大数据应用分析解决方案

合集下载

企业大数据分析与应用方案

企业大数据分析与应用方案

企业大数据分析与应用方案第1章企业大数据概述 (4)1.1 大数据的概念与价值 (4)1.2 企业大数据的发展现状与趋势 (4)1.3 企业大数据应用的核心技术 (4)第2章数据采集与预处理 (5)2.1 数据源识别与接入 (5)2.1.1 数据源识别 (5)2.1.2 数据接入 (5)2.2 数据清洗与转换 (5)2.2.1 数据清洗 (6)2.2.2 数据转换 (6)2.3 数据存储与管理 (6)2.3.1 数据存储 (6)2.3.2 数据管理 (6)第3章数据挖掘算法与应用 (7)3.1 监督学习算法及其应用 (7)3.1.1 线性回归算法 (7)3.1.2 逻辑回归算法 (7)3.1.3 决策树算法 (7)3.1.4 随机森林算法 (7)3.1.5 支持向量机算法 (7)3.2 无监督学习算法及其应用 (7)3.2.1 Kmeans聚类算法 (8)3.2.2 层次聚类算法 (8)3.2.3 密度聚类算法 (8)3.2.4 主成分分析(PCA)算法 (8)3.3 强化学习算法及其应用 (8)3.3.1 Q学习算法 (8)3.3.2 深度Q网络(DQN)算法 (8)3.3.3 策略梯度算法 (8)3.3.4 actorcritic算法 (8)第4章数据可视化与交互分析 (9)4.1 数据可视化技术与方法 (9)4.1.1 基本可视化技术 (9)4.1.2 高级可视化技术 (9)4.2 交互式数据分析与摸索 (9)4.2.1 数据筛选 (9)4.2.2 数据联动 (9)4.2.3 下钻与上卷 (9)4.2.4 数据挖掘与分析模型 (10)4.3 数据可视化工具与平台 (10)4.3.2 Power BI (10)4.3.3 ECharts (10)4.3.4 FineReport (10)4.3.5 QlikView/Qlik Sense (10)第5章企业运营分析 (10)5.1 销售数据分析 (10)5.1.1 销售趋势分析 (10)5.1.2 客户群体分析 (11)5.1.3 产品结构分析 (11)5.1.4 销售渠道分析 (11)5.2 供应链数据分析 (11)5.2.1 供应商分析 (11)5.2.2 库存分析 (11)5.2.3 物流分析 (11)5.2.4 生产分析 (11)5.3 企业财务管理分析 (11)5.3.1 财务报表分析 (12)5.3.2 成本分析 (12)5.3.3 资金管理分析 (12)5.3.4 投资分析 (12)第6章客户关系管理分析 (12)6.1 客户细分与画像 (12)6.1.1 客户细分方法 (12)6.1.2 客户画像构建 (12)6.2 客户满意度与忠诚度分析 (13)6.2.1 客户满意度调查 (13)6.2.2 客户忠诚度分析 (13)6.3 客户流失预警与挽回策略 (13)6.3.1 客户流失预警 (13)6.3.2 客户挽回策略 (13)第7章市场营销分析 (14)7.1 市场趋势分析 (14)7.1.1 市场规模及增长速度 (14)7.1.2 市场细分及需求特征 (14)7.1.3 市场竞争格局 (14)7.2 竞品分析 (14)7.2.1 竞品产品特点及优劣势 (14)7.2.2 竞品市场表现及策略 (14)7.2.3 竞品用户评价及口碑 (14)7.3 营销策略优化与评估 (14)7.3.1 产品策略优化 (14)7.3.2 价格策略优化 (15)7.3.3 渠道策略优化 (15)7.3.5 营销策略评估 (15)第8章互联网大数据应用 (15)8.1 网络舆情分析 (15)8.1.1 舆情监测与预警 (15)8.1.2 舆情分析关键技术 (15)8.2 用户行为分析 (15)8.2.1 用户行为数据采集 (15)8.2.2 用户行为分析模型 (16)8.3 个性化推荐系统 (16)8.3.1 推荐系统概述 (16)8.3.2 推荐算法 (16)8.3.3 推荐系统优化 (16)第9章企业风险管理与决策支持 (16)9.1 风险评估与预警 (16)9.1.1 风险评估模型构建 (17)9.1.2 预警指标体系设计 (17)9.1.3 风险预警与应对策略 (17)9.2 数据驱动的决策支持 (17)9.2.1 数据挖掘与分析 (17)9.2.2 决策模型构建 (17)9.2.3 决策支持系统设计与实现 (17)9.3 智能决策与自动化执行 (17)9.3.1 智能决策模型构建 (17)9.3.2 自动化执行策略设计 (17)9.3.3 智能决策与自动化执行的协同优化 (18)第10章大数据未来发展趋势与应用 (18)10.1 大数据技术的发展趋势 (18)10.1.1 数据体量与增长速度 (18)10.1.2 数据分析技术 (18)10.1.3 数据安全技术 (18)10.1.4 数据治理与合规 (18)10.2 企业大数据应用创新案例 (18)10.2.1 金融行业 (18)10.2.2 零售行业 (18)10.2.3 制造业 (18)10.2.4 医疗健康 (19)10.3 企业大数据战略规划与实施建议 (19)10.3.1 明确战略目标 (19)10.3.2 构建数据平台 (19)10.3.3 培养数据人才 (19)10.3.4 强化数据治理 (19)10.3.5 推动创新应用 (19)第1章企业大数据概述1.1 大数据的概念与价值大数据,指的是在规模(数据量)、多样性(数据类型)和速度(数据及处理速度)三个方面超出传统数据处理软件和硬件能力范围的数据集合。

金融行业的大数据应用案例及解决方案

金融行业的大数据应用案例及解决方案

金融行业的大数据应用案例及解决方案清晨的阳光透过窗帘的缝隙,洒在我的键盘上,指尖轻触键盘,思绪如大数据般涌现。

今天,我们要聊聊的是金融行业的大数据应用案例及解决方案。

这是一个充满挑战和机遇的话题,让我们一起走进这个奇妙的世界。

一、大数据在金融行业的应用案例1.风险控制记得有一次,我帮助一家银行构建风险控制模型。

通过分析海量数据,我们发现,借款人的还款能力与他们的社交网络、购物习惯等息息相关。

于是,我们设计了一个基于大数据的风险控制模型,将借款人的这些信息纳入评估体系。

这样一来,银行在发放贷款时,能够更加精准地判断借款人的还款能力,降低风险。

2.客户画像在金融行业,了解客户是至关重要的。

一家保险公司通过大数据分析,为客户构建了详细的画像。

他们发现,不同年龄、职业、地域的客户,对保险产品的需求差异很大。

于是,公司根据这些数据,推出了一系列针对不同客户群体的保险产品,大大提高了销售额。

3.资产配置一家基金公司利用大数据,对全球股市、债市、商品市场等进行分析,为投资者提供最优的资产配置方案。

他们通过实时数据监控,调整投资组合,降低投资风险。

这种方法,让投资者在市场波动中,始终保持稳健的收益。

二、大数据在金融行业的解决方案1.数据采集与清洗大数据的第一步,是采集和清洗数据。

金融行业涉及的数据量巨大,包括客户信息、交易记录、市场行情等。

我们需要通过技术手段,将这些数据进行整合、清洗,为后续分析提供准确的基础数据。

2.数据存储与管理金融行业的数据存储与管理,需要考虑安全性、稳定性、可扩展性等因素。

我们可以采用分布式存储、云计算等技术,确保数据的安全和高效访问。

3.数据分析与挖掘数据分析与挖掘是大数据的核心。

金融行业可以利用机器学习、深度学习等技术,对数据进行深入分析,挖掘出有价值的信息。

4.应用场景拓展大数据在金融行业的应用场景非常广泛。

我们可以将大数据技术应用于风险控制、客户服务、投资决策等方面,提高金融服务的质量和效率。

旅游大数据分析及解决方案

旅游大数据分析及解决方案

旅游大数据分析及解决方案随着旅游业的迅速发展和互联网技术的不断成熟,旅游大数据分析已经成为了一个新的热点领域。

旅游大数据通过对旅游业内各个方面的数据进行挖掘和分析,可以为旅游业的发展提供有力的支撑和保障,促进旅游产业的转型升级和可持续发展。

一、旅游大数据的来源和应用旅游大数据的来源主要包括旅游景区、酒店、交通、旅游服务等方面的数据。

这些数据反映了旅游业内各个领域的运营情况和旅游者的行为习惯,可以被用来进行预测、分析和改进旅游产品和服务。

旅游大数据在旅游业内的应用主要包括以下几个方面:1、旅游消费分析通过对旅游者的消费数据进行分析,可以了解旅游者的消费热点和偏好,为旅游企业提供精准的目标市场和产品开发方向。

2、旅游流量预测通过对历年来各个旅游景区的游客人数和流量进行分析,可以预测未来的旅游热点,提前规划旅游资源的开发和利用。

3、旅游营销策略旅游大数据可以帮助旅游企业制定针对不同旅游者需求和消费能力的营销策略,提高旅游产品的销售额和市场竞争力。

二、旅游大数据的挑战和解决方案尽管旅游大数据应用前景广阔,但旅游大数据分析也面临着一些挑战和问题,需要想出解决方案。

1、数据统一标准化问题旅游大数据来源的多样性和异构性,使得数据的格式和结构存在差异,不利于分析和处理。

解决这个问题需要建立旅游数据的统一标准化体系,实施数据互通和共用。

2、数据安全和隐私问题大数据的收集和分析需要大量的个人数据和敏感信息,如何保证个人数据的安全和隐私已经成为一个急需解决的问题。

解决这个问题需要建立完善的数据监管和管理制度,并加强对数据泄露的防范和处置。

3、数据分析专业性问题旅游大数据分析需要具有相关专业知识和技能的分析人才,这是一个目前比较缺乏的资源。

为了解决这个问题,需要加强对相关专业人才的培养和引进,提高企业对数据分析人才的重视程度。

三、结论旅游大数据分析可以帮助旅游业实现更高效的运营和更多元化的发展,在当前大数据应用的浪潮中,对于旅游业而言,更是一条显得尤为重要的借路。

旅游大数据分析及解决方案(旅游大数据技术应用框架)

旅游大数据分析及解决方案(旅游大数据技术应用框架)

五、 大数据报告合作形式
数据通过不断累计,将建立起一个更加完善的数据分析 体系,使数据分析工作更加合理更加科学。旅游大数据通过 报告形式直接呈现,融合背景、营销行为、营销效果等于一 体,通过阶段分析报告和年终报告形式从局部和整体建立完 善的宏观思维,很好的指导政府部门做好工作计划和评估。
中智游集团
报告名称
服务周期
报告说明 每三个月一期
主要内容 含第四章所有 项
旅游大数据报 一年 告
六、 服务排期
排期以合同签订之日起计算,若有更改相应后延。
七、 工作计划和内容
1. 数据基础搭建()
城市行政区域地理位置坐标确认; 旅游景区坐标标注; 旅游监控关键词锁定;
2. 数据累计阶段
9
应用项目细则描述1游客分析客群消费行为分析游览行为路径分析消费偏体形象形成立体描述通过游客访问地理信息和消费行为轨迹来区别游客属性根据对该数据的长期积累形成游客分析数据库满足各项基于游客的数据分析工中智游集团旅游大数据分析报竞争策略分析报告根据主要消费人群特征结合旅游资源业态特征锁定全国与目的地形成对立的旅游品牌和旅游目的地并进行竞争力对比分析寻找扩大旅游人群和消费的最佳途径和方法
中智游集团
搜索诉求和画像形成目标 市场的开发策略;
5、舆情监测 新闻监测 危机处理
模型建立在游客景区指数、 游客检索述求、 媒体报道等 方面, 设置诸如安全、 地震、 导游等铭感词汇, 且对全网 自媒体发布内容进行实施 监测, 对旅游新闻实时 24 小 时监测, 最终形成舆情监测 汇总报告, 且对出现的危机 做出及时响应和处理机制;
中智游集团
《旅游目的地大数据报告行动建议》
中智游集团
中智游集团
一、 前言

大数据应用中的问题和优化方案

大数据应用中的问题和优化方案

大数据应用中的问题和优化方案一、引言随着信息技术的发展,大数据已经成为当前社会和经济发展的主要驱动力之一。

然而,在大数据应用过程中,也会面临一些问题和挑战。

本文将探讨大数据应用中的问题,并提出相应的优化方案。

二、大数据应用中的问题1. 数据安全性:在大数据应用过程中,数据被广泛收集、存储和分析。

然而,由于涉及个人隐私和商业机密等敏感信息,数据安全性成为一个重要挑战。

黑客攻击、恶意软件以及内部人员泄露等风险时刻存在,对于大数据平台来说保证数据的安全非常重要。

2. 数据质量:大数据平台收集到的海量数据往往包含了各种噪音、错误和不完整信息。

这些低质量的数据会对分析结果产生负面影响,并降低决策的准确性。

因此,如何确保数据质量成为一个关键问题。

3. 大规模计算:由于大规模数据集需要进行复杂且高效率的计算与处理,传统计算硬件与软件系统往往表现出明显瓶颈。

大数据处理过程中的计算速度和资源管理问题需要通过优化方案来解决。

4. 数据隐私保护:随着大数据应用的深入,个人及企业数据日益暴露在公共视野之下。

对于用户隐私数据的保护成为一个亟待解决的问题,政府与企业需要制定相应法规并提供可行的技术手段来保护个人和商业机构的数据安全。

5. 决策支持能力:大数据分析旨在帮助决策者做出更明智的决策。

然而,由于数据量庞大且多样化,如何从海量数据中提取关键信息、洞察趋势,并为决策者提供实时准确的结果成为一个挑战。

三、大数据应用中的优化方案1. 数据加密和权限管理:采用强大的加密技术,确保敏感数据在传输和存储过程中得到有效保护。

同时,建立严格权限管理机制,限制不同用户对敏感信息的访问权限,以减少潜在风险。

2. 数据清洗与预处理:通过清洗、去重、纠错等操作,排除低质量的数据,并完善各项指标。

此外,可应用机器学习和数据挖掘技术,自动化地识别并修复低质量数据。

3. 分布式计算与存储:采用分布式计算与存储系统,充分利用集群架构的优势,提高大数据处理的效率。

金融行业的大数据应用案例及解决方案

金融行业的大数据应用案例及解决方案

金融行业的大数据应用案例及解决方案1. 风险管理:金融机构可以利用大数据分析技术,对大量的市场数据、客户数据和交易数据进行处理和分析,以识别和预测风险事件。

通过建立风险模型和预警系统,金融机构可以及时发现和应对市场风险、信用风险和操作风险等。

2. 个性化营销:金融机构可以利用大数据分析技术,对客户的个人信息、交易记录和行为数据进行分析,以了解客户的需求和偏好。

通过个性化推荐和定制化产品,金融机构可以提供更好的客户体验,提高客户满意度和忠诚度。

3. 欺诈检测:金融机构可以利用大数据分析技术,对大量的交易数据和行为数据进行实时监测和分析,以识别潜在的欺诈行为。

通过建立欺诈检测模型和规则引擎,金融机构可以及时发现和阻止欺诈活动,保护客户的资金安全。

4. 信用评分:金融机构可以利用大数据分析技术,对客户的个人信息、财务状况和信用记录等数据进行分析,以评估客户的信用风险。

通过建立信用评分模型,金融机构可以更准确地判断客户的信用状况,提供更合适的信贷产品和服务。

5. 交易监控:金融机构可以利用大数据分析技术,对大量的交易数据进行实时监控和分析,以识别异常交易和违规行为。

通过建立交易监控系统和规则引擎,金融机构可以及时发现和阻止非法交易和洗钱活动,维护金融市场的稳定和安全。

解决方案:- 建立大数据平台:金融机构需要建立一个可扩展的大数据平台,用于存储、处理和分析大量的金融数据。

该平台应具备高可用性、高性能和高安全性,以支持金融机构的大数据应用需求。

- 数据清洗和整合:金融机构需要对大量的数据进行清洗和整合,以确保数据的准确性和一致性。

这包括数据清洗、数据去重、数据标准化和数据集成等工作。

- 建立模型和算法:金融机构需要建立相应的模型和算法,用于对大数据进行分析和挖掘。

这包括统计分析、机器学习、数据挖掘和人工智能等技术。

- 实时监测和预警:金融机构需要建立实时监测和预警系统,以及时发现和应对风险事件和异常行为。

旅游大数据分析及解决方案(4篇)

旅游大数据分析及解决方案(4篇)

旅游大数据分析及解决方案百分点银行大数据应用解决方案银行大数据时代面临的挑战1、银行离客户越来越远。

在互联网交易链条中,银行所占比重越来越低,这使得银行越来越难以知道客户的消费行为;互联网金融的出现,在未来可能会超过以银行为中心的间接融资和以交易所为中心的直接融资模式,这会使得银行逐渐被边缘化。

本质上是因为银行对于客户的了解程度,相对越来越弱。

2、客户不断流失难以挽回。

市场竞争越来越激烈,银行意识到客户满意度的重要性,并将提升服务作为工作目标。

在具体的操作过程中,银行___产品特点,从服务质量、客户感知进行调查,试图找到解决办法。

但是客户满意度却一直停留在原有水平。

客户流失率也在不断上升。

本质上是因为银行服务同质化。

3、客户维系成本不断攀升。

随着互联网金融各类“宝宝”们冲击银行存款,抬升融资成本,银行越来越难以找到低价优质的资金,客户维系成本也不断攀升。

银行客户维系陷入“理财收益高,客户多,收益下降,客户跑”的怪圈。

本质上是由于银行无法对客户需求进行及时响应,只能通过价格这一唯一工具进行营销。

百分点银行大数据解决方案百分点基于六年来专注于大数据的应用实践,为银行业提供端到端的整体解决方案,帮助银行实现海量多源异构数据的采集、整合,并运用大数据文本分析和数据挖掘技术,深入挖掘客户特征、需求,从而为银行向客户提供差异化服务和个性化产品、产品创新等提供数据支撑。

整体解决方案如下:银行业大数据应用1、用户实时行为分析互联网金融及第三方支付的出现,让银行用户流失严重,同时也更加不了解用户的需求。

通过在银行___、app上部署采集访问用户实时行为的代码,让银行可了解用户在网上的行为特征、需求,拉近银行和用户的距离,从而为更精细化的服务提供数据依据。

实时行为包括:渠道分析:渠道来源、渠道活跃、渠道流量质量客户留存分析:留存用户(率)事件和转化分析客户体验度量:使用时长、地区分析、终端分析。

访问原因探查:访问时间、访问频次、停留时长、访问路径2、个性化服务和资讯推荐根据客户使用银行产品和服务的历史信息及在银行___/app上留下的实时信息,利用大数据文本分析和挖掘技术,分析客户的长期、短期偏好和需求,预测当下和潜在偏好和需求,为客户推荐个性化服务或资讯。

大数据项目中遇到的挑战和解决方案

大数据项目中遇到的挑战和解决方案

大数据项目中遇到的挑战和解决方案大数据项目在实施过程中常常面临各种挑战。

本文将介绍一些常见的挑战,并提供相应的解决方案。

1. 数据质量在大数据项目中,数据质量是一个关键问题。

由于数据量庞大,数据来源复杂,数据质量可能存在各种问题,如缺失值、重复值、错误值等。

解决方案:首先,建立数据质量评估指标体系,包括完整性、准确性、一致性等方面。

其次,使用数据清洗工具对数据进行清洗,去除重复值、填补缺失值,并对异常值进行修正。

最后,建立数据质量监控机制,定期检查数据质量,并及时处理问题。

2. 数据安全大数据项目中涉及的数据通常包含敏感信息,如个人身份信息、财务数据等。

因此,数据安全是一个重要的挑战。

解决方案:首先,制定严格的数据安全政策和规范,确保数据的机密性和完整性。

其次,采用数据加密技术,对敏感数据进行加密存储和传输。

另外,建立访问控制机制,限制只有授权人员可以访问敏感数据。

最后,定期进行安全审计和漏洞扫描,及时发现和修补安全漏洞。

3. 数据处理效率大数据项目通常需要处理海量的数据,而传统的数据处理方法可能效率低下,无法满足需求。

解决方案:首先,使用分布式计算技术,如Hadoop和Spark,将数据分布式存储和处理,以提高处理效率。

其次,采用并行计算和多线程技术,对数据处理任务进行并行化处理,加快计算速度。

另外,优化算法和数据结构,减少不必要的计算和存储开销,提高处理效率。

4. 数据分析和应用大数据项目的最终目的是进行数据分析和应用,但在实际操作中可能遇到各种挑战,如数据模型选择、算法设计等。

解决方案:首先,根据项目需求和数据特点,选择合适的数据模型和算法。

其次,进行数据可视化,将分析结果以直观的方式展示,方便决策者理解和应用。

另外,持续优化和改进算法,以提高分析精度和效果。

5. 人才和团队大数据项目需要具备相应的技术和业务知识,但相关人才相对稀缺。

另外,项目涉及多个领域,需要跨学科的团队合作。

解决方案:首先,建立培训计划,提升团队成员的技术和业务能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大数据应用分析解决方案(此文档为word格式,下载后您可任意修改编辑!)目录第一章大数据分类和架构简介 (3)1.1概述 (3)1.2从分类大数据到选择大数据解决方案 (3)1.3依据大数据类型对业务问题进行分类 (4)1.4使用大数据类型对大数据特征进行分类 (6)1.5结束语和致谢 (8)第二章如何知道一个大数据解决方案是否适合您的组织 (11)2.1简介 (11)2.2我的大数据问题是否需要大数据解决方案 (11)2.3维度可帮助评估大数据解决方案的可行性 (12)2.4业务价值:可通过大数据技术获取何种洞察 (13)2.5我当前的环境能否扩展 (17)2.6扩展我当前的环境的成本是多少 (17)2.7对数据的治理和控制:对现有的 IT 治理有何影响 (18)2.8我能否增量地实现大数据解决方案 (19)2.9人员:是否已有恰当的技能并调整了合适的人员 (19)2.10是否拥有可用于获取洞察的现有数据 (19)2.11数据复杂性是否在增长 (19)2.11.1 数据量是否已增长 (19)2.11.2 数据种类是否已增多 (20)2.11.3 数据的速度是否已增长或改变 (20)2.11.4 您的数据是否值得信赖 (20)2.12是否所有大数据都存在大数据问题 (21)第三章理解大数据解决方案的架构层 (22)3.1概述 (22)3.2大数据解决方案的逻辑层 (22)3.2.1 大数据来源 (24)3.2.2 数据改动和存储层 (27)3.2.3 分析层 (27)3.2.4 使用层 (27)3.3垂直层 (29)3.3.1 信息集成 (29)3.3.2 大数据治理 (30)3.3.3 服务质量层 (30)3.3.4 系统管理 (32)3.4结束语 (32)第四章了解用于大数据解决方案的原子模式和复合模式 (33)4.1简介 (33)4.2原子模式 (34)4.2.1 数据使用模式 (34)4.2.2 处理模式 (36)4.2.3 访问模式 (38)4.2.4 存储模式 (42)4.2.5 复合模式 (43)4.3结束语 (45)第五章对大数据问题应用解决方案模式并选择实现它的产品 (48)5.1简介 (48)5.2解决方案模式 (48)5.3用例描述:保险欺诈 (48)5.4解决方案模式:入门 (49)5.5解决方案模式:获得高级业务洞察 (51)5.6解决方案模式:采取下一个最佳行动 (53)5.7形成大数据解决方案骨干的产品和技术 (55)5.8在欺诈检测中使用大数据分析的好处 (56)5.9结束语 (57)第一章大数据分类和架构简介摘要:大数据问题的分析和解决通常很复杂。

大数据的量、速度和种类使得提取信息和获得业务洞察变得很困难。

以下操作是一个良好的开端:依据必须处理的数据的格式、应用的分析类型、使用的处理技术,以及目标系统需要获取、加载、处理、分析和存储数据的数据源,对大数据问题进行分类。

1.1概述大数据可通过许多方式来获取、存储、处理和分析。

每个大数据来源都有不同的特征,包括数据的频率、速率、数量、类型和真实性。

处理并存储大数据时,会涉及到更多维度,比如治理、安全性和策略。

选择一种架构并构建合适的大数据解决方案极具挑战,因为需要考虑非常多的因素。

本“大数据架构和模式“系列提供了一种结构化和基于模式的方法来简化定义完整的大数据架构的任务。

因为评估一个业务场景是否存在大数据问题很重要,所以我们包含了一些线索来帮助确定哪些业务问题适合采用大数据解决方案。

1.2从分类大数据到选择大数据解决方案如果您花时间研究过大数据解决方案,那么您一定知道它不是一个简单的任务。

本系列将介绍查找满足您需求的大数据解决方案所涉及的主要步骤。

我们首先介绍术语“大数据” 所描述的数据类型。

为了简化各种大数据类型的复杂性,我们依据各种参数对大数据进行了分类,为任何大数据解决方案中涉及的各层和高级组件提供一个逻辑架构。

接下来,我们通过定义原子和复合分类模式,提出一种结构来分类大数据业务问题。

这些模式有助于确定要应用的合适的解决方案模式。

我们提供了来自各行各业的示例业务问题。

最后,对于每个组件和模式,我们给出了提供了相关功能的产品。

第 1 部分将介绍如何对大数据进行分类。

本系列的后续文章将介绍以下主题:●定义大数据解决方案的各层和组件的逻辑架构●理解大数据解决方案的原子模式●理解用于大数据解决方案的复合(或混合)模式●为大数据解决方案选择一种解决方案模式●确定使用一个大数据解决方案解决一个业务问题的可行性●选择正确的产品来实现大数据解决方案1.3依据大数据类型对业务问题进行分类业务问题可分类为不同的大数据问题类型。

以后,我们将使用此类型确定合适的分类模式(原子或复合)和合适的大数据解决方案。

但第一步是将业务问题映射到它的大数据类型。

下表列出了常见的业务问题并为每个问题分配了一种大数据类型。

表 1. 不同类型的大数据业务问题按类型对大数据问题分类,更容易看到每种数据的特征。

这些特征可帮助我们了解如何获取数据,如何将它处理为合适的格式,以及新数据出现的频率。

来自不同来源的数据具有不同的特征;例如,社交媒体数据包含不断传入的视频、图像和非结构化文本(比如博客文章)。

我们依据这些常见特征来评估数据,下一节将详细介绍这些特征:●内容的格式●数据的类型(例如,交易数据、历史数据或主数据)●将提供该数据的频率●意图:数据需要如何处理(例如对数据的临时查询)●处理是否必须实时、近实时还是按批次执行。

1.4使用大数据类型对大数据特征进行分类按特定方向分析大数据的特征会有所帮助,例如以下特征:数据如何收集、分析和处理。

对数据进行分类后,就可以将它与合适的大数据模式匹配:●分析类型—对数据执行实时分析还是批量分析。

请仔细考虑分析类型的选择,因为这会影响一些有关产品、工具、硬件、数据源和预期的数据频率的其他决策。

一些用例可能需要混合使用两种类型:✧欺诈检测;分析必须实时或近实时地完成。

✧针对战略性业务决策的趋势分析;分析可采用批量模式。

●处理方法—要应用来处理数据的技术类型(比如预测、分析、临时查询和报告)。

业务需求确定了合适的处理方法。

可结合使用各种技术。

处理方法的选择,有助于识别要在您的大数据解决方案中使用的合适的工具和技术。

●数据频率和大小—预计有多少数据和数据到达的频率多高。

知道频率和大小,有助于确定存储机制、存储格式和所需的预处理工具。

数据频率和大小依赖于数据源:✧按需分析,与社交媒体数据一样✧实时、持续提供(天气数据、交易数据)✧时序(基于时间的数据)●数据类型—要处理数据类型—交易、历史、主数据等。

知道数据类型,有助于将数据隔离在存储中。

●内容格式(传入数据的格式)结构化(例如 RDMBS)、非结构化(例如音频、视频和图像)或半结构化。

格式确定了需要如何处理传入的数据,这是选择工具、技术以及从业务角度定义解决方案的关键。

●数据源—数据的来源(生成数据的地方),比如 Web 和社交媒体、机器生成、人类生成等。

识别所有数据源有助于从业务角度识别数据范围。

该图显示了使用最广泛的数据源。

●数据使用者—处理的数据的所有可能使用者的列表:✧业务流程✧业务用户✧企业应用程序✧各种业务角色中的各个人员✧部分处理流程✧其他数据存储库或企业应用程序●硬件—将在其上实现大数据解决方案的硬件类型,包括商用硬件或最先进的硬件。

理解硬件的限制,有助于指导大数据解决方案的选择。

图 1 描绘用于分类大数据的各种类别。

定义大数据模式的关键类别已识别并在蓝色方框中突出显示。

大数据模式(将在下一篇文章中定义)来自这些类别的组合。

图 1. 大数据分类1.5结束语和致谢在本系列剩余部分中,我们将介绍大数据解决方案的逻辑架构和各层,从访问到使用大数据。

我们将提供数据源的完整列表,介绍专注于大数据解决方案的每个重要方面的原子模式。

我们还将介绍复合模式,解释可如何结合使用原子模式来解决特定的大数据用例。

本系列最后将提供一些解决方案模式,在广泛使用的用例与各个产品之间建立对应关系。

感谢Rakesh R. Shinde 在定义本系列的整体结构上提供的指导,以及对本系列的审阅和提供的宝贵评论。

第二章如何知道一个大数据解决方案是否适合您的组织摘要:本文介绍一种评估大数据解决方案的可行性的基于维度的方法。

通过回答探索每个维度的问题,您可以通过自己对环境的了解来确定某个大数据解决方案对您是否适合。

仔细考虑每个维度,就会发现有关是否到了改进您的大数据服务的时候的线索。

2.1简介在确定投资大数据解决方案之前,评估可用于分析的数据;通过分析这些数据而获得的洞察;以及可用于定义、设计、创建和部署大数据平台的资源。

询问正确的问题是一个不错的起点。

使用本文中的问题将指导您完成调查。

答案将揭示该数据和您尝试解决的问题的更多特征。

尽管组织一般情况对需要分析的数据类型有一些模糊的理解,但具体的细节很可能并不清晰。

毕竟,数据可能具有之前未发现的模式的关键,一旦识别了一种模式,对额外分析的需求就会变得很明显。

要帮助揭示这些未知的信息,首先需要实现一些基本用例,在此过程中,可以收集以前不可用的数据。

构建数据存储库并收集更多数据后,数据科学家就能够更好地确定关键的数据,更好地构建将生成更多洞察的预测和统计模型。

组织可能也已知道它有哪些信息是不知道的。

要解决这些已知的未知,组织首先必须与数据科学家合作,识别外部或第三方数据源,实现一些依赖于此外部数据的用例。

本文首先尝试回答大多数CIO在实施大数据举措之前通常会提出的问题,然后,本文将重点介绍一种将帮助评估大数据解决方案对组织的可行性的基于维度的方法。

2.2我的大数据问题是否需要大数据解决方案大数据,曾几何时似乎很少出现。

组织多半会选择以增量方式实现大数据解决方案。

不是每个分析和报告需求都需要大数据解决方案。

如果对于对大型数据集或来自多个数据源的临时报告执行并行处理的项目,那么可能没有必要使用大数据解决方案。

随着大数据技术的到来,组织会问自己:“大数据是否是我的业务问题的正确解决方案,或者它是否为我提供了业务机会?”大数据中是否隐藏着业务机会?以下是我从CIO 那里听到的一些典型问题:●如果我使用大数据技术,可能会获得何种洞察和业务价值?●它是否可以扩充我现有的数据仓库?●我如何评估扩展当前环境或采用新解决方案的成本?●对我现有IT治理有何影响?●我能否以增量方式实现大数据解决方案?●我需要掌握哪些具体的技能来理解和分析构建和维护大数据解决方案的需求?●我的现有企业数据能否用于提供业务洞察?●来自各种来源的数据的复杂性在不断增长。

大数据解决方案对我有帮助吗?2.3维度可帮助评估大数据解决方案的可行性为了回答这些问题,本文提出了一种依据下图中所示的维度来评估大数据解决方案的可行性的结构化方法。

相关文档
最新文档