第三章 等离子体磁流体动力学(提纲)

合集下载

磁流体力学:磁流体动力学原理与应用

磁流体力学:磁流体动力学原理与应用

核聚变反应区的冷却
• 对核聚变反应环境的要求较低
磁场的环境
• 磁流体等离子体稳定器:利用磁
• 有助于实现可持续能源和清洁能
流体实现等离子体的稳定

• 磁流体燃料输送:利用磁流体实
现燃料的输送和控制
磁流体在航空航天领域的应用
航空航天领域的挑战
磁流体在航空航天领域
磁流体在航空航天领域
的应用
的优点
• 需要实现高速、高温、高压等极
• 对热传输介质的要求较低
• 适用于各种工程领域和工业过程
03
磁流体力学在工业与科研中的应用实例
磁流体在核聚变反应中的应用
核聚变反应原理
磁流体在核聚变反应中
磁流体在核聚变反应中
的应用
的优点
• 利用核聚变反应产生大量能量
• 磁流体冷却剂:利用磁流体实现
• 具有高热传导性能和高热稳定性
• 核聚变反应需要高温、高压和高
• 磁流体发动机:利用磁流体实现
• 具有高性能和高可靠性
端条件下的运行
发动机的驱动和控制
• 对航空航天环境的要求较低
• 对动力系统和控制系统的要求较
• 磁流体热管理系统:利用磁流体
• 有助于实现航空航天技术的突破

实现航空航天器的热管理
和发展
• 磁流体导航系统:利用磁流体实
现导航系统的控制
磁流体在生物医学工程中的应用
生物医学工程领域的挑战
磁流体在生物医学工程
磁流体在生物医学工程
领域的应用
领域的优点
• 需要实现生物组织和生物流体的
• 磁流体成像技术:利用磁流体实
• 具有高生物相容性和高灵敏度
精确控制和监测

等离子体物理学导论L11

等离子体物理学导论L11

3.2.2 磁感应方程 欧姆定律:
上式是与流体元一起运动的参考系中 电场与电流的关系,E’是流体元静止 参考系中作用于流体元之上的电场; 在实验室坐标系中(电场E),有:
(注意:电场大小与参考系的选取有关) 由此得到磁流体力学中的欧姆定律:
其中电导率代表电场驱动等离子体电流 的能力;理想情况下,电导率为无穷大。 即在流体元静止的坐标系中,等离子体 不能维持任何有限强度的电场. 理想MHD
热压张量:粒子热运动携带的动量密度流量
Pressure tensor
vuw n(r,t) fd3v
P(r,t) mwwfd3v
各向同性速度分布热压张量化为压强标量 对应的力称为:热压梯度力 The thermal pressure gradient force
4)热压梯度力的物理本质
是大量粒子的统计平均带来的作用力 仅仅施加于流体之上,单粒子不受此力 完全是粒子自由扩散引起的,与碰撞过程关!
场的贡献等 • 等离子体=带电的流体 (电浆),
磁化等离子体磁流体 • 磁流体力学
给出等离子体大量粒子的集体特征,如各 种宏观参数:密度、流速、温度等
• 流体理论暗含的假设: 微团内含有足够多的粒子,可进行统计平 均: 某些情况下假设:碰撞频繁、局域热平衡
高•温无、碰低撞密等度离子等体离能子否体用:磁流体力学描述 如太阳风:5 cm-3
该公式给出了磁流体中电磁场与流动之间 的关系。应用该公式,可以: (1) 估算MHD中电场和磁场能量之比 (2) 忽略Maxwell方程组中的位移电流项
( v<<c ) (3)(3) 推导新的磁感应方程
Q: • 由法拉第定律求散度,可 得磁场散度不随时变, 磁场散度为零的条件是多 余的吗? • 准中性如何与有源性自洽?

《等离子体动力学》讲义

《等离子体动力学》讲义

《等离子体动力学》讲义祝大军熊彩东电子科技大学物理电子学院目录第一章:引言§1•1定义§1•2基本特征:§1•3等离子体物理的研究方法第二章:动力论方程§2•1分布函数的引入§2•2普遍的动力论方程§2•3V l a s o v方程的严格导出第三章:V l a s o v方程的求解§3•1几个定义§3•2V l a s o v方程的线性化§3•3平衡态V l a s o v方程的解§3•4线性V l a s o v方程的解——特征线法(未扰轨道法)§3•5等离子体纵振荡——初始扰动的演化——F o u r i e r-L a p l a c e变换法第四章:微观不稳定性§4•1等离子体微观不稳定性概述§4•2静电不稳定性§4•3束——等离子体不稳定性、等离子体尾场加速器中静电波特性第一章 引言§1•1 定义:物质的第四态“等离子体态”:固体(加热)→液体(加热)→气体(输入能量)→电离态。

等离子体是由大量的接近自由运动的带电粒子所组成的系统,在整体上是准中性的,粒子的运动主要由粒子间的电磁相互作用所决定,由于这种作用是库仑长程相互作用(密度足够低,一个邻近粒子所产生的力远小于许多远距离粒子所施的长程库能力),因而使之显示出集体行为(如:各种振荡和波动、不稳定性等)。

§1•2 基本特征:1. 系统的尺度必须远大于德拜长度(Debye Length )1/20222e i d e i i i e KT T n e T Z n e T ελ⎛⎫= ⎪+∑⎝⎭(1.2.1) 2/120⎪⎪⎭⎫ ⎝⎛=e n KT e e d ελ (1.2.2)推导过程: 真空中一个点电荷q 产生一个电场()E r φ=-∇, ()r φ为电势。

其满足拉普拉斯方程()20r φ∇=,得库仑势()04qr r φπε= (1.2.3)在等离子体内部,电子、离子成份都处于热力学平衡状态下,一个点电荷q 近旁总是异号电荷比同号电荷要多些。

磁流体力学

磁流体力学
课程组教师姓名
职称
专业
年龄
学术专长
陈志鹏
讲师
等离子体物理
30
等离子体物理,核聚变物理
课程教学目标:
本课程是为研究生开设的。本课程的目标是引导学生了解磁流体力学这种描述等离子体与磁场相互作用的方法及其局限性,学习磁流体力学中各个方程和物理量的含义,掌握托卡马克等离子体中的磁场位型和等离子体平衡态条件,熟悉磁流体力学波和宏观不稳定性物理图像。为进行核聚变等离子体物理研究打下理论基础。
§3.2非均匀磁流体中的磁流体力学波
第四章磁流体力学不稳定性
§4.1概论
§4.2一维位形下的理想磁流体不稳定性
§4.3直柱tokamak
§4.4环形tokamak中新的理想磁流体不稳定性
§4.3电阻撕裂模和磁重联
教材:《等离子体理论基础》,胡希伟,北京大学出版社
主要参考书:《等离子体导论》,F.F.Chen
注:每门课程都须填写此表。本表不够可加页

课程名称:磁流体力学131.532
英文名称:Magnetohydrodynamics
课程类型:■讲授课程□实践(实验、实习)课程□研讨课程□专题讲座□其它
考核方式:考试
教学方式:上课
适用专业:理工专业
适用层次:硕士■博士■
开课学期:秋季
总学时/讲授学时:48/48
学Hale Waihona Puke :4先修课程要求:《大学物理》,《等离子体物理学》
教学大纲(章节目录):
第一章磁流体力学方程组及其基本性质
§1.1多粒子体系描述方法及磁流体力学的适用条件
§1.2磁流体力学方程
§1.3理想磁流体方程组的基本性质
§1.4磁场的描述

磁流体力学方程

磁流体力学方程

第三章 磁流体力学方程(MHD )§3.1引言由上一章的讨论可以看出,等离子体动力学理论是在位形及速度空间中讨论带电粒子的分布函数随时间的演化规律。

由于动力学方程是一个非线性的积分微分方程,数学处理较复杂,在一般情况下很难求解。

实际上,我们可以把等离子体看成为是一种电磁流体,它的宏观状态可以用密度、流速、温度等状态变量及电磁场来描述。

这些状态参量及电磁场是在三维位形空间中随时间演 化的。

建立电磁流体状态参置随时间的演化方程称为磁流体力学(Magnetohydrodynamics-MHD )。

与动力学理论相比,磁流体力学在数学处理上简单的多,而且等离子体中的许多过程,如等离子体的宏观平衡与稳定,波动过程均可以用MHD 理论来描述。

但对于等离子体中的另外一些现象,如Landau 阻尼、速度空间中的不稳定性等则MHD 理论却无能力描述。

下面我们从动力学方程出发,建立MHD 方程。

§3.2二份量MHD 方程设等离子体是由电子成份和一种离子成份组成的二份量电磁流体。

首先我们引入二份量磁流体的宏观状态变量,我们知道,对于一个多粒子系统,其宏观变量是对应的微观变量的统计平均值。

这样,第α类成份流体的密度(,) n r t α、流速火(,)ru t α及温度(,)r T t α的定义为:(,)(,,)r v r v n t d f t αα=⎰ (3-1)(,)(,)(,,)r r vv r v n t u t d f t ααα=⎰ (3-2) 231(,)(,)()(,,)22r r v v r v B k n t T t d m u f t αααα=-⎰ 下面我们利用上章给出的等离子体运动学方程来建立MHD 方程。

动力学方程可以写成:[()](,,)(,,)v v v r v r v q E B f t I t t m αααα∂+⋅∇++⨯⋅∇=∂ (3-3) 首先定义等离子体矩方程:将(3-3)两边乘以()v g 并对v 积分,(1) ()()v v v v f g d g fd g t t t∂∂∂==<>∂∂∂⎰⎰ (2) ()()v v v v v v v g f d g fd g ⋅∇=∇⋅=∇⋅<>⎰⎰(3) ()()()[]()v v v v v v v v v v vq f qE f g E d g d m m qE g f d m qE g m ∂∂⋅=⋅∂∂∂=⋅-∂∂=-⋅<>∂⎰⎰⎰ 其中用到了分部积分和()v f 在v →±∞时为零的条件。

等离子体及磁流体发电技术

等离子体及磁流体发电技术

图 2 MHD 发电机的基本原理和结构示意图 Fig. 2
1 燃烧室
The structure of MHD generating
3 磁场线圈 4 通道 5 负荷 6 阳极
2 阴极
普通气体大约需要加温到 6 000 ! 以上才能产 生微弱的电离, 总的来说, 这样高的温度是一般碳氢 燃料燃烧方式所不可能达到的。要使气体具有磁流 体发电机所要求的电导率 , 一方面采用可能达到更 高温度的燃烧方式 , 如纯氧燃烧、 富氧燃烧或将助燃 气体预热至 1 700 K 以上。另一方面 , 则在高温燃气 中添加一定重量比的容易电离的低电离能的物质, 如钾盐、 铯盐等。按照磁流体发电技术专门术语 , 将
参考文献 :
[ 1] 马廷 钧 . 现 代物 理 技术 及其 应用 [ M ] . 北 京 : 国防 工 业出 版 社 , 2002. [ 2] 李孝东 , 赵志洲 , 桑玉军 . 物理工程创新 [ M] . 徐 州 : 中国矿业大 学 出版社 , 2002. 作者简介 : 郭铁梁 ( 1971- ) , 黑龙江双城人 , 哈尔滨师范大学 物 理系硕士研究生毕业 , 现为黑龙江科技学院数力系教师 , 从事大学物 理教学工作 .
图 1 MHD 发电机的简略图示 Fig. 1 Simple MHD generating
燃料和氧 化剂 通过 喷油 嘴注 入燃 烧 室, 产生 3 000 K 左右的高温燃气( 等离子体) , 经过喷管加速 到 1 000 m s, 然后进入垂直磁场中的通道 , 洛仑兹力 ev B 引起离子、 电子分别趋向两电极, 从而使 2 个 电极间产生电势差 , 然后就能从电极引出电流。如 果不断地提供等离子体 , 就能在两电极上连续地输 出电能。不是任何高速高温气流流过发电通道都能 发电的 , 必须是具有一定电导率的高速电离气体 , 即 通常所说的等离子体 , 才能在磁场作用下产生热电 转换。图 2 表示磁流体发电机的基本原理和结构示 意图。

第3章-磁流体--力学方程

第3章-磁流体--力学方程

第三章 磁流体力学方程(MHD )§3.1引言由上一章的讨论可以看出,等离子体动力学理论是在位形及速度空间中讨论带电粒子的分布函数随时间的演化规律。

由于动力学方程是一个非线性的积分微分方程,数学处理较复杂,在一般情况下很难求解。

实际上,我们可以把等离子体看成为是一种电磁流体,它的宏观状态可以用密度、流速、温度等状态变量及电磁场来描述。

这些状态参量及电磁场是在三维位形空间中随时间演 化的。

建立电磁流体状态参置随时间的演化方程称为磁流体力学(Magnetohydrodynamics-MHD )。

与动力学理论相比,磁流体力学在数学处理上简单的多,而且等离子体中的许多过程,如等离子体的宏观平衡与稳定,波动过程均可以用MHD 理论来描述。

但对于等离子体中的另外一些现象,如Landau 阻尼、速度空间中的不稳定性等则MHD 理论却无能力描述。

下面我们从动力学方程出发,建立MHD 方程。

§3.2二份量MHD 方程设等离子体是由电子成份和一种离子成份组成的二份量电磁流体。

首先我们引入二份量磁流体的宏观状态变量,我们知道,对于一个多粒子系统,其宏观变量是对应的微观变量的统计平均值。

这样,第α类成份流体的密度(,)n r t α、流速火(,)ru t α及温度(,)r T t α的定义为:(,)(,,)r v r v n t d f t αα=⎰ (3-1) (,)(,)(,,)r r vv r vn t u t d f t ααα=⎰ (3-2)231(,)(,)()(,,)22r r vv r v B k n t T t d m u f t αααα=-⎰下面我们利用上章给出的等离子体运动学方程来建立MHD 方程。

动力学方程可以写成:[()](,,)(,,)v v v r v r vq E B f t I t tm αααα∂+⋅∇++⨯⋅∇=∂ (3-3)首先定义等离子体矩方程: 将(3-3)两边乘以()v g 并对v 积分, (1) ()()v v v v f g d g fd g t tt∂∂∂==<>∂∂∂⎰⎰(2) ()()v v v v v v v g f d g fd g ⋅∇=∇⋅=∇⋅<>⎰⎰(3)()()()[]()v v v vv vv v v v vq f qE f g E d g d mm qE g f d m qE g m ∂∂⋅=⋅∂∂∂=⋅-∂∂=-⋅<>∂⎰⎰⎰ 其中用到了分部积分和()v f 在v →±∞时为零的条件。

等离子体物理基础-动力学理论1

等离子体物理基础-动力学理论1

w
2
2
u
n m 2
w w
2
2 u n m u p u q 2
n m 2
a v v n m a v n m
2
q m
E v n q u E R u )
m n ( u

u )
流体力学方程组的推导

几点说明: 压强张量是由热运动引起的,其物理意义是粒子由于无规热 运动进出流体质团对动量流密度的贡献, p 表示动量变化 率-作用在质团上的力(单位质量)。


p p I χ p 1 3 Tr ( p ) n T
粘滞应力张量,由分布函 数各项异性所引起

注意:压强与碰撞无关!即使忽略碰撞项,也会出现。 碰撞引起的动量密度变化率,即摩擦力 R m n ( u u 同种粒子之间碰撞没有贡献,由于总动量守恒


)
R

0
流体力学方程组的推导
n q E u (p u ) q
( R

u Q )
内能方程
n m t n m t
n m u p u q
n m n m 2 2 2 v (u v ) 2 2
( Q

流体力学方程组的推导
总能量方程
2 2 u u n m u n m t 2 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

朗缪尔波 离子声波 离子静电波
3. 磁流体力学波
磁声波 阿尔芬波

第三章 等离子体磁流体动力学
一、磁流体力学方程组
二、磁流体力学平衡和不稳定性 三、磁流体力学波
一、 磁流体力学方程组
1Байду номын сангаас 磁流体力学描述及适用条件 2. 流体力学的基本方程
3. 磁流体力学方程
4. 磁压力和磁张力 5. 磁场演化方程(磁场的扩散和冻结) 6. 双流体模型和广义欧姆定律
二、 磁流体力学平衡和不稳定性
1. 磁流体力学平衡 等离子体的磁流体力学平衡 直线箍缩等离子体柱的平衡 动力箍缩的雪耙模型 2. 磁流体力学不稳定性 不稳定性分类和基本描述方法 理想磁流体的线性扰动基本方程 直线箍缩等离子体柱的不稳定性
三、 磁流体力学波
1. 波动的基本概念 2. 非磁冷等离子体中的波

相关文档
最新文档