高二数学选修4-4练习题(人教版)
人教版高中数学选修4-4:第二讲一第2课时圆的参数方程含解析

第二讲 参数方程一、曲线的参数方程第2课时 圆的参数方程A 级 基础巩固一、选择题1.已知圆P :⎩⎪⎨⎪⎧x =1+10cos θ,y =-3+10sin θ(θ为参数),则圆心P 及半径r 分别是( ) A .P(1,3),r =10B .P(1,3),r =10C .P(1,-3),r =10D .P(1,-3),r =10解析:由圆P 的参数方程可知圆心(1,-3),半径r =10.答案:C2.圆x 2+y 2+4x -6y -3=0的参数方程为( )A.⎩⎨⎧x =2+4cos θ,y =-3+4sin θ(θ为参数) B.⎩⎨⎧x =-2+4cos θ,y =3+4sin θ(θ为参数) C.⎩⎨⎧x =2-4cos θ,y =3-4sin θ(θ为参数) D.⎩⎨⎧x =-2-4cos θ,y =3-4sin θ(θ为参数) 解析:圆的方程配方为:(x +2)2+(y -3)2=16,所以圆的圆心为(-2,3),半径为4,故参数方程为B 选项.答案:B3.已知圆O 的参数方程是⎩⎨⎧x =2+4cos θ,y =-3+4sin θ(0≤θ<2π),圆上点A 的坐标是(4,-33),则参数θ=( )A.7π6B.4π3C.11π6D.5π3解析:由题意⎩⎨⎧4=2+4cos θ,-33=-3+4sin θ(0≤θ<2π), 所以⎩⎪⎨⎪⎧cos θ=12,sin θ=-32(0≤θ<2π),解得θ=5π3. 答案:D4.若P(x ,y)是圆⎩⎨⎧x =2+cos α,y =sin α(α为参数)上任意一点,则(x -5)2+(y +4)2的最大值为( )A .36B .6C .26D .25解析:依题意P(2+cos α,sin α),所以(x -5)2+(y +4)2=(cos α-3)2+(sin α+4)2=26-6cos α+8sin α=26+10sin(α-φ)⎝⎛⎭⎪⎫其中cos φ=45,sin φ=35, 所以当sin(α-φ)=1,即α=2k π+π2+φ(k ∈Z)时,有最大值为36. 答案:A5.直线:3x -4y -9=0与圆:⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数)的位置关系是( ) A .相切B .相离C .直线过圆心D .相交但直线不过圆心 解析:圆心坐标为(0,0),半径为2,显然直线不过圆心,又圆心到直线距离d =95<2. 所以直线与圆相交,但不过圆心.答案:D二、填空题6.已知圆的方程为x 2+y 2=2x ,则它的一个参数方程是______.解析:将x 2+y 2=2x 化为(x -1)2+y 2=1知圆心坐标为(1,0),半径r =1,所以它的一个参数方程为⎩⎨⎧x =1+cos θ,y =sin θ(θ为参数). 答案:⎩⎨⎧x =1+cos θ,y =sin θ(θ为参数) 7.已知曲线方程⎩⎨⎧x =1+cos θ,y =sin θ(θ为参数),则该曲线上的点与定点(-1,-2)的距离的最小值为________. 解析:设曲线上动点为P(x ,y),定点为A ,则|PA|=(1+cos θ+1)2+(sin θ+2)2= 9+42sin ⎝ ⎛⎭⎪⎫θ+π4, 故|PA|min =9-42=22-1.答案:22-18.曲线C :⎩⎨⎧x =cos θ,y =-1+sin θ(θ为参数)的普通方程为__________.如果曲线C 与直线x +y +a =0有公共点,那么a 的取值范围是________.解析:⎩⎨⎧x =cos θ,y =-1+sin θ(θ为参数)消参可得 x 2+(y +1)2=1,利用圆心到直线的距离d ≤r 得|-1+a|2≤1, 解得1-2≤a ≤1+ 2. 答案:x 2+(y +1)2=1 [1-2,1+2]三、解答题9.已知曲线C 的极坐标方程是ρ=2cos θ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是⎩⎪⎨⎪⎧x =32t +m ,y =12t(t 为参数). (1)求曲线C 的直角坐标方程和直线l 普通方程;。
高二数学选修4-4练习题(人教版)

高二 A 级数学选修 4-4 练习题
x 2 5t
1.曲线
(t为参数 ) 与坐标轴的交点是(
)
y 1 2t
A. (0, 2)、(1 ,0) 52
B. (0, 1)、(1 ,0) 52
C. (0, 4)、(8,0)
x sin 2
2.下列在曲线
( 为参数 ) 上的点是( )
2 sin( ) 1 4
3. D
(1 1 t )2 ( 3 3 2
3 t)2 16 ,得 t2 8t 8 2
0 , t1 t2
8, t1 t2 2
4
x 1 14 2
中点为
y 33 3 4 2
x3 y3
5 53
4. A 圆心为 ( ,
)
22
5. D
x2
y2 t,
1t
1 x2, x2
y2
1,而 t
0,0
1 t 1,得 0
y
2
4
4
6. C
x 2t y 1t
2
x
2
2t 2 ,把直线 x
2t
代入
2
y 1t
y 1 2t
2
(x 3)2 ( y 1)2 25 得 ( 5 t) 2 (2 t )2 25, t2 7t 2 0
t1 t2
(t1 t2) 2 4t1t2
41 ,弦长为 2 t1 t2
82
6/7
7. D 8. A
x 1 3t 11.已知直线 l1 : y 2 4t (t为参数 ) 与直线 l2 : 2 x 4 y 5 相交于点 B ,又点 A(1,2) , 则 AB ________________________
人教版高中数学选修 练习题及参考答案

人教版高中数学选修-练习题及参考答案(附参考答案)一、选择题1.命题“如果x≥a2+b2,那么x≥2ab”的逆否命题是( ) A.如果x<a2+b2,那么x<2abB.如果x≥2ab,那么x≥a2+b2C.如果x<2ab,那么x<a2+b2D.如果x≥a2+b2,那么x<2ab2.三角形全等是三角形面积相等的( )A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分又不必要条件3.下列四个命题中,真命题是( )A.是偶数且是无理数B.8≥10C.有些梯形内接于圆D.xR,x2x+1≠04.命题“所有奇数的立方是奇数”的否定是( )A.所有奇数的立方不是奇数B.不存在一个奇数,它的立方是偶数C.存在一个奇数,它的立方是偶数D.不存在一个奇数,它的立方是奇数二、填空题5.命题“若a=1,则a2=1”的逆否命题是______________________.?? 6.b=0是函数f(x)=ax2+bx+c为偶函数的______________________.7.全称命题“aZ,a有一个正因数”的否定是________________________.??8.特称命题“有些三角形的三条中线相等”的否定是______________________.条件.的______ ___,则非p是非q9.设p:|5x1|>4;?三、解答题10.求证:a+2b=0是直线ax+2y+3=0和直线x+by+2=0互相垂直的充要条件.11.已知集合A={x|x23x+2=0},B={x|x2mx+2=0},若A是B的必要不充分条件,求实数m范围.??12.给定两个命题,:对任意实数都有恒成立;:关于的方程有实数根;如果与中求实数的取值范围.有且仅有一个为真命题,常用逻辑用语答案14 CACC?5.如果a2≠1,那么a≠1 6.充分必要条件7.a0Z,a0没有正因数???8.每个三角形的三条中线不相等9.即不充分也不必要10.充分性:当b=0时,则a=0,此时两直线分别垂直坐标轴,显然垂直;当b≠0时,两直线的斜率分别是k1=,k2=,由a+2b=0,k1k2=()()=1,两直线互相垂直.??????必要性:如果两直线互相垂直且斜率存在,则k1k2=()()=1,∴a+2b=0;如果两直线中有直线的斜率不存在,且互相垂直,则b=0,且a=0,∴a+2b=0.????11、A={1,2},A是B的必要不充分条件,即BA.所以B=、B={1}或{2},?,∴.=m28<0B=φ时,△当?无解.综上所述.时,,m当B={1}或{2}a<4;≤a=0或012.解:P真:对任意实数都有恒成立??≤;0a14a≥q真:关于的方程有实数根???如果P正确,且Q不正确,有0≤a<4,且a>,∴<a<4;如果Q正确,且P不正确,有a<0或a≥4,且a≤,∴a<0.所以(,0)∪(,4).???常用逻辑用语答案14 CACC?5.如果a2≠1,那么a≠1 6.充分必要条件7.a0Z,a0没有正因数???8.每个三角形的三条中线不相等9.即不充分也不必要10.充分性:当b=0时,则a=0,此时两直线分别垂直坐标轴,显然垂直;当b≠0时,两直线的斜率分别是k1=,k2=,由a+2b=0,k1k2=()()=1,两直线互相垂直.??????必要性:如果两直线互相垂直且斜率存在,则k1k2=()()=1,∴a+2b=0;如果两直线中有直线的斜率不存在,且互相垂直,则b=0,且a=0,∴a+2b=0.????11、A={1,2},A是B的必要不充分条件,即BA.所以B=、B={1}或{2},?,∴.=m28<0B=φ时,△当?无解.综上所述.时,,m当B={1}或{2}a<4;≤或0.解:12P真:对任意实数都有恒成立a=0??≤;0a14a≥q真:关于的方程有实数根???如果P正确,且Q不正确,有0≤a<4,且a>,∴<a<4;如果Q正确,且P不正确,有a<0或a≥4,且a≤,∴a<0.所以(,0)∪(,4).???圆锥曲线练习题一.选择题若椭圆经过原点,且焦点分别为,则其离心率为() 1.1A.B. C. D.4y2=4x的焦点作直线l,交抛物线于A,过抛物线B两点,若线段AB中点的横坐标2.为3,则|AB|等于()A.10B.8C.6D.4若双曲线+=1的离心率,则k的取值范围是() 3.A. B. C. D.与y轴相切且和半圆x2+y2=4(0≤x≤2)内切的动圆圆心的轨迹方程是()4. B. A. C. D.过点M(2,0)的直线L与椭圆交于两点,设线段的中点为P,若直线l的斜率为,5.的斜率为,则等于()直线OP?1-A. B. C. D.2.如果方程+=1表示双曲线,那么下列椭圆中,与这个双曲线共焦点的是()6. A. B. C. D.二.填空题椭圆+=1的焦点分别是,点P在椭圆上,如果线段的中点在y轴上,那么是的7.倍.椭圆+=1的焦点分别是,过原点O做直线与椭圆交于A,B两点,若ABF2的面积8.是20,则直线AB的方程是.?与双曲线有共同的渐近线,并且经过点的双曲线方程是9.已知直线y=kx+2与双曲线x2y2=6的右支相交于不同的两点,则k的取值范围10.是.三.解答题?抛物线y=-x2与过点M(0,1)的直线L相交于A,B两点,O为原点,若OA和OB11.的斜率之和为1,求直线L的方程.?已知中心在原点,一焦点为F(0,)的椭圆被直线截得的弦的中点横坐标为,求此12.椭圆的方程.13.是椭圆+=1的两个焦点,为椭圆上一点,且AF1F2=45,求的面积.???圆锥曲线练习题答案一.选择题:CBCADD二.填空题:7. 7倍8.y=x 9. -=1 10.-,3)<k<-1?三.解答题解:斜率不存在不合题意,设直线代入抛物线得11.有kR 设点则+=1,?由根与系数关系,解得直线方程.=50,则1解:设所求的椭圆为+=12.椭圆与直线联立有,由已知=,.1a2=75,b2=25.所以所求椭圆方程为+=根与系数关系带入得解得.解:13.圆锥曲线练习题答案CBCADD 一.选择题:二.填空题:1,3)<k<--=7. 7倍8.y=x 9. 1 10.-?三.解答题解:斜率不存在不合题意,设直线代入抛物线得13.有kR 设点则+=1,?由根与系数关系,解得直线方程.=50,则解:设所求的椭圆为+=114.椭圆与直线联立有,由已知=,.1a2=75,b2=25.所以所求椭圆方程为+=根与系数关系带入得解得.解:13.空间向量练习题一.选择题1.直棱柱ABCA1B1C1中,若=,=,=,则=( )?→→+++D.+B.+C.A.b?c????2.已知A,B,C三点不共线,对平面ABC外的任意一点O,下列条件中能确定点M与A,B,C一定共面的是( )→→→A.=++C.=2OA?OB?OC1→C.=++D.=++OC 33.若向量同时垂直向量和,向量=+(,R, ,≠0),则()???????A.∥B.C.与不平行也不垂直D.以上均有可能?4.以下四个命题中,正确的是( )A.若=+,则P,A,B三点共线B.若{,,}为空间一个基底,则{+,+,+}构成空间的另一个基底C.|()|=||||||???D.ABC为直角三角形的充要条件是=0??5.已知=(+1,0,2),=(6,21,2),∥,则和的值分别为( )??????A.,B.5,2C.,D.5,2????二.填空题6.若=(2,3,1),=(2,0,3),=(0,2,2),则(+)=________.??7.已知G是ABC的重心,O是空间任一点,若++=,则的值为_______.??? 8.已知||=1,||=2,<,>=60,则|(+2)|=________.??三.解答题9.若向量(+3)(75),(4)(72),求与的夹角.?????10.设,试求实数,使成立.求与侧面所成的角.正三棱柱的底面边长为,11.侧棱长为,小大的角面二,时值何于等问,动移上棱在点,,,中体方长在.12.为.空间向量练习题答案 DDBBA一.选择题6.3 83 7.二.填空题6.5三.解答题9.由已知向量垂直列方程,解得2=2=2,∴cos<,>=,∴与夹角为60.?? 10.由成立,可建立方程组,解得.11.以A为原点,分别以,,为x,y,z轴建立空间直角坐标系,则A(0,0,0),B(0,a,0),A1(0,0,a),C1(,2)a,a,a),由于=(1,0,0)是面的法向量,??计算得cos<,>=,∴<,>=60.故与侧面所成的角为30.??12.设,以为原点,分别以,,为轴建立空间直角坐标系,.依题意.=(2x,1,2)可求得平面的法向量为?..(舍去)空间向量练习题答案 DDBBA一.选择题6.3 8二.填空题6.3 7.5三.解答题9.由已知向量垂直列方程,解得2=2=2,∴cos<,>=,∴与夹角为60.?? 10.由成立,可建立方程组,解得.11.以A为原点,分别以,,为x,y,z轴建立空间直角坐标系,则A(0,0,0),B(0,a,0),A1(0,0,a),C1(,2)a,a,a),由于=(1,0,0)是面的法向量,??计算得cos<,>=,∴<,>=60.故与侧面所成的角为30.??12.设,以为原点,分别以,,为轴建立空间直角坐标系,.依题意.可求得平面的法向量为=(2x,1,2)?..(舍去)。
人教版高中数学选修4-4 模块综合评价

模块综合评价(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.点M 的直角坐标是(-1,3),则点M 的极坐标为( )A.⎝ ⎛⎭⎪⎫2,π3 B.⎝ ⎛⎭⎪⎫2,-π3 C.⎝ ⎛⎭⎪⎫2,2π3 D.⎝ ⎛⎭⎪⎫2,2k π+π3(k ∈Z) 解析:点M 的极径是2,点M 在第二象限,故点M 的极坐标是⎝⎛⎭⎪⎫2,2π3.答案:C2.极坐标方程cos θ=32(ρ∈R)表示的曲线是( )A .两条相交直线B .两条射线C .一条直线D .一条射线解析:由cos θ=32,解得θ=π6或θ=116π,又ρ∈R ,故为两条过极点的直线.答案:A3.曲线ρcos θ+1=0关于直线θ=π4对称的曲线的方程是( )A .ρsin θ+1=0B .ρcos θ+1=0C .ρsin θ=2D .ρcos θ=2解析:因为M (ρ,θ)关于直线θ=π4的对称点是N ⎝ ⎛⎭⎪⎫ρ,π2-θ,从而所求曲线方程为ρcos ⎝ ⎛⎭⎪⎫π2-θ+1=0,即ρsin θ+1=0. 答案:A4.直线⎩⎨⎧x =1+12t ,y =-33+32t (t 为参数)和圆x 2+y 2=16交于A ,B 两点,则AB 的中点坐标为( )A .(3,-3)B .(-3,3)C .(3,-3)D .(3,-3)解析:将x =1+t2,y =-33+32t 代入圆方程,得⎝ ⎛⎭⎪⎫1+t 22+⎝ ⎛⎭⎪⎫-33+32t 2=16, 所以t 2-8t +12=0,则t 1=2,t 2=6, 因此AB 的中点M 对应参数t =t 1+t 22=4,所以x =1+12×4=3,y =-33+32×4=-3,故AB 中点M 的坐标为(3,-3). 答案:D5.化极坐标方程ρ2cos θ-ρ=0为直角坐标方程为( ) A .x 2+y 2=0或y =1 B .x =1 C .x 2+y 2=0或x =1 D .y =1解析:ρ(ρcos θ-1)=0,ρ=x 2+y 2=0或ρcos θ=x =1. 答案:C6.极坐标方程分别是ρ=2cos θ和ρ=4sin θ的两个圆的圆心距是( )A .2 B.2 C .5 D. 5解析:ρ=2cos θ是圆心为(1,0),半径为1的圆;ρ=4sin θ是圆心为()0,2,半径为2的圆,所以两圆的圆心距是 5.答案:D7.已知圆M :x 2+y 2-2x -4y =10,则圆心M 到直线⎩⎪⎨⎪⎧x =4t +3,y =3t +1(t 为参数)的距离为( )A .1B .2C .3D .4解析:由题意易知圆的圆心M (1,2),由直线的参数方程化为一般方程为3x -4y -5=0,所以圆心到直线的距离为d =|3×1-4×2-5|32+42=2.答案:B8.点M ⎝ ⎛⎭⎪⎫1,7π6关于直线θ=π4(ρ∈R)的对称点的极坐标为( ) A.⎝ ⎛⎭⎪⎫1,4π3B.⎝ ⎛⎭⎪⎫1,2π3 C.⎝⎛⎭⎪⎫1,π3D.⎝⎛⎭⎪⎫1,-7π6解析:点M ⎝ ⎛⎭⎪⎫1,7π6的直角坐标为⎝⎛⎭⎪⎫cos 7π6,sin 7π6=⎝ ⎛⎭⎪⎫-32,-12,直线θ=π4(ρ∈R),即直线y =x ,点⎝ ⎛⎭⎪⎫-32,-12关于直线y =x 的对称点为⎝ ⎛⎭⎪⎫-12,-32,再化为极坐标为⎝⎛⎭⎪⎫1,4π3. 答案:A9.极坐标方程(ρ-1)(θ-π)=0(ρ≥0)和参数方程⎩⎨⎧x =tan θ,y =2cos θ(θ为参数)所表示的图形分别是( )A .直线、射线和圆B .圆、射线和双曲线C .两直线和椭圆D .圆和抛物线解析:因为(ρ-1)(θ-π)=0,所以ρ=1或θ=π(ρ≥0),ρ=1表示圆,θ=π(ρ≥0)表示一条射线,参数方程⎩⎨⎧x =tan θ,y =2cos θ(θ为参数)化为普通方程为y 24-x 2=1,表示双曲线.答案:B10.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =at ,y =a 2t -1(t 为参数),椭圆C 的参数方程为⎩⎪⎨⎪⎧x =1+cos θ,y =2sin θ(θ为参数),且它们总有公共点.则a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫-32,0∪(0,+∞) B .(1,+∞)C.⎣⎢⎡⎭⎪⎫-32,+∞D.⎣⎢⎡⎭⎪⎫-32,4 解析:由已知得⎩⎪⎨⎪⎧at =1+cos θ,a 2t -1=2sin θ,则4(at -1)2+(a 2t -1)2=4, 即a 2(a 2+4)t 2-2a (a +4)t +1=0,Δ=4a 2(a +4)2-4a 2(a 2+4)=16a 2(2a +3). 直线l 与椭圆总有公共点的充要条件是Δ≥0, 即a ≥-32.答案:C11.已知圆锥曲线⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ是参数)和定点A (0,3),F 1、F 2是圆锥曲线的左、右焦点,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则直线AF 2的极坐标方程为( )A .ρcos θ+3ρsin θ= 3B .ρcos θ-3ρsin θ= 3 C.3ρcos θ+ρsin θ= 3 D.3ρcos θ-ρsin θ= 3解析:圆锥曲线为椭圆,c =1,故F 2的坐标为(1,0),直线AF 2的直角坐标方程是x +y3=1,即3x +y =3,化为极坐标方程就是3ρcos θ+ρsin θ= 3.答案:C12.已知曲线C 的极坐标方程为ρ=6sin θ,以极点为平面直角坐标系的原点,极轴为x 轴正半轴,直线l 的参数方程为⎩⎨⎧x =2t -1,y =22t(t 为参数),则直线l 与曲线C 相交所得弦长为( )A .1B .2C .3D .4解析:曲线C 的直角坐标方程为x 2+y 2-6y =0, 即x 2+(y -3)2=9,直线⎩⎨⎧x =2t -1,y =22t的直角坐标方程为x -2y +1=0, 因为圆心C 到直线l 的距离d =|0-2×3+1|12+(-2)2=5,所以直线l 与圆C 相交所得弦长为2r 2-d 2= 29-5=4. 答案:D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.在极坐标系中,点⎝⎛⎭⎪⎫2,π2关于直线ρcos θ=1的对称点的极坐标为________.解析:结合图形不难知道点⎝ ⎛⎭⎪⎫2,π2关于直线ρcos θ=1的对称点的极坐标为⎝⎛⎭⎪⎫22,π4. 答案:⎝⎛⎭⎪⎫22,π414.已知圆的渐开线的参数方程⎩⎪⎨⎪⎧x =3cos φ+3φsin φ,y =3sin φ-3φcos φ(φ为参数),当φ=π4时,对应的曲线上的点的坐标为________.解析:当φ=π4时,代入渐开线的参数方程,得⎩⎪⎨⎪⎧x =3cos π4+3·π4·sin π4,y =3sin π4-3·π4·cos π4,x =322+32π8,y =322-32π8,所以当φ=π4时,对应的曲线上的点的坐标为⎝ ⎛⎭⎪⎫322+32π8,322-32π8. 答案:⎝ ⎛⎭⎪⎫322+32π8,322-32π8 15.若直线l 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ-π4=32,曲线C :ρ=1上的点到直线l 的距离为d ,则d 的最大值为________.解析:直线的直角坐标方程为x +y -6=0,曲线C 的方程为x 2+y 2=1,为圆;d 的最大值为圆心到直线的距离加半径,即为d max =|0+0-6|2+1=32+1. 答案:32+116.在直角坐标系Oxy 中,椭圆C 的参数方程为⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数,a >b >0).在极坐标系中,直线l 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ+π3=32,若直线l 与x 轴、y 轴的交点分别是椭圆C 的右焦点、短轴端点,则a =________.解析:椭圆C 的普通方程为x 2a 2+y 2b 2=1(a >b >0),直线l 的直角坐标方程为x -3y -3=0,令x =0,则y =-1,令y =0,则x =3,所以c =3,b =1,所以a 2=3+1=4,所以a =2. 答案:2三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t (t 为参数),曲线C 的参数方程为⎩⎪⎨⎪⎧x =2tan 2θ,y =2tan θ(θ为参数).试求直线l 和曲线C 的普通方程,并求出它们的公共点的坐标.解:因为直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t (t 为参数),由x =t +1,得t =x -1,代入y =2t ,得到直线l 的普通方程为2x -y -2=0.同理得到曲线C 的普通方程为y 2=2x .联立方程组⎩⎪⎨⎪⎧y =2(x -1),y 2=2x ,解得公共点的坐标为(2,2),⎝ ⎛⎭⎪⎫12,-1. 18.(本小题满分12分)在极坐标系下,已知圆O :ρ=cos θ+sinθ和直线l :ρsin ⎝⎛⎭⎪⎫θ-π4=22.(1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的一个极坐标. 解:(1)由ρ=cos θ+sin θ,可得ρ2=ρcos θ+ρsin θ,⎩⎪⎨⎪⎧ρ2=x 2+y 2,ρcos θ=x ,ρsin θ=y ,代入得⊙O :x 2+y 2-x -y =0, 由l :ρsin ⎝⎛⎭⎪⎫θ-π4=22,得:22ρsin θ-22ρcos θ=22,ρsin θ-ρcos θ=1,又⎩⎪⎨⎪⎧ρcos θ=x ,ρsin θ=y ,代入得:x -y +1=0.(2)由⎩⎪⎨⎪⎧x -y +1=0,x 2+y 2-x -y =0,解得⎩⎪⎨⎪⎧x =0,y =1,又⎩⎨⎧ρ2=x 2+y 2,tan θ=y x ,得ρ=1,tan θ不存在, 又因为θ∈(0,π),则θ=π2,故直线l 与圆O 公共点的一个极坐标为⎝⎛⎭⎪⎫1,π2.19.(本小题满分12分)已知曲线C 的极坐标方程是ρ=2cos θ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是⎩⎨⎧x =32t +m ,y =12t (t 为参数).(1)求曲线C 的直角坐标方程和直线l 的普通方程;(2)当m =2时,直线l 与曲线C 交于A 、B 两点,求|AB |的值. 解:(1)由ρ=2cos θ,得:ρ2=2ρcos θ,所以x 2+y 2=2x ,即(x -1)2+y 2=1, 所以曲线C 的直角坐标方程为(x -1)2+y 2=1. 由⎩⎨⎧x =32t +m ,y =12t 得x =3y +m ,即x -3y -m =0,所以直线l 的普通方程为x -3y -m =0. (2)设圆心到直线l 的距离为d , 由(1)可知直线l :x -3y -2=0, 曲线C :(x -1)2+y 2=1,圆C 的圆心坐标为(1,0),半径1, 则圆心到直线l 的距离为d =|1-3×0-2|1+(3)2=12. 所以|AB |=21-⎝ ⎛⎭⎪⎫122= 3.因此|AB |的值为 3.20.(本小题满分12分)在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A 的极坐标为⎝ ⎛⎭⎪⎫2,π4,直线l 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ-π4=a ,且点A 在直线l 上.(1)求a 的值及直线l 的直角坐标方程;(2)圆C 的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α(α为参数),试判断直线l与圆C 的位置关系.解:(1)由点A ⎝ ⎛⎭⎪⎫2,π4在直线ρcos ⎝⎛⎭⎪⎫θ-π4=a 上,可得a =2,所以直线l 的方程可化为ρcos θ+ρsin θ=2, 从而直线l 的直角坐标方程为x +y -2=0.(2)由已知得圆C 的直角坐标方程为(x -1)2+y 2=1, 所以圆C 的圆心为(1,0),半径r =1. 因为圆心C 到直线l 的距离d =12=22<1,所以直线l 与圆C 相交.21.(本小题满分12分)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=22cos ⎝ ⎛⎭⎪⎫θ+π4,直线l 的参数方程为⎩⎪⎨⎪⎧x =t ,y =-1+22t (t 为参数),直线l 与圆C 交于A ,B 两点,P 是圆C 上不同于A ,B 的任意一点.(1)求圆心的极坐标;(2)求△PAB 面积的最大值.解:(1)圆C 的直角坐标方程为x 2+y 2-2x +2y =0, 即(x -1)2+(y +1)2=2.所以圆心坐标为(1,-1),圆心极坐标为⎝ ⎛⎭⎪⎫2,7π4. (2)直线l 的普通方程为22x -y -1=0,圆心到直线l 的距离d =|22+1-1|3=223, 所以|AB |=22-89=2103, 点P 到直线AB 距离的最大值为2+223=523,故最大面积S max =12×2103×523=1059. 22.(本小题满分12分)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t (t 为参数,a >0).在以坐标原点为极点、x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .解:(1)消去参数t 得到C 1的普通方程为x 2+(y -1)2=a 2,则C 1是以(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0.(2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ.若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0, 由已知tan θ=2,得16cos 2θ-8sin θcos θ=0, 从而1-a 2=0,解得a =-1(舍去)或a =1.当a =1时,极点也为C 1,C 2的公共点,且在C 3上. 所以a =1.。
高中数学选修4-4习题(含答案)

统考作业题目——4-46.21.在平面直角坐标系xOy 中,直线l 的参数方程为12,(2x t t y t =+⎧⎨=-⎩为参数),以原点O 为极点,以x 轴非负半轴为极轴建立极坐标系,两坐标系取相同的长度单位。
曲线C 的极坐标方程为 22cos 4sin 40ρρθρθ+++=. (1)求l 的普通方程和C 的直角坐标方程;(2)已知点M 是曲线C 上任一点,求点M 到直线l 距离的最大值.2.已知极坐标的极点在平面直角坐标系的原点处,极轴与轴的正半轴重合,且长度单位相同。
直线的极坐标方程为:,点,参数.(I )求点轨迹的直角坐标方程; (Ⅱ)求点到直线距离的最大值.1、【详解】(1)12,2x t y t=+⎧⎨=-⎩10x y ∴+-= 因为222,cos ,sin x y x y ρρθρθ=+==,所以222440x y x y ++++=,即22(1)(2)1x y +++= (2)因为圆心(1,2)--到直线10x y +-=距离为222=, 所以点M 到直线l 距离的最大值为2222 1.r +=+ 2、解:(Ⅰ)设,则,且参数,消参得:所以点的轨迹方程为(Ⅱ)因为所以所以,所以直线的直角坐标方程为法一:由(Ⅰ)点的轨迹方程为圆心为(0,2),半径为2.,点到直线距离的最大值等于圆心到直线距离与圆的半径之和, 所以点到直线距离的最大值.法二:当时,,即点到直线距离的最大值为.6.33.在平面直角坐标系xOy 中,已知曲线的参数方程为(为参数),曲线的参数方程为(,t 为参数).(1)求曲线的普通方程和曲线的极坐标方程;(2)设P 为曲线上的动点,求点P 到上点的距离的最小值,并求此时点P 的坐标.4.在直角坐标系xOy 中曲线1C 的参数方程为cos 3x y αα=⎧⎪⎨=⎪⎩ (α为参数,以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为sin 224πρθ⎛⎫+= ⎪⎝⎭(1)写出1C 的普通方程和2C 的直角坐标方程;(2)设点P 在1C 上,点Q 在2C 上,求||PQ 的最小值及此时P 的直角坐标.3、【详解】 (1)对曲线:,,∴曲线的普通方程为.对曲线消去参数可得且∴曲线的直角坐标方程为.又,从而曲线的极坐标方程为。
高三基础知识天天练 数学选修4-4-1人教版

选修4-4 第1节[知能演练]一、选择题1.点M (ρ,θ)关于极点对称的点的坐标为( )A .(-ρ,-θ)B .(ρ,π+θ)C .(ρ,π-θ)D .(ρ,-θ)答案:B2.将曲线y =12sin3x 变为y =sin x 的伸缩变换是( )A.⎩⎪⎨⎪⎧x =3x ′y =12y ′B.⎩⎪⎨⎪⎧x ′=3x y ′=12y C.⎩⎪⎨⎪⎧x =3x ′y =2y ′D.⎩⎪⎨⎪⎧x ′=3x y ′=2y 答案:D3.设点M 的直角坐标为(-1,-3,3),则它的柱坐标是( )A .(2,π3,3)B .(2,2π3,3)C .(2,4π3,3)D .(2,5π3,3)解析:ρ=(-1)2+(-3)2=2, tan θ=3,∴θ=4π3,z =3,∴选C.答案:C4.在极坐标系中,与圆ρ=4sin θ相切的一条直线方程为( )A .ρsin θ=2B .ρcos θ=2C .ρcos θ=4D .ρcos θ=-4解析:圆ρ=4sin θ的圆心为(2,π2),半径r =2,对于选项A ,方程ρsin θ=2对应的直线(y =2)与圆相交;对于选项B ,方程ρcos θ=2对应的直线(x =2)与圆相切;选项C ,D 对应的直线与圆都相离.答案:B 二、填空题5.已知点M 的极坐标为(6,11π6),则点M 关于y 轴对称的点的直角坐标为________. 解析:∵点M 的极坐标为(6,11π6),∴x =6cos 11π6=6cos π6=6×32=33,y =6sin 11π6=6sin(-π6)=-6×12=-3,∴点M 的直角坐标为(33,-3),∴点M 关于y 轴对称的点的直角坐标为(-33,-3). 答案:(-33,-3)6.在极坐标系中,点P (2,3π2)到直线l :3ρcos θ-4ρsin θ=3的距离为________.解析:在相应直角坐标系中,P (0,-2),直线l 方程:3x -4y -3=0,所以P 到l 的距离:d =|3×0-4×(-2)-3|32+42=1.答案:1 三、解答题7.说出由曲线y =tan x 得到曲线y =3tan2x 的变换过程,并求满足其图形变换的伸缩变换.解:y =tan x 的纵坐标不变,横坐标缩短为原来的12,得到y =tan2x ,再将其纵坐标伸长为原来的3倍,横坐标不变,得到曲线y =3tan2x .设y ′=3tan2x ′,变换为⎩⎪⎨⎪⎧x ′=λ·x λ>0y ′=μ·y μ>0,将其代入y ′=3tan2x ′,得μy =3tan2λx与y =tan x 比较,可得⎩⎪⎨⎪⎧ μ=3λ=12,∴⎩⎪⎨⎪⎧x ′=12xy ′=3y.8.从极点O 作直线与另一直线l :ρcos θ=4相交于点M ,在OM 上取一点P ,使OM ·OP =12.(1)求点P 的轨迹方程;(2)设R 为l 上的任意一点,试求RP 的最小值. 解:(1)设动点P 的坐标为(ρ,θ), M 的坐标为(ρ0,θ),则ρρ0=12,∵ρ0cos θ=4,∴ρ=3cos θ即为所求的轨迹方程.(2)由(1)知P 的轨迹是以(32,0)为圆心,半径为32的圆,易得RP 的最小值为1.[高考·模拟·预测]1.极坐标方程ρ=cos θ化为直角坐标方程为( )A .(x +12)2+y 2=14B .x 2+(y +12)2=14C .x 2+(y -12)2=14D .(x -12)2+y 2=14解析:由ρ=cos θ得ρ2=ρcos θ,∴x 2+y 2=x .选D. 答案:D2.在极坐标系中,直线ρsin(θ+π4)=2被圆ρ=4截得的弦长为________.解析:直线ρsin(θ+π4)=2可化为x +y -22=0,圆ρ=4可化为x 2+y 2=16,由圆中的弦长公式得2r 2-d 2=242-(222)2=4 3.答案:4 33.在极坐标系中,点(1,0)到直线ρ(cos θ+sin θ)=2的距离为________.解析:直线ρ(cos θ+sin θ)=2可化为x +y -2=0,故点(1,0)到直线距离d =|1+0-2|2=22.答案:224.两直线ρsin(θ+π4)=2008,ρsin(θ-π4)=2009的位置关系是________.(判断垂直或平行或斜交)解析:两直线方程可化为x +y =20082,y -x = 20092,故两直线垂直. 答案:垂直5.圆O 1和圆O 2的极坐标方程分别为ρ=4cos θ,ρ=-sin θ. (1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程. (2)求经过圆O 1,圆O 2两个交点的直线的直角坐标方程.解:以极点为原点,极轴为x 轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.(1)x =ρcos θ,y =ρsin θ,由ρ=4cos θ得ρ2=4ρcos θ.所以x 2+y 2=4x .即x 2+y 2-4x =0为圆O 1的直角坐标方程. 同理,x 2+y 2+y =0为圆O 2的直角坐标方程.(2)由⎩⎪⎨⎪⎧x 2+y 2-4x =0,x 2+y 2+y =0,相减得过交点的直线的直角坐标方程为4x +y =0.6.求经过极点O (0,0),A (6,π2),B (62,9π4)三点的圆的极坐标方程.解:将点的极坐标化为直角坐标,点O ,A ,B 的直角坐标分别为(0,0),(0,6),(6,6),故△OAB 是以OB 为斜边的等腰直角三角形,圆心为(3,3),半径为32,圆的直角坐标方程为(x -3)2+(y -3)2=18,即x 2+y 2-6x -6y =0,将x =ρcos θ,y =ρsin θ代入上述方程,得ρ2-6ρ(cos θ+sin θ)=0,即ρ=62cos(θ-π4).。
新课标人教版高二数学选修4-4_坐标系_练习题①②(附答案)

第一讲 测试题①一、选择题1.将点的直角坐标(-2,23)化成极坐标得( ).A .(4,32π)B .(-4,32π)C .(-4,3π)D .(4,3π) 2.极坐标方程 ρ cos θ=sin2θ( ρ≥0)表示的曲线是( ). A .一个圆 B .两条射线或一个圆C .两条直线D .一条射线或一个圆3.极坐标方程θρcos +12= 化为普通方程是( ).A .y 2=4(x -1)B .y 2=4(1-x )C .y 2=2(x -1)D .y 2=2(1-x )4.点P 在曲线 ρcos θ +2ρ sin θ =3上,其中0≤θ ≤4π,ρ>0,则点P 的轨迹是( ).A .直线x +2y -3=0B .以(3,0)为端点的射线C .圆(x -2)2+y =1D .以(1,1),(3,0)为端点的线段5.设点P 在曲线 ρ sin θ =2上,点Q 在曲线 ρ=-2cos θ上,则|PQ |的最小值为A .2B .1C .3D .06.在满足极坐标和直角坐标互的化条件下,极坐标方程θθρ222sin 4+ cos 312=经过直角坐标系下的伸缩变换⎪⎩⎪⎨⎧''y =y x = x 3321后,得到的曲线是( ). A .直线 B .椭圆 C . 双曲线D . 圆7.在极坐标系中,直线2= 4π+ sin )(θρ,被圆 ρ=3截得的弦长为( ). A .22B .2C .52D .328.ρ=2(cos θ -sin θ )(ρ>0)的圆心极坐标为( ). A .(-1,4π3) B .(1,4π7) C .(2,4π)D .(1,4π5) 9.极坐标方程为lg ρ=1+lg cos θ,则曲线上的点(ρ,θ)的轨迹是( ). A .以点(5,0)为圆心,5为半径的圆B .以点(5,0)为圆心,5为半径的圆,除去极点C .以点(5,0)为圆心,5为半径的上半圆D .以点(5,0)为圆心,5为半径的右半圆10.方程θθρsin + cos 11= -表示的曲线是( ).A . 圆B .椭圆C .双曲线D . 抛物线二、填空题11.在极坐标系中,以(a ,2π)为圆心,以a 为半径的圆的极坐标方程为 .12.极坐标方程 ρ2cos θ-ρ=0表示的图形是 . 13.过点(2,4π)且与极轴平行的直线的极坐标方程是 . 14.曲线 ρ=8sin θ 和 ρ=-8cos θ(ρ>0)的交点的极坐标是 .15.已知曲线C 1,C 2的极坐标方程分别为ρ cos θ =3,ρ=4cos θ (其中0≤θ<2π),则C 1,C 2交点的极坐标为 . 16.P 是圆 ρ=2R cos θ上的动点,延长OP 到Q ,使|PQ |=2|OP |,则Q 点的轨迹方程是 .第一讲 测试题②一.选择题1.已知⎪⎭⎫ ⎝⎛-3,5πM ,下列所给出的不能表示点M 的坐标的是( )A .⎪⎭⎫ ⎝⎛-3,5πB .⎪⎭⎫ ⎝⎛34,5πC .⎪⎭⎫ ⎝⎛-32,5πD .⎪⎭⎫ ⎝⎛--35,5π2.点()3,1-P ,则它的极坐标是( )A .⎪⎭⎫⎝⎛3,2π B .⎪⎭⎫ ⎝⎛34,2π C .⎪⎭⎫ ⎝⎛-3,2π D .⎪⎭⎫ ⎝⎛-34,2π3.极坐标方程⎪⎭⎫⎝⎛-=θπρ4cos 表示的曲线是( )A .双曲线B .椭圆C .抛物线D .圆 4.圆)sin (cos 2θθρ+=的圆心坐标是A .⎪⎭⎫ ⎝⎛4,1πB .⎪⎭⎫ ⎝⎛4,21πC .⎪⎭⎫ ⎝⎛4,2πD .⎪⎭⎫⎝⎛4,2π5.在极坐标系中,与圆θρsin 4=相切的一条直线方程为A .2sin =θρB .2cos =θρC .4cos =θρD .4cos -=θρ6、 已知点()0,0,43,2,2,2O B A ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛--ππ则ABO ∆为A 、正三角形B 、直角三角形C 、锐角等腰三角形D 、直角等腰三角形 7、)0(4≤=ρπθ表示的图形是A .一条射线B .一条直线C .一条线段D .圆8、直线αθ=与1)cos(=-αθρ的位置关系是 A 、平行 B 、垂直 C 、相交不垂直 D 、与有关,不确定 9.两圆θρcos 2=,θρsin 2=的公共部分面积是 A.214-πB.2-πC.12-πD.2π10.极坐标方程cos 2sin 2ρθθ=表示的曲线为( )A .一条射线和一个圆B .两条直线C .一条直线和一个圆D .一个圆二.填空题(每题5分共25分)11、曲线的θθρcos 3sin -=直角坐标方程为_ 12.极坐标方程52sin 42=θρ化为直角坐标方程是13.圆心为⎪⎭⎫⎝⎛6,3πC ,半径为3的圆的极坐标方程为14.已知直线的极坐标方程为22)4sin(=+πθρ,则极点到直线的距离是 15、在极坐标系中,点P ⎪⎭⎫⎝⎛611,2π到直线1)6sin(=-πθρ的距离等于____________。
选修4-1,4-4,4-5单元练习题

高三选修4-1,4-4,4-5单元练习题一、选择题(每小题4分,共32分)1.直线:l 02sin 20(5cos 20x t t y t ⎧=-+⎨=+⎩为参数)的倾斜角为( )A20B70C 0160D 01202.参数方程是2232(05)1x t t y t ⎧=+≤≤⎨=-⎩表示的曲线是( )A 线段B 双曲线C 圆弧D 射线 3.实数变量22.1,(,)m n m n m n m n +=+满足则坐标表示的点的轨迹是( )A 抛物线B 椭圆C 双曲线的一支D 抛物线的一部分4.圆心在(3,)π,半径为3的圆的极坐标方程是( ) A6sin ρθ= B6sin ρθ=- C6cos ρθ= D6cos ρθ=-5.极坐标方程sin 2cos ρθθ=+所表示的曲线是( )A 直线B 圆C 双曲线D 抛物线6.直线2360x y +-=向着x 轴伸缩,伸缩变换为14,则伸缩后的直线的斜率为( ) A83- B32-C23-D16-7.若,,p q m 是三个正数,且100q <,现把m 增加%p ,再把所得的结果减少%q ,这样所得的数仍大于m ,那么必须且只需( ) A100100q p q>- B100100q p q>+ C100q p q>- Dp q>8.设命题:p 函数()(0)a f x a x=>在区间(1,2)上单调递增;命题:q 不等式124x x a--+<对任意x R ∈都成立,若p q 是真命题,p q 是假命题,则实数a 的取值范围是( ) A143<<aB43>a C430<<a D41>a二、填空题(每小题4分,共24分)9.设点M 的直角坐标为(1,2)--,则它的球坐标为 ; 10.直线3x-4y+5=0经过变换⎩⎨⎧='='yy xx 23后,坐标没变化的点为 ;11.把直角坐标方程222(0)y px p p =+>化为极坐标方程为 ; 12.已知直线⎩⎨⎧+=--=ty t x 4221(t 为参数)与曲线22(2)1y x --=相交于AB ,点M (-1,2)到弦AB 的中点的距离为 ; 13.对任意实数x ,不等式kxx >-1恒成立,则k 的取值范围是 ;14.已知,a b 是关于x 的方程230x m x m +++=的两个实根,则22a b +的最小值是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二A 级数学选修4-4练习题[基础训练A 组] 一、选择题: 1.曲线25()12x tt y t =-+⎧⎨=-⎩为参数与坐标轴的交点是( )A .21(0,)(,0)52、 B .11(0,)(,0)52、 C .(0,4)(8,0)-、D .5(0,)(8,0)9、 2.下列在曲线sin 2()cos sin x y θθθθ=⎧⎨=+⎩为参数上的点是( )A.1(,2 B .31(,)42- C. D. 3.将参数方程222sin ()sin x y θθθ⎧=+⎪⎨=⎪⎩为参数化为普通方程为( ) A .2y x =- B .2y x =+ C .2(23)y x x =-≤≤ D .2(01)y x y =+≤≤4.化极坐标方程2cos 0ρθρ-=为直角坐标方程为( )A .201y y +==2x或 B .1x = C .201y +==2x 或x D .1y =5.点M的直角坐标是(-,则点M 的极坐标为( )A .(2,)3πB .(2,)3π-C .2(2,)3πD .(2,2),()3k k Z ππ+∈6.极坐标方程cos 2sin 2ρθθ=表示的曲线为( )A .一条射线或一个圆B .两条直线C .一条直线或一个圆D .一个圆 7.把方程1xy=化为以t 参数的参数方程是( )A .1212x t y t -⎧=⎪⎨⎪=⎩B .sin 1sin x t y t =⎧⎪⎨=⎪⎩C .cos 1cos x t y t =⎧⎪⎨=⎪⎩D .tan 1tan x t y t =⎧⎪⎨=⎪⎩ 8.直线12()2x tt y t=+⎧⎨=+⎩为参数被圆229x y +=截得的弦长为( )A .125 BCD二、填空题: 9.直线34()45x tt y t=+⎧⎨=-⎩为参数的斜率为________________________10.参数方程()2()t tt tx e et y e e --⎧=+⎪⎨=-⎪⎩为参数的普通方程为__________________________11.已知直线113:()24x tl t y t=+⎧⎨=-⎩为参数与直线2:245l x y -=相交于点B ,又点(1,2)A ,则AB =________________________12.直线cos sin 0x y αα+=的极坐标方程为__________________________13.已知曲线22()2x pt t p y pt⎧=⎨=⎩为参数,为正常数上的两点,M N 对应的参数分别为12,t t 和,120t t +=且,那么MN=____________________14.直线2()3x t y ⎧=-⎪⎨=+⎪⎩为参数上与点(2,3)A -_________ 三、解答题:15.已知点(,)P x y 是圆222x y y +=上的动点.(1)求2x y +的取值范围; (2)若0x y a ++≥恒成立,求实数a 的取值范围.16.求直线11:()5x tl t y =+⎧⎪⎨=-⎪⎩为参数和直线2:0l x y --=的交点P 的坐标,及点P 与(1,5)Q -的距离.[综合训练B 组]一、选择题:1.直线l 的参数方程为()x a tt y b t=+⎧⎨=+⎩为参数,l 上的点1P 对应的参数是1t ,则点1P 与(,)P a b 之间的距离是(A .1t B .12t C1D12.参数方程为1()2x t t t y ⎧=+⎪⎨⎪=⎩为参数表示的曲线是( )A .一条直线B .两条直线C .一条射线D .两条射线3.直线112()2x t t y t ⎧=+⎪⎪⎨⎪=-⎪⎩为参数和圆2216x y +=交于,A B 两点,则AB 的中点坐标为( )A .(3,3)- B.( C.3)- D.(3,4.圆5cos ρθθ=-的圆心坐标是( )A .4(5,)3π--B .(5,)3π-C .(5,)3πD .5(5,)3π- 5.与参数方程为)x t y ⎧=⎪⎨=⎪⎩为参数等价的普通方程为( ) A .214y +=2x B .21(01)4y x +=≤≤2x C .21(02)4y y +=≤≤2x D .21(01,02)4y x y +=≤≤≤≤2x 6.直线2()1x tt y t=-+⎧⎨=-⎩为参数被圆22(3)(1)25x y -++=所截得的弦长为( )AB .1404CD7.极坐标方程cos 20ρθ=表示的曲线为( )A .极点B .极轴C .一条直线D .两条相交直线 8.在极坐标系中与圆4sin ρθ=相切的一条直线的方程为( )A .cos 2ρθ= B .sin 2ρθ= C .4sin()3πρθ=+ D .4sin()3πρθ=-二、填空题:9.曲线的参数方程是211()1x t t y t ⎧=-⎪≠⎨⎪=-⎩为参数,t 0,则它的普通方程为________________10.直线3()14x att y t=+⎧⎨=-+⎩为参数过定点______________________11.点P(x,y)是椭圆222312xy +=上的一个动点,则2x y +的最大值为_____________12.曲线的极坐标方程为1tan cos ρθθ=⋅,则曲线的直角坐标方程为________________13.设()y tx t =为参数则圆2240x y y +-=的参数方程为_______________________14.极坐标方程分别为cos ρθ=与sin ρθ=的两个圆的圆心距为__________________三、解答题:15.点P 在椭圆221169x y +=上,求点P 到直线3424x y -=的最大距离和最小距离.16.过点P 作倾斜角为α的直线与曲线22121xy +=交于点,M N ,求PM PN ⋅的最小值及相应的α的值.高二A 级数学选修4-4练习题-答案[基础训练A 组]一、选择题:BBCC CCDB1.B 当0x=时,25t =,而12y t =-,即15y =,得与y 轴的交点为1(0,)5;当0y =时,12t =,而25x t =-+,即12x =,得与x 轴的交点为1(,0)22.B 转化为普通方程:21y x =+,当34x =-时,12y =3.C 转化为普通方程:2y x =-,但是[2,3],[0,1]x y ∈∈4.C (cos 1)0,0,cos 1x ρρθρρθ-=====或 5.C 2(2,2),()3k k Z ππ+∈都是极坐标 6.C2cos 4sin cos ,cos 0,4sin ,4sin ρθθθθρθρρθ====或即则,2k πθπ=+或224x y y +=7.D1xy =,x 取非零实数,而A ,B ,C 中的x 的范围有各自的限制8.B11221x x t y t y ⎧=+⎪=+⎧⎪⇒⎨⎨=+⎩⎪=⎪⎩,把直线122x t y t =+⎧⎨=+⎩代入 229x y +=得222(12)(2)9,5840t t t t +++=+-=12125t t -===12t -=二、填空题: 9.54-455344y t k x t --===-- 10.221,(2)416x y x -=≥ 22()()422222tt t t tty x e x e e y y x x y y e e x e ---⎧⎧+==+⎪⎪⎪⇒⇒+-=⎨⎨=-⎪⎪-=⎩⎪⎩ 11.52 将1324x t y t=+⎧⎨=-⎩代入245x y -=得12t =,则5(,0)2B ,而(1,2)A ,得52AB =12.2πθα=+ cos cos sin sin 0,cos()0ρθαρθαθα+=-=,取2πθα-=13.14pt 显然线段MN 垂直于抛物线的对称轴。
即x 轴,121222MN p t t p t =-=14.(3,4)-,或(1,2)-22221()),,2t t +===三、解答题:15.解:(1)设圆的参数方程为cos 1sin x y θθ=⎧⎨=+⎩, (2)cos sin 10x y a a θθ++=+++≥22cos sin 1)1x y θθθϕ+=++=++(cos sin )1)14a πθθθ∴≥-+-=+-121x y ≤+≤.1a ∴≥16.解:将15x ty =+⎧⎪⎨=-+⎪⎩代入0x y --=得t =得(1P +,而(1,5)Q -,得PQ ==[综合训练B 组]一、选择题:CDDA DCDA 1.C1=2.D2y =表示一条平行于x 轴的直线,而2,2x x ≥≤-或,所以表示两条射线 3.D221(1)()162t ++-=,得2880t t --=,12128,42t t t t ++==中点为114324x x y y ⎧=+⨯⎪=⎧⎪⎪⇒⎨⎨=⎪⎩⎪=-⎪⎩4.A圆心为5(,2 5.D 22222,11,1,0,011,0244y y x t t x x t t y ==-=-+=≥≤-≤≤≤而得 6.C222112x x t y t y ⎧=-⨯⎪=-+⎧⎪⇒⎨⎨=-⎩⎪=⨯⎪⎩,把直线21x ty t=-+⎧⎨=-⎩代入22(3)(1)25x y -++=得222(5)(2)25,720t t t t -++-=-+=12t t -==12t -=7.D cos 20,cos 20,4k πρθθθπ===±,为两条相交直线8.A4sin ρθ=的普通方程为22(2)4x y +-=,cos 2ρθ=的普通方程为2x =圆22(2)4xy +-=与直线2x =显然相切二、填空题: 9.2(2)(1)(1)x x y x x -=≠- 111,,1x t t x-==-221(2)1()(1)1(1)x x y x x x -∴=-=≠-- 10.(3,1)-143y x a+=-,(1)4120y a x -++-=对于任何a 都成立,则3,1x y ==-且 11椭圆为22164x y +=,设,2sin )P θθ,24sin )x y θθθϕ+=+=+≤12.2xy = 22221sin tan ,cos sin ,cos sin ,cos cos θρθρθθρθρθθθ=⋅===即2x y = 13.2224141t x t t y t ⎧=⎪⎪+⎨⎪=⎪+⎩22()40x tx tx +-=,当0x =时,0y =;当0x ≠时,241tx t =+; 而y tx =,即2241t y t =+14.2圆心分别为1(,0)2和1(0,)2三、解答题:15.解:设(4cos ,3sin )P θθ,则12cos 12sin 245d θθ--==当cos()14πθ+=-时,max 12(25d =;当cos()14πθ+=时,min 12(25d =. 16.解:设直线为cos ()2sin x t t y t αα⎧=+⎪⎨⎪=⎩为参数,代入曲线并整理得223(1sin ))02t t αα+++=, 则122321sin PM PN t t α⋅==+所以当2sin 1α=时,即2πα=,PM PN ⋅的最小值为34.。