几何分布的二项近似直观上,当抽样个数n 远小于M 及N − M 时,不放回抽样问题可近似看作有放回抽样问题,也就是此时超几何分布可用二项分布近似.定理 如果当N → +∞ 时,p NM→, (0 < p < 1),则k n k N p p k n n N k n M N k M −+∞→−⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛)1(lim . 证:因⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−=+−−=⎟⎟⎠⎞⎜⎜⎝⎛N n N n N n n N N N n N n 1111!!)1()1(L L , 且⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛M k M k M k M k 1111!L ,⎟⎠⎞⎜⎝⎛−−−−⎟⎠⎞⎜⎝⎛−−−−=⎟⎟⎠⎞⎜⎜⎝⎛−−−M N k n M N k n M N k n M N kn 1111)!()(L , 故⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛−−−−⎟⎠⎞⎜⎝⎛−−−−⋅⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−+∞→+∞→N n N n N M N k n M N k n M N M k M k M n N k n M N k M n k n k N N 1111!1111)!()(1111!lim lim L L L ⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛−−−−⎟⎠⎞⎜⎝⎛−−⋅⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−⋅−⋅−=−+∞→N n N M N k n M N M k M N M N M k n k n nk n k N 111111111111)()!(!!lim L L L ⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛−−−−⎟⎠⎞⎜⎝⎛−−⋅⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−⋅⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛⋅⎟⎟⎠⎞⎜⎜⎝⎛=+∞→−+∞→N n N M N k n M N M k M N M N M k n N kn k N 111111111111lim 1lim L L L。
概率论与数理统计4-2 方差

X
,
为X的 标准化 变量
E ( X ), D( X )。 X 1 * ) E( X ) 0 解 E( X ) E( X 2 * * 2 * 2 E[( ) ] D( X ) E([ X ] ) [ E( X )] 1 1 2 D( X ) 1 E[( X ) ] 2
推论
若 X i (i 1, 2,...n)相互独立,则有: D( X 1 X 2 ... X n ) D( X 1 ) D( X 2 ) ... D( X n ) 进一步有:D( Ci X i ) [C D( X i )]
i 1 i 1 2 i n n
4. D(X)=0
P{X= C}=1 , 这里C=E(X)
下面我们的举例说明方差性质应用 .
例7 设X~B(n,p),求E(X)和D(X). 解
X~B(n,p), 则X表示n重努里试验中的
“成功” 次数 .
1 如第i次试验成功 i=1,2,…,n 若设 X i 0 如第i次试验失败
则X
1 fZ ( z) e 3 2
( z 5)2 18
.
四、切比雪夫不等式
定理 设随机变量X具有数学期望 E ( X ) , 方差 D( X ) 2 , 则对于任意正数 ,有不等式
事件{|X-E(X)|< }的概率越大,即随机变量X 集
P{| X E ( X ) | } 2 2 或 P{| X E ( X ) | } 1 2 由切比雪夫不等式可以看出,若 2 越小,则
b 2
2
b a ab E( X ) , D( X ) 2 12
概率论与数理统计第二讲

定义 设X是S上的随机变量F(x)为其分布函数, 如果存在定义在(-∞,+∞)上的非负实质函数 f(x),使得
F ( x)
x
f ( t )dt, x
则称X为连续型随机变量,称F(x)为连续型分 布函数,称f(x)为X的概率密度函数(或概率 密度或分布密度)。
设X为连续型随机变量,F(x)与f(x)分别 为其分布函数和概率密度 1)对任意常数a<b有
即
P(X<0)=P(X-3<-3)=0.1。
当μ=0且σ=1的正态分布N(0,1),称为标准正 态分布。 x2 1 2 概率密度 ( x ) e , x ,
2
在统计用表中给出了 x 0至x 3.49所对应 的( x)值。 当x 3.49时,( x) 1 ;
P(λ)
λ=np=1
0.368 0.368 0.184 0.061 0.015 0.004
例 某物业管理公司负责10000户居民的 房屋维修工作。假定每户居民是否报修 是相互独立的,且报修的概率都是0.04% 另外,一户居民住房的维修只需一名修理 工来处理。易知,在某个时段报修的居民 数X~B(10000,0.0004).试问 1)该物业管理公司至少需要配备多少名 维修工人,才能使居民报修后能得到及时 修理的概率不低于99%。
P (a X b) f ( x )dx
a
b
2)F(x)是连续函数,且当f(x)在x=x0处连续时
F ( x0 ) f ( x0 )
3)对任意常数c,P(X=c)=0,从而对任何a<b,有
P (a X b) P (a X b) P (a X b) P (a X b)
概率论与数理统计-第4章-第2讲-随机变量函数的数学期望
02 典型例题
应用 设市场上对某种产品每年需求量为X 吨 ,其中X ~ U [200,400],
每出售一吨可赚300元 , 售不出去,则每吨需保管费100元,问应
该组织多少货源, 才能使平均利润最大?
f
X
(
x)
1 200
,
0,
200 x 400, 其它
解 设组织n吨货源, 利润为 Y,
Y
因此只要掌握了期望的计算,所有的数字特征计算都解决了!
概率论与数理统计
学海无涯,祝你成功!
主讲教师 |
01 随机变量函数的数学期望
(1) Y = g(X) 的数学期望
设离散 r.v. X 的概率分布为 P( X xi ) pi , i 1, 2,
若无穷级数 g(xi ) pi 绝对收敛,则 i 1 E(Y ) g(xi ) pi i 1
设连续 r.v. X 的密度为 f (x)
若广义积分 g(x) f (x)dx 绝对收敛, 则
例 设风速V是一个随机变量,它服从(0,a)上的均匀分布,而飞 机某部位受到的压力F是风速V 的函数:
F kV 2
(常数k > 0),求F 的数学期望.
01 随机变量函数的数学期望
如何计算随机变量函数的数学期望?
一种方法是: 因为g(X)也是随机变量,故应有概率分布,它 的分布可以由X的分布求出来. 一旦我们知道了g(X)的分布,就 可以按照期望的定义把E[g(X)]计算出来.
xf (x, y)dxdy
0
0
dx
2xdy 1
1 x1
3
E(3X 2Y )
(3x 2 y) f (x, y)dxdy
0
0
概率论与数理统计第2章随机变量及其分布
1 4
)0
(
3 4
)10
C110
(
1 4
)(
3 4
)9
0.756.
(2)因为
P{X
6}
C160
(
1)6 4
(
3 4
)4
0.016
,
即单靠猜测答对 6 道题的可能性是 0.016,概率很小,所
以由实际推断原理可推测,此学生是有答题能力的.
二项分布 b(n, p) 和 (0 1) 分布 b(1, p ) 还有一层密切关
P{X 4} P(A1 A2 ) P(A1)P(A2 ) 0.48 ,
P{X 6} P(A1A2 ) P(A1)P(A2 ) 0.08 , P{X 10} P(A1A2 ) P(A1)P(A2 ) 0.32 , 即 X 的分布律为
X 0 4 6 10
P 0.12 0.48 0.08 0.32
点 e, X 都有一个数与之对应. X 是定义在样本空间 S 上的
一个实值单值函数,它的定义域是样本空间 S ,值域是实数
集合 {0,1,2},使用函数记号将 X写成
0, e TT , X=X (e) 1, e HT 或TH ,
2, e HH.
▪
例2.2 测试灯泡的寿命.
▪
样本空间是 S {t | t 0}.每一个灯泡的实际使用寿命可
(2)若一人答对 6 道题,则推测他是猜对的还是有答 题能力.
解 设 X 表示该学生靠猜测答对的题数,则
X
~
b(10,
1) 4
.
(1) X 的分布律为
P{X
k}
C1k0
(
1)k 4
(
3 4
北京工业大学《概率论与数理统计》课件 第2章 连续性随机变量
2.3.3 常见的连续型随机变量的概率密度函数
△ 均匀分布 △ 指数分布 △ 正态分布
1. 均匀分布 (Uniform) 若随机变量 X 的概率密度为
则称 X 服从区间[a, b]上的均匀分布,记作 X ~U[a, b]。(注: 有时也记作X~U(a, b) )
若X ~ U[a, b],则对于满足 a≤c≤d≤b 的 c 和 d,总有
例2.3.4 假设某地区成年男性的身高(单位: cm) X~N(170,7.692), 求该地区成年男性的身 高超过175 cm的概率。
解 根据假设X~N(170 ,7.692), μ=170, a=175, σ= 7.69。由(2.3.15) 式的后一式,得
小结
本讲首先介绍连续型随机变量、直方图、 概率密度函数及其性质;然后介绍三种常用的 连续型随机变量:均匀分布,指数分布和正态 分布;给出了三种分布应用的例子。
概率密度曲线可用来准确地刻画 X 的概率 分布情况。
2.3. 2 概率密度函数 定义2.3.1 若存在非负可积函数 f(x), 使
随机变量X落入任意区间(a, b]的概率
则称 X为连续型随机变量,f(x)为X的概率密 度函数,简称概率密度或密度。
对概率密度的进一步解释: 若 x 是 f(x) 的连续点,则有
且 f (μ+c) ≤ f (μ), f (μ-c)≤ f (μ). 故 f(x)以 x=μ为对称轴,并在 x =μ处达到最大 值
对
当 x→ ∞时,f(x) → 0。 这说明:曲线 f(x) 向左右伸展时,越来越贴 近 x 轴。即 f (x) 以 x 轴为渐近线。
对
可以证明: x =μσ
为 y = f (x) 曲线的两个拐点的横坐标。
最新概率论与数理统计第二章随机变量及其分布
X
x1
x2
…
xn
…
pk
p1
p2
…
pn
…
在离散型随机变量的概率分布中,事件“X=x1〞, “X=x2〞....“X=xk〞,...构成一个完备事件组。因此, 上述概率分布具有以下两个性质:
(1) pk 0,k 1,2,
(2)pk 1 k
满足上两式的任意一组数pk ,k 1,2, 都可以成为 离散型随机变量的概率分布。对于集合xk ,k 1,2,
解 按第一种方法。以X记“第1人维护的20台中同一时刻发 生故障的台数〞,以Ai(i=1,2,3,4)表示事件“第i人 维护的20台中发生故障不能及时维修〞,那么知80台中 发生故障而不能及时维修的概率为
P(A1UA2UA3UA4)≥P(A1)=P{X≥2}.
而X~b(20,0.01),故有 1 P{X2}1P{Xk} k0
b (k 1 ;n ,p ) kq
kq
当k<(n+1)p时,b(k;n,p)>b(k-1;n,p)
当k=(n+1)p时,b(k;n,p)=b(k-1;n,p)
当k>(n+1)p时,b(k;n,p)<b(k-1;n,p)
因为(n+1)p不一定是正整数,所以存在正整数m,使 得(n+1)p-1<m≤(n+1)P,当k=m时达到极大值。
k=1,2, …
P{X=k}= (1-p)k-1p,
并称X服从参数为p的几何分布。
几何分布的无记忆性
在贝努利试验中,等待首次成功的时间 服从几何 分布。现在假定在前m次试验中没有出现成功,那么为 了到达首次成功所再需要的等待时间 ′也还是服从几 何分布,与前面的失败次数m无关,形象化地说,就是 把过去的经历完全忘记了。因此无记忆性是几何分布所 具有的一个有趣的性质。但是更加有趣的是,在离散型 分布中,也只有几何分布才具有这样一种特殊的性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19
性质4 P(AB)=P(A)P(AB); 特别地, 若 BA, 则 (1) P(AB)=P(A)P(B); (2) P(A)P(B).
20
证明 因A=(AB)AB, 且(AB)(AB)=, 再由概率的有限可加性, 即得 P(A)=P(AB)+P(AB), 所以 P(AB)=P(A)P(AB) 如果BA, 则AB=B, 上式成为 P(AB)=P(A)P(B) 又由概率的非负性, P(AB)0知 P(A)P(B).
i i 0
5
从而
5 5 1 P ( S ) P Ai P ( Ai ) i 0 i 0 P ( A0 ) iP ( A0 ) 16 P ( A0 ),
i 1 5
1 i 于是 P ( A0 ) , P( Ai ) , (i=1,2,3,4,5) 16 16
6
数字
出现次数
0
1
2
3
4
5
6
7
8
9
60 62 67 68 64 56 62 44 58 67
因为p是一个无限不循环小数, 所以, 理论 上每个数字出现的次数应近似相等, 或它 们出现的频率应都接近0.1, 但7出现的频 率过小. 这就是费林生产生怀疑的理由.
7
例2 检查某工厂一批产品的质量, 从中分 别抽取10件, 20件, 50件, 100件, 150件, 300件检查, 检查结果及次品出现的频率 列入下表. 表1-2-1
32
作业 习题1-2Байду номын сангаас第3页开始 第1,2,3,4,5,6,7题
P () P An P ( An ) P (). n 1 n 1 n 1 由概率的非负性知, P()0, 故由上式可知 P()=0.
注: 不可能事件的概率为0, 但反之不然.
16
性质2(有限可加性) 设A1,A2,,An是两两 互不相容的事件, 则有 P(A1A2An)=P(A1)+P(A2)++P(An).
12
二, 概率的公理化定义 任何一个数学概念都是对现实世界的抽 象, 这种抽象使得其具有广泛的适用性. 概率的频率解释为概率提供了经验基础, 但是不能作为一个严格的数学定义, 从概 率论有关问题的研究算起, 经过近三个世 界的漫长探索历程, 人们才真正完整地解 决了概率的严格数学定义. 1933年, 前苏 联著名数学家柯尔莫哥洛夫, 在他的《概 率论的基本概念》一书中给出了现在已 被广泛接受的概率公理化体系.
11
例3 从某鱼池中取100条鱼, 做上记号后 再放入该鱼池中. 现从该池中任意捉来40 条鱼, 发现其中两条有记号, 问池内大约 有多少条鱼? 解 设池内有 n 条鱼, 则从池中捉到一条 100 有记号鱼的概率为 . 它近似于捉到 n 2 100 2 . 解之 有记号鱼的频率 , 即 40 n 40 得 n2000. 故池内大约有 2000 条鱼.
21
性质5 对任一事件A, P(A)1. 证明 因AS, 由性质4得P(A)P(S)=1. 性质6 对任意两个事件A,B, 有 P(AB)=P(A)+P(B)P(AB). 证明 因AB=A(BAB), 且 A(BAB)=, ABB, 故得 P(AB)=P(A)+P(BAB) =P(A)+P(B)P(AB).
26
例5 观察某地区未来5天的天气预报, 记Ai 为事件:"有i天不下雨", 已知P(Ai)=iP(A0), i=1,2,3,4,5. 求下列各事件的概率: (1) 5天均下雨; (2) 至少一天不下雨; (3)至 多三天不下雨.
27
解 显然 A0,A1, ,A5 是两两不相容事件且
A S,
抽取总件数n
次品数m 次品频率m/n
10
0 0
20
1
50
3
100
5
150
7
200
11
300
16
0.050 0.060 0.050 0.047 0.055 0.053
8
表1-2-1
抽取总件数n 次品数m 次品频率m/n 10 0 0 20 1 50 3 100 5 150 7 200 11 300 16
13
定义3 设E是随机试验, S是它的样本空 间, 对于E的每一个事件A赋予一个实数, 记为P(A), 若P(A)满足下列三个条件: (1) 非负性: 对于每一个事件A, 有P(A)0; (2) 完备性: P(S)=1; (3) 可列可加性: 设A1,A2,是两两互不相 容事件, 则有
P( Ai ) P( Ai ).
22
注: 性质6可推广到任意n个事件的并的情 形, 如n=3时, 有 P(ABC)=P(A)+P(B)+P(C)P(AB) P(BC)P(AC)+P(ABC).
23
一般地, 对任意n个事件A1,A2,,An, 有
n n n P Ai P ( Ai ) P ( Ai Aj ) P ( Ai A j Ak ) i j i j k i 1 i 1 n 1 (1) P( A1 A2 An ). n
5
例1 1873年, 英国学者沈克士公布了一个 圆周率p的数值, 它的数目在小数点后一 共有707位之多! 但几十年后, 曼彻斯特的 费林生对它产生了怀疑. 他统计了p的608 位小数, 得到了下表:
数字
出现次数
0
1
2
3
4
5
6
7
8
9
60 62 67 68 64 56 62 44 58 67
你能说出他产生怀疑的理由吗?
3
一, 频率及其性质
定义 1 若在相同条件下进行 n 次试验, 其中 事件 A 发生的次数为 rn(A), 则称 rn ( A) f n ( A) 为事件 A 发生的频率. n 易见, 频率具有下述基本性质: (1) 0fn(A)1; (2) fn(S)=1; (3) 设 A1,A2, ,Ak 是两两互不相容的事件, 则 fn(A1A2 Ak)=fn(A1)+fn(A2)+ +fn(Ak)
0.050 0.060 0.050 0.047 0.055 0.053
由表1-2-1看出, 在抽出的n件产品中, 次品 数m随着n的不同而取不同值, 但次品频率 m/n仅在0.05附近有微小变化. 这里0.05就 次品频率的稳定值.
9
实际观察中, 通过大量重复试验得到随机 事件的频率稳定于某个数值的例子还有 很多. 它们均表明这样一个事实: 当试验 次数增大时, 事件A发生的频率fn(A)总是 稳定在一个确定数p附近, 而且偏差随着 试验次数的增大越来越小. 频率的这种性 质在概率论中称为频率的稳定性. 频率稳 定性的事实说明了刻划随机事件A发生 可能性大小的数—概率的客观存在性.
25
(2) P ( A) 1 P ( A) 1 0.5 0.5, P(AB)=P(A)P(AB)=0.50.2=0.3 (3) P(AB)=P(A)+P(B)P(AB) =0.5+0.40.2=0.7 (4) P ( AB ) P ( A B ) 1 P ( A B ) =10.7=0.3.
28
记(1),(2),(3)中三个事件分别为A,B,C, 则 1 (1) P( A) P ( A0 ) , 16 5 15 (2) P( B) P Ai 1 P ( A0 ) , 16 i 1
3 (3) P(C ) P Ai i 0 7 P ( A0 ) P ( A1 ) P ( A2 ) P ( A3 ) 16
概率论与数理统计第2讲
本讲义可在网址 或 ftp:// 下载
1
§1.2 随机事件的概率
2
对一个随机事件A, 在一次随机试验中, 它是否会发生, 事先不能确定. 但我们会 问, 在一次试验中, 事件A发生的可能性 有多大? 并希望找到一个合适的数来表 征事件A在一次试验中发生的可能性大 小, 为此, 本讲首先引入频率的概念, 它描 述了事件发生的频繁程度, 进而引出表征 事件在一次试验中发生的可能性大小的 数—概率.
P( A ) P( A ) 0
k k 1 k
n
P ( A1 ) P ( A2 ) P ( An ).
18
性质 3 P ( A) 1 P( A). 证明 因 A A S , 且 AA , 由性质 2, 得 1 P ( S ) P ( A A) P ( A) P ( A). 这个性质也经常写成 P ( A) 1 P ( A).
4
根据上述定义, 频率反映了一个随机事件 在大量重复试验中发生的频繁程度. 例如, 抛掷一枚均匀硬币时, 在一次试验中虽然 不能肯定是否会出现正面, 但大量重复试 验时, 发生出现正面和反面的次数大致相 等, 即各占总试验次数的比例大致为0.5, 并且随着试验次数的增加, 这一比例更加 稳定地趋于0.5. 这似乎表明频率的稳定值与事件发生的 可能性大小(概率)之间有着内在的联系.
17
证明 令An+1=An+2==, 即有 AiAj=, ij, i,j=1,2,. 由概率的可列可加性得
P ( A1 A2 An ) P Ak P ( Ak ) k 1 k 1
P ( Ak )
k 1
n
k n 1
29
例6 某城市中发行2种报纸A,B. 经调查, 在这2种报纸的订户中, 订阅A报的有45%, 订阅B报的有35%, 同时订阅2种报纸A,B 的有10%. 求只订一种报纸的概率a.
30
解 记事件A={订阅A报}, B={订阅B报}, 则 {只订一种报} ( A B) ( B A) AB BA, 又这两事件是互不相容的, 由概率加法公 式及性质4, 有 a P( A AB) P( B AB)