高一数学简单随机抽样1

合集下载

2022_2023学年新教材高中数学课时作业五十二简单随机抽样分层抽样湘教版必修第一册

2022_2023学年新教材高中数学课时作业五十二简单随机抽样分层抽样湘教版必修第一册

课时作业(五十二) 简单随机抽样 分层抽样[练基础]1.要完成下列两项调查:(1)江山社区有100户高收入家庭,2100户中等收入家庭,90户低收入家庭,从中抽取100户调查有关消费购买力的某项指标;(2)从光明中学高一年级的28名日语学生中抽取3人调查学习情况.应采用的抽样方法分别是( ) A.(1)用简单随机抽样,(2)用分层抽样B.(1)用分层抽样,(2)用其他抽样方法C.(1)用分层抽样,(2)用简单随机抽样D.(1)(2)都用分层抽样2.“双色球”彩票中红色球的号码由编号为01,02,…,33的33个个体组成,一位彩民利用下面的随机数表选取6组数作为6个红色球的编号,选取方法是从随机数表第1行的第6列和第7列数字开始由左到右依次选取两个数字,则选出来的第5个红色球的编号为( )49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 2634 91 6457 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 9212 06 76A.23 B.09C.02 D.173.我国新冠疫苗接种重点人群是年龄在18~59岁的健康人员.某单位300名职工的年龄分布情况如图所示,现要从中抽取30名职工作为样本了解新冠疫苗的接种情况,则40岁以下年龄段应抽取( )A.6人 B.9人C.15人 D.20人4.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用比例分配的分层抽样方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为( )A.6 B.8C.10 D.125.某校为了解学生学习情况,采用分层抽样的方法从高一600人、高二780人、高三n人中,共抽取35人进行问卷调查,在抽样中不需剔除个体,已知高二被抽取的人数为13人,则n等于( )A.660 B.720C.780 D.8006.(多选)某工厂的质检人员采用随机数法对生产的100件产品进行检查,若抽取10件进行检查,对100件产品采用下面的编号方法,其中正确的编号方法是( ) A.1,2,3,…,100 B.001,002,…,100C.00,01,02,…,99 D.01,02,03,…,1007.齐鲁风采“七乐彩”的中奖号码是从分别标有1,2,…,30的三十个小球中逐个不放回地摇出7个小球来按规则确定中奖情况,这种从30个号码中选7个号码的抽样方法是________.8.一个公司共有1 000名员工,下设一些部门,要采用分层抽样法从全体员工中抽取一个容量为50的样本,已知某部门有200名员工,那么从该部门抽取的员工人数是___ _____.9.学校举办元旦晚会,需要从每班选10名男生,8名女生参加合唱节目,某班有男生32名,女生28名,试用抽签法确定该班参加合唱的同学.10.某高级中学共有学生2 000名,各年级男、女生人数如下表:高一年级高二年级高三年级女生373x y男生377370z已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.19.(1)求x的值;(2)现用分层抽样在全校抽取48名学生,则高三年级抽取多少名?[提能力]11.用简单随机抽样法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性,“第二次被抽到”的可能性分别是( ) A., B.,C.,D.,12.(多选)比例分配的分层抽样是将总体分成若干个互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,组成一个样本的抽样方法.在《九章算术》第三章“衰分”中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱.欲以钱数多少衰出之,问各几何?”其译文为:今有甲持560钱,乙持350钱,丙持180钱,甲、乙、丙三人一起出关,关税共100钱,要按照各人带多少的比例进行交税,问三人各应付多少税?则下列说法正确的是( ) A.甲应付51钱B.乙应付32钱C.丙应付16钱D.三者中甲付的钱最多,丙付的钱最少13.用随机数法从100名学生(男生25人)中抽取20人进行评教,则某男生被抽到的可能性是________.14.某地有居民100 000户,其中普通家庭99 000户、高收入家庭1 000户.从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户、高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是________.15.一个学生在一次竞赛中要回答的8道题是这样产生的:从15道物理题中随机抽取3道;从20道化学题中随机抽取3道;从12道生物题中随机抽取2道.使用合适的方法确定这个学生所要回答的三门学科的题的序号(物理题的编号为1~15,化学题的编号为16~35,生物题的编号为36~47).[培优生]16.山东某高中针对学生发展要求,开设了富有地方特色的“泥塑”与“剪纸”两个社团,已知报名参加这两个社团的学生共有800人,按照要求每人只能参加一个社团,各年级参加社团的人数情况如表:高一年级高二年级高三年级泥塑a b c剪纸x y z其中x∶y∶z=5∶3∶2,且“泥塑”社团的人数占两个社团总人数的,为了了解学生对两个社团活动的满意程度,从中抽取一个50人的样本进行调查,则从高二年级“剪纸”社团的学生中应抽取多少人.课时作业(五十二) 简单随机抽样 分层抽样1.解析:(1)中收入差距较大,采用分层抽样较合适;(2)中总体容量和样本容量都较小,采用简单随机抽样较合适.故选C.答案:C2.解析:由题意知,第一个红球编号为21,第二个编号为32,第三个编号为09,第四个编号为16,第五个编号为17,故选D.答案:D3.解析:根据题意可知,40岁以下年龄段应抽取30×50%=15人.故选C.答案:C4.解析:设在高二年级学生中抽取的人数为x,则=,解得x=8.故选B.答案:B5.解析:由已知,抽样比为=所以有= ,解得n=720 .故选B.答案:B6.解析:采用随机数法抽取样本,总体中各个个体的编号必须位数相同,这样保证每个个体被取到的可能性相同,故BC正确.故选BC.答案:BC7.解析:三十个小球相当于号签,搅拌均匀后逐个不放回地抽取,是典型的抽签法.答案:抽签法8.解析:从该部门抽取的员工人数是×200=10.答案:109.解析:第一步,将32名男生从0到31进行编号.第二步,用相同的纸条制成32个号签,在每个号签上写上这些编号.第三步,将写好的号签放在一个不透明的容器内摇匀,不放回地从中逐个抽出10个号签.第四步,相应编号的男生参加合唱.第五步,用相同的办法从28名女生中选出8名,则此8名女生参加合唱.10.解析:(1)∵=0.19,∴x=380.(2)高三年级人数为:y+z=2 000-(373+377+380+370)=500,现用分层抽样的方法在全校抽取48名学生,应在高三年级抽取的人数为:×500=12名.11.解析:简单随机抽样中每个个体被抽取的机会相等,都为.故选A.答案:A12.解析:由比例分配的分层抽样方法可知,抽样比为=,则甲应付×560=51(钱);乙应付×350=32(钱);丙应付×180=16(钱).故选ACD.答案:ACD13.解析:因为样本量为20,总体容量为100,所以总体中每个个体被抽到的可能性都为=0.2.答案:0.214.解析:方法一 该地拥有3套或3套以上住房的家庭可以估计有99 000×+1 000×=5 700户,所以所占比例的合理估计是5 700÷100 000=5.7%.方法二 在普通家庭中拥有3套或3套以上住房的家庭所占比例为=,在高收入家庭中拥有3套或者3套以上住房的家庭所占比例为=,所以该地拥有3套或3套以上住房的家庭所占比例约为×100%=5.7%.答案:5.7%15.解析:方法一 抽签法.第一步,将试题的编号1~47分别写在一张纸条上,将纸条揉成团儿制成号签,并将物理、化学、生物题的号签分别放在一个不透明的袋子中并搅匀.第二步,从装有物理题的袋子中逐个抽取3个号签,从装有化学题的袋子中逐个抽取3个号签,从装有生物题的袋子中逐个抽取2个号签,并记录所得号签上的编号,这便是所要回答的问题的序号.方法二 随机数法.第一步,将物理题的序号对应改成01,02,…,15,其余两科题的序号不变.第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向,每次读取两位,凡不在01~47中的数跳过去不读,前面已经读过的也跳过去不读,从01~15中选3个号码,从16~35中选3个号码,从36~47中选2个号码.直到取满8个数为止,说明8个样本号码已取满.第三步,对应以上号码找出所要回答的问题的序号.16.解析:方法一 因为“泥塑”社团的人数占总人数的,故“剪纸”社团的人数占总人数的,所以“剪纸”社团的人数为800×=320.因为“剪纸”社团中高二年级人数比例为==,所以“剪纸”社团中高二年级人数为320×=96.由题意知,抽样比为=,所以从高二年级“剪纸”社团中抽取的人数为96×=6.方法二 因为“泥塑”社团的人数占总人数的,故“剪纸”社团的人数占总人数的,所以抽取的50人的样本中,“剪纸”社团中的人数为50×=20.又“剪纸”社团中高二年级人数比例为==,所以从高二年级“剪纸”社团中抽取的人数为20×=6.。

高一数学随机抽样试题

高一数学随机抽样试题

高一数学随机抽样试题1.某校高三年级有男生500人,女生400人.为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是()A.系统抽样法B.抽签法C.随机数法D.分层抽样法【答案】D【解析】=,根据定义知为分层抽样,故选D.2.已知某单位有职工120人,男职工有90人,现采用分层抽样(按男、女分层)抽取一个样本,若已知样本中有27名男职工,则样本容量为()A.30B.36C.40D.没法确定【答案】B【解析】抽取比例为=,故样本容量为:×120=36.3.某校高一年级有x名学生,高二年级有y名学生,高三年级有z名学生,采用分层抽样抽取一个容量为45的样本,高一年级被抽取20人,高二年级被抽取10人,高三年级共有学生300人,则此学校共有学生________人.【答案】900【解析】高三年级被抽取了45-20-10=15(人),设此学校共有学生N人,则=,解得N=900.4.总体容量为203,若采用系统抽样法抽样,当抽样间距为多少时不需要剔除个体()A.4B.5C.6D.7【答案】D【解析】因为203=7×29,即203能被7整除,所以间隔为7时,不需要剔除个体.5.下列抽样问题中,最适合用系统抽样的是()A.从全班48名学生中随机抽取8人参加一项活动B.一个城市有210家百货商店,其中有大型商店20家,中型商店40家,小型商店150家,为了掌握各商店的营业情况,要从中抽取一个容量为21的样本C.从参加考试的1200名考生中随机抽取100人分析试题作答情况D.从参加模拟考试的1200名高中生中随机抽取10人了解情况【答案】C【解析】A中总体、样本容量都较小,可用抽签法或随机数法;B中总体不均匀,不易用系统抽样;D中样本容量较小,可用随机数法;只有C中总体与样本容量都较大6.某学校有学生4022人.为调查学生对2010年上海世博会的了解情况,现用系统抽样的方法抽取一个容量为30的样本,则分段间隔是________.【答案】134【解析】由于不是整数,所以从4022名学生中随机剔除2名,则分段间隔是=134,故填134.7.下面给出某村委会调查本村各户收入情况所作的抽样,阅读并回答问题.本村人口:1200人,户数300,每户平均人口数4人.应抽户数:30户.抽样间隔=40.确定随机数字:取一张人民币,编码的后两位数为12.确定第一样本户:编码为12的户为第一样本户.确定第二样本户:12+40=52,52号为第二样本户.……(1)该村委会采用了何种抽样方法?(2)抽样过程中存在哪些问题,并修改.(3)何处是用简单随机抽样?【答案】(1)系统抽样【解析】(1)系统抽样.(2) (3)见解析(2)本题是对某村各户收入情况进行抽样,而不是对某村人口抽样,抽样间隔为=10,其他步骤相应改为:确定随机数字:取一张人民币,编码的最后一位为2.确定第一样本户:编号为002的户为第一样本户.确定第二样本户:2+10=12,012号为第二样本户.……(3)确定随机数字用的是简单随机抽样.取一张人民币,编码的最后一位为2.8.下列调查的方式合适的是()A.为了了解炮弹的杀伤力,采用普查的方式B.为了了解全国中学生的睡眠状况,采用普查的方式C.为了了解人们保护水资源的意识,采用抽样调查的方式D.对载人航天飞船“神舟七号”零部件的检查,采取抽样调查的方式【答案】C【解析】普查工作量大,有时受客观条件限制,无法对所有个体进行普查,有时调查还具有破坏性,不允许普查;抽样调查范围小,节约时间、人力、物力、财力,但保证抽样具有代表性,广泛性.航天器不同于一般事情,必须普查.9.已知总体容量为106,若用随机数表法抽取一个容量为10的样本,下面对总体的编号正确的是()A.1,2,…,106B.01,…,105C.00,01,…,105D.000,001,…,105【答案】D【解析】因总数大于100,所以编号应为3位数10.某校有40个班,每班50人,每班选派3人参加“学代会”,在这个问题中,样本容量是() A.40B.50C.120D.150【答案】C【解析】40×3=120。

高一数学简单随机抽样

高一数学简单随机抽样

知识探究(一):简单随机抽样的基本思想
思考1:从5件产品中任意抽取一件,则 每一件产品被抽到的概率是多少?一般 地,从N个个体中任意抽取一个,则每 一个个体被抽到的概率是多少? 思考2:从6件产品中随机抽取一个容量 为3的样本,可以分三次进行,每次从中 随机抽取一件,抽取的产品不放回,这 叫做逐个不放回抽取.在这个抽样中,某 一件产品被抽到的概率是多少?
简单随机抽样的含义: 一般地,设一个总体有N个个体, 从中逐个不放回地抽取n个个体作为样 本(n≤N), 如果每次抽取时总体内 的各个个体被抽到的机会都相等, 则 这种抽样方法叫做简单随机抽样.
思考5:根据你的理解,简单随机抽样有 哪些主要特点?
(1)总体的个体数有限;
(2)样本的抽取是逐个进行的,每次 只抽取一个个体; (3)抽取的样本不放回,样本中无重 复个体; (4)每个个体被抽到的机会都相等, 抽样具有公平性.
方法一:抽签法; 方法二:随机数表法.
例3 利用随机数表法从500件产品 中抽取40件进行质检. (1)这500件产品可以怎样编号? (2)如果从随机数表第10行第8列的数 开始往左读数,则最先抽取的5件产品 的编号依次是什么?
小结作业
1.简单随机抽样包括抽签法和随 机数表法,它们都是等概率抽样,从 而保证了抽样的公平性.
第二章 统 计
2.1 随机抽样 2.1.1 简单随机抽样
问题提出
1.我们生活在一个数字化时代,时 刻都在和数据打交道,例如,产品的合 格率,农作物的产量,商品的销售量, 电视台的收视率等.这些数据常常是通 过抽样调查而获得的,如何从总体中抽 取具有代表性的样本,是我们需要研究 的课题.
2.要判断一锅汤的味道需要把整锅 汤都喝完吗?应该怎样判断? 3.将锅里的汤“搅拌均匀”,品尝 一小勺就知道汤的味道,这是一个简 单随机抽样问题,对这种抽样方法, 我们从理论上作些分析.

高中数学统计抽样方法精选题目(附答案)

高中数学统计抽样方法精选题目(附答案)

高中数学统计抽样方法精选题目(附答案)一、抽样方法1.简单随机抽样(1)特征:①一个一个不放回的抽取;②每个个体被抽到可能性相等.(2)常用方法:①抽签法;②随机数表法.2.系统抽样(1)适用环境:当总体中个数较多时,可用系统抽样.(2)操作步骤:将总体平均分成几个部分,再按照一定方法从每个部分抽取一个个体作为样本.3.分层抽样(1)适用范围:当总体由差异明显的几个部分组成时可用分层抽样.(2)操作步骤:将总体中的个体按不同特点分成层次比较分明的几部分,然后按各部分在总体中所占的比实施抽样.1.(1)采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为()A.7B.9C.10 D.15(2)某地区有小学150所,中学75所,大学25所.现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取________所学校,中学中抽取________所学校.[解析](1)从960人中用系统抽样方法抽取32人,则每30人抽取一人,因为第一组抽到的号码为9,则第二组抽到的号码为39,第n组抽到的号码为a n=9+30(n-1)=30n-21,由451≤30n-21≤750,得23615≤n≤25710,所以n=16,17,…,25,共有25-16+1=10人.(2)小学中抽取30×150150+75+25=18所学校;从中学中抽取30×75150+75+25=9所学校.[答案](1)C(2)189注:1.系统抽样的特点(1)适用于元素个数很多且均衡的总体. (2)各个个体被抽到的机会均等.(3)总体分组后,在起始部分抽样时采用的是简单随机抽样. (4)如果总体容量N 能被样本容量n 整除,则抽样间隔为k =Nn . 2.与分层抽样有关问题的常见类型及解题策略(1)确定抽样比.可依据各层总数与样本数之比,确定抽样比.(2)求某一层的样本数或总体个数.可依据题意求出抽样比,再由某层总体个数(或样本数)确定该层的样本(或总体)数.(3)求各层的样本数.可依据题意,求出各层的抽样比,再求出各层样本数. 2.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )A .抽签法B .系统抽样法C .分层抽样法D .随机数法解析:选C 根据年级不同产生差异及按人数比例抽取易知应为分层抽样法. 3.某学校高一、高二、高三3个年级共有430名学生,其中高一年级学生160名,高二年级学生180名,为了解学生身体状况,现采用分层抽样方法进行调查,在抽取的样本中高二学生有32人,则该样本中高三学生人数为________.解析:高三年级学生人数为430-160-180=90,设高三年级抽取x 人,由分层抽样可得32180=x90,解得x =16. 答案:164.某单位有职工960人,其中青年职工420人,中年职工300人,老年职工240人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为14人,则样本容量为________.解析:因为分层抽样的抽样比应相等,所以420960=14样本容量,样本容量=960×14420=32.答案:32二、用样本的频率分布估计总体的频率分布1.频率分布直方图2.茎叶图5.(1)如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5].样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5 ℃的城市个数为11,则样本中平均气温不低于25.5 ℃的城市个数为________.(2)某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].①求图中a的值;②根据频率分布直方图,估计这100名学生语文成绩的平均分;③若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.分数段[50,60)[60,70)[70,80)[80,90)x∶y 1∶12∶13∶44∶5 [为50×0.18=9.答案:9(2)解:①由频率分布直方图可知(0.04+0.03+0.02+2a)×10=1.所以a=0.005.②该100名学生的语文成绩的平均分约为x=0.05×55+0.4×65+0.3×75+0.2×85+0.05×95=73.③由频率分布直方图及已知的语文成绩、数学成绩分布在各分数段的人数比,可得下表:分数段[50,60)[60,70)[70,80)[80,90)x 5403020x∶y 1∶12∶13∶44∶5y 5204025100-(5+20+40+25)=10.注:与频率分布直方图有关问题的常见类型及解题策略(1)已知频率分布直方图中的部分数据,求其他数据,可根据频率分布直方图中的数据求出样本与整体的关系,利用频率和等于1就可求出其他数据.(2)已知频率分布直方图,求某种范围内的数据,可利用图形及某范围结合求解.6.如图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为()A.0.2 B.0.4C.0.5 D.0.6解析:选B由茎叶图可知数据落在区间[22,30)内的频数为4,所以数据落在区间[22,30)内的频率为410=0.4,故选B.7.为了了解某学校学生的身体发育情况,抽查了该校100名高中男生的体重情况,根据所得数据画出样本的频率分布直方图如图所示.根据此图,估计该校2 000名高中男生中体重大于70.5公斤的人数为()A .300B .360C .420D .450解析:选B 样本中体重大于70.5公斤的频率为: (0.04+0.034+0.016)×2=0.090×2=0.18.故可估计该校2 000名高中男生中体重大于70.5公斤的人数为:2 000×0.18=360(人). 8.某商场在庆元宵节促销活动中,对元宵节9时至14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时至12时的销售额为________万元.解析:总销售额为2.50.1=25(万元),故11时至12时的销售额为0.4×25=10(万元).答案:10三、用样本的数字特征估计总体的数字特征有关数据的数字特征9.(1)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A .46,45,56B .46,45,53C .47,45,56D .45,47,53(2)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差(3)由正整数组成的一组数据x 1,x 2,x 3,x 4,其平均数和中位数都是2,且标准差等于1,则这组数据为________.(从小到大排列)[解析] (1)从茎叶图中可以看出样本数据的中位数为中间两个数的平均数,即45+472=46,众数为45,极差为68-12=56,故选择A.(2)由题意可知,甲的成绩为4,5,6,7,8,乙的成绩为5,5,5,6,9.所以甲、乙的成绩的平均数均为6,A 错;甲、乙的成绩的中位数分别为6,5,B 错;甲、乙的成绩的方差分别为15×[(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)2]=2,15×[(5-6)2+(5-6)2+(5-6)2+(6-6)2+(9-6)2]=125,C 对;甲、乙的成绩的极差均为4,D 错.故选C.(3)假设这组数据按从小到大的顺序排列为x 1,x 2,x 3,x 4,则⎩⎨⎧x 1+x 2+x 3+x44=2,x 2+x32=2,∴⎩⎪⎨⎪⎧x 1+x 4=4,x 2+x 3=4, 又s = 14[(x 1-2)2+(x 2-2)2+(x 3-2)2+(x 4-2)2] =12(x 1-2)2+(x 2-2)2+(x 3-2)2+(x 4-2)2=122[(x 1-2)2+(x 2-2)2]=1, ∴(x 1-2)2+(x 2-2)2=2. 同理可求得(x 3-2)2+(x 4-2)2=2.由x 1,x 2,x 3,x 4均为正整数,且(x 1,x 2),(x 3,x 4)均为圆(x -2)2+(y -2)2=2上的点,分析知x 1,x 2,x 3,x 4应为1,1,3,3.[答案] (1)A (2)C (3)1,1,3,3 注:平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小.10.为比较甲、乙两地某月14时的气温情况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温; ②甲地该月14时的平均气温高于乙地该月14时的平均气温; ③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差; ④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的编号为( ) A .①③ B .①④ C .②③D .②④解析:选B 法一:∵x 甲=26+28+29+31+315=29,x 乙=28+29+30+31+325=30,∴x 甲<x 乙,又s 2甲=9+1+0+4+45=185,s 2乙=4+1+0+1+45=2,∴s 甲>s 乙.故可判断结论①④正确.法二:甲地该月14时的气温数据分布在26和31之间,且数据波动较大,而乙地该月14时的气温数据分布在28和32之间,且数据波动较小,可以判断结论①④正确,故选B.11.甲和乙两个城市去年上半年每月的平均气温(单位:℃)用茎叶图记录如图所示,根据茎叶图可知,两城市中平均温度较高的城市是__________,气温波动较大的城市是__________.解析:根据题中所给的茎叶图可知,甲城市上半年的平均温度为9+13+17×2+18+226=16,乙城市上半年的平均温度为12+14+17+20+24+276=19,故两城市中平均温度较高的是乙城市,观察茎叶图可知,甲城市的温度更加集中在峰值附近,故乙城市的温度波动较大.答案:乙 乙12.甲、乙两台机床同时加工直径为100 mm 的零件,为了检验产品的质量,从产品中各随机抽取6件进行测量,测得数据如下(单位:mm):甲:99,100,98,100,100,103; 乙:99,100,102,99,100,100.(1)分别计算上述两组数据的平均数和方差;(2)根据(1)的计算结果,说明哪一台机床加工的这种零件更符合要求. 解:(1)x 甲=99+100+98+100+100+1036=100(mm),x 乙=99+100+102+99+100+1006=100(mm),s 2甲=16[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=73(mm 2), s 2乙=16[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1(mm 2).(2)因为s 2甲>s 2乙,说明甲机床加工零件波动比较大,因此乙机床加工零件更符合要求.四、线性回归1.两个变量的线性相关(1)散点图:将样本中n 个数据点(x i ,y i )(i =1,2,…,n )描在平面直角坐标系中得到的图形.(2)正相关与负相关:①正相关:散点图中的点散布在从左下角到右上角的区域. ②负相关:散点图中的点散布在从左上角到右下角的区域. 2.回归直线的方程(1)回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)线性回归方程:方程y ^=b ^x +a ^是两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的线性回归方程,其中a ,b 是待定参数.⎩⎪⎨⎪⎧b ^=∑i =1n(x i-x )(y i-y )∑i =1n(x i-x )2=∑i =1nx i y i-n x y ∑i =1nx 2i-n x 2,a ^=y -b x .13.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:(1)求回归直线方程y =b x +a ,其中b =-20,a =y -b x ;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)[解] (1)由于x =16(8+8.2+8.4+8.6+8.8+9)=8.5,y =16(90+84+83+80+75+68)=80.所以a ^=y -b ^x =80+20×8.5=250,从而回归直线方程为y ^=-20x +250. (2)设工厂获得的利润为L 元,依题意得 L =x (-20x +250)-4(-20x +250) =-20x 2+330x -1 000 =-20(x -8.25)2+361.25.当且仅当x =8.25时,L 取得最大值.故当单价定为8.25元时,工厂可获得最大利润. 注:(1)线性回归分析就是研究两组变量间线性相关关系的一种方法,通过对统计数据的分析,可以预测可能的结果,这就是线性回归方程的基本应用,因此利用最小二乘法求线性回归方程是关键,必须熟练掌握线性回归方程中两个重要估计量的计算.(2)回归直线方程恒过点(x ,y ).14.某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10日的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:回归方程,再用被选取的2组数据进行检验.(1)求选取的2组数据恰好是相邻两个月的概率;(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?解:(1)将6组数据按月份顺序编号为1,2,3,4,5,6,从中任取两组数据,基本事件构成的集合为Ω={(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)}共15个基本事件,设抽到相邻两个月的事件为A ,则A ={(1,2),(2,3),(3,4),(4,5),(5,6)}共5个基本事件,∴P (A )=515=13.(2)由表中数据求得x =11,y =24,∑i =14x i y i =1 092,∑i =14x 2i =498.代入公式可得b ^=187.再由a ^=y -b ^x ,求得a ^=-307,所以y 关于x 的线性回归方程为 y ^=187x -307.(3)当x =10时,y ^=1507,⎪⎪⎪⎪1507-22=47<2; 同样,当x =6时,y ^=787,⎪⎪⎪⎪787-12=67<2. 所以该小组所得线性回归方程是理想的.。

高一数学《随机抽样》练习题

高一数学《随机抽样》练习题

高一数学《随机抽样》练习题一、选择题1。

对于简单随机抽样,个体被抽到的机会 A.相等B .不相等 C.不确定 D.与抽取的次数有关2. 抽签法中确保样本代表性的关键是A.制签 B 。

搅拌均匀 C .逐一抽取 D.抽取不放回3。

用随机数表法从100名学生(男生25人)中20人进行评教,某男学生被抽到的机率是A.1001 B .251C.51D.414。

某校有40个班,每班50人,每班选派3人参加“学代会”,在这个问题中样本容量是 A.40 B 。

50 C .120 D.1505。

从某批零件中抽取50个,然后再从50个中抽出40个进行合格检查,发现合格品有36个,则该批产品的合格率为A。

36%B .72% C .90%D .25%6。

为了解1200名学生对学校教改试验,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k为A 。

40B .30 C.20 D.127。

从N 个编号中要抽取n 个号码入样,若采用系统抽样方法抽取,则分段间隔应为 A。

n N C.[n N ] D.[nN]1 8.下列说法正确的个数是①总体的个体数不多时宜用简单随机抽样法②在总体均分后的每一部分进行抽样时,采用的是简单随机抽样 ③百货商场的抓奖活动是抽签法④整个抽样过程中,每个个体被抽取的机率相等(有剔除时例外) A.1 B.2 C .3 D 。

49。

某单位有职工160人,其中业务员有104人,管理人员32人,后勤服务人员24人,现用分层抽样法从中抽取一容量为20的样本,则抽取管理人员 A 。

3人 B。

4人 C 。

7人 D.12人 10. 问题:①有1000个乒乓球分别装在3个箱子内,其中箱子内有500个,蓝色箱子内有200个,箱子内有300个,现从中抽取一个容量为100的样本;②从20名学生中选出3名参加座谈会.方法:Ⅰ。

随机抽样法Ⅱ。

系统抽样法Ⅲ。

分层抽样法。

其中问题与方法能配对的是A.①Ⅰ,②ⅡB。

高一数学抽样方法

高一数学抽样方法
(2)要抽样了解某年参加高考考生的语 文考试成绩,我们可以
①按照科目分类:文科、理科、艺术、体育 和外语五个层次。
②按照地区分类:大城市、中等城市、城镇 、乡镇四个层次。
③按照学校分类:重点、非重点两个层次。
.
.
.
.
.
.
.
; / 英国房产置业 英国房地产 英国海外置业 英国房产投资 英国购房 曼城购房
(3)用随机数表进行抽样的步骤:将总体 Nhomakorabea个体编号; 选定开始的数字;获取样本号码。
(4)由于随机数表是等概率的,因此利用随机数表抽 取样本保证了被抽取个体的概率是相等的。
随机抽样并不是随意或随便抽取,因为随 意或随便抽取都会带有主观或客观的影响因素
提出问题
(1)一个礼堂有30排座位,每排有40个 座位。一次报告会礼堂坐满了听众。会后 为听取意见留下了座位号为20的30名听众 进行座谈。这里选用了哪种抽取样本的方 法?写出抽取过程。
1、简单随机抽样
一般地,设一个总体的个体数为N,如果通过逐个 不放回地抽取的方法从中抽取一个样本,且每次抽取时 各个个体被抽到的概率相等,就称这样的抽样为简单随 机抽样。
注意以下四点: (1)它要求被抽取样本的总体的个体数有限; (2)它是从总体中逐个进行抽取; (3)它是一种不放回抽样; (4)它是一种等概率抽样。
简单随机抽样是在特定总体中抽取样本,总体中每一 个体被抽取的可能性是等同的,而且任何个体之间彼此 被抽取的机会是独立的。如果用从个体数为N的总体中抽 取一个容量为n的样本,那么每个个体被抽取的概卒等n于
N
2、用随机数表法进行抽取
(1)随机数表是统计工作者用计算机生成的随机数, 并保证表中的每个位置上的数字是等可能出现的。 (2)随机数表并不是唯一的,因此可以任选一个数作为 开始,读数的方向可以向左,也可以向右、向上、向下 等等。

9.1.1 简单随机抽样(课件)2022-2023学年高一数学同步备课(人教A版2019 必修第二册

9.1.1 简单随机抽样(课件)2022-2023学年高一数学同步备课(人教A版2019 必修第二册
(多选)下面的抽样方法是简单随机抽样的是( BD )
A、从无数个个体中抽取50个个体作为样本; B、某车间工人加工一种零件100个,为了解这100个零件的直 径,从中不放回地依次抽取5个进行测量; C、从100名运动员中挑选10名优秀的运动员参赛; D、一彩民选号,从装有36个大小、形状都相同的号签的盒子 中不放回地逐个抽出7个号签.
注:若生成的随机数有重复,则需剔除重复的编号并重新新产生 随机数,直到产生的不同编号个数等于样本所需要的人数.
随机数法的特点:方便快捷,取到相同编号时要剔除. 随机数法一般适用于总体容量较大,但样本量不大的情形.
1.3简单随机抽样的方法——②随机数法
产生随机数的方法: 1.用随机试验产生随机数: 准备10个大小、质地一样的小球,小球上分别写上数字0,1,2 ,…,9, 把它们放入一个不透明的袋中. 从袋中有放回摸取3次 , 每次摸前充分 搅拌 , 并把第一、二、三次摸到的数字分别作为百、十、个位数,这 样就生成了一个三位随机数 . 若这个三位数在1~712范围内,就代表 对应编号的学生被抽中,否则舍弃编号. 注:这样产生的随机数可能会有重复.
2.总体均值和样本均值
上面我们通过简单随机抽样得到部分学生的平均身高,并把样本 平均身高作为树人中学高一年级所有学生平均身高的估计值.
概念
总体均值(总体平均数)
样本均值(样本平均数)
条件 总体中有N个个体,它们的变量 从总体中抽取一个容量为n的样本,
【问题1】树人中学高一年级有712名学生,通过简单随机抽样的方 法调查高一年级学生的平均身高. 1.编号:先给712名学生编号,例如1~712进行编号; 2.获取样本号码:用随机数工具产生1~712范围内的整数随机数, 把产生的随机数作为抽中的编号,使与编号对应的学生进入样本; 3.按所得号码抽取样本:重复上述过程,直到抽足样本所需要的人数.

9.1.1简单随机抽样(一)课件-高一下学期数学人教A版必修第二册

9.1.1简单随机抽样(一)课件-高一下学期数学人教A版必修第二册

总体 个体
树人中学全部高一年级学生的身高 每一位学生的身高
• 我们可以对高一年级进行简单随机抽样,用抽出的样本的平均身高 估计高一年级学生的平均身高.
问题1
一家家具厂要为树人中学高一年级制作课桌椅,他们事先想了解全体高一年级的平 均身高,以便设定可调节课桌椅的标准高度。已知树人中学高一年级有712名学生,如果 要通过简单随机抽样的方法调查高一年级学生的平均身高,应该怎样抽取样本?
随机获取. 摇匀后再摸出一个球,如此重复n次.
特别地,当样本量n=1000时,不放回摸球己经把袋中的所有球取出, 这就完全了解了袋中红球的比例.
思考2:两种抽样方式有何优劣?
放回摸球可能出现同一个小球被摸中多次的情况,极端情况是每 次摸到同一个小球,而被重复的小球只能提供同一个小球颜色信息. 这样的抽样结果误差较大.
解析 在简单随机抽样中,每一个个体被抽到的可能性都相等,与第 几次抽样无关,故A,C,D不正确,B正确.
3
问题1
一家家具厂要为树人中学高一年级制作课桌椅,他们事先想了解全体高一年级的平
均身高,以便设定可调节课桌椅的标准高度。已知树人中学高一年级有712名学生,如果 要通过简单随机抽样的方法调查高一年级学生的平均身高,应该怎样抽取样本?
合用全面调查?哪些适合用抽样调查?
(1)调查一个班级学生每周的体育锻炼时间;
全面调查
(2)调查一个地区结核病的发病率;
抽样调查
(3)调查一批炮弹的杀伤半径;
抽样调查
(4)调查一个水库所有鱼中草鱼所占的比例.
抽样调查
思考1:“普查”与“抽样”各有何优缺点?
方式 普查
优点
全面、准确性高
缺点
工作量大,时间长, 耗人力、物力、财力
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
明仕登录网址安卓版下载
[单选]合成嘌呤环的氨基酸为()A.甘氨酸、天冬氨酸、谷氨酸B.甘氨酸、天冬氨酸、谷氨酰胺C.甘氨酸、天冬酰胺、谷氨酰胺D.蛋氨酸、天冬酰胺、谷氨酸E.蛋氨酸、天冬氨酸、谷氨酰胺 [单选]不符合甲状腺危象的诊断标准的是()A.心率160次/分B.体温37.5℃C.恶心呕吐D.皮肤潮红、多汗E.失水、休克 [问答题]客人洪涛的客票标明经济舱,航段为北京伦敦,而在定座记录中却是公务舱,可否按公务舱接受该旅客乘坐飞机?为什么? [单选]采掘工作面的进风流中,氧气浓度不低于20%,二氧化碳浓度不超过()A.0.75%B.0.5%C.1.5% [单选]电潜泵变频器的输出频率范围是()HZ。A、30&mdash;50B、30&mdash;60C、30&mdash;80D、30&mdash;90 [单选]使用如下什么方法可以升级cisco交换机的IOS软件()。A、CDPB、HSRPC、TFTPD、TELNET [单选]下列关于外债资金的表述,错误的是()。A.境内企业所借外债资金,应当严格按批准的用途合理使用,不得挪作他用B.境内企业所借外债资金,确需变更ቤተ መጻሕፍቲ ባይዱ途的,应按原程序报批C.境内企业举借短期外债资金的,不得用作流动资金D.使用外债资金的固定资产投资项目,应当实行建设项目 [多选]在人身保险合同法律关系中,涉及投保人、保险人、被保险人、受益人等主体,下列主体之中,可能为同一人的有()。A.投保人与受益人B.保险人与投保人C.投保人与被保险人D.投保人、被保险人和受益人E.保险人和受益人 [单选]胎儿一胎盘单位功能是指().A.孕妇血或尿雌三醇(E3)测定B.血清HPL测定C.血清PRL判定D.催产素激惹试验(OCT)E.无激惹试验(NST) [单选]排便在一日内超过3次,或粪便中脂肪成分增多,或带有未消化的食物、黏液、脓血者称为腹泻。腹泻是由多种不同病因所致,在应用止泻药治疗的同时,实施对因治疗不可忽视。以下药物中,用于治疗因化学刺激引起的腹泻首选的非处方药是()A.药用炭B.黄连素C.氢氧化铝D.鞣酸蛋白 [单选]()是完成调查取证任务的关键。A、成立调查组B、明确调查取证内容C、正确的方法与步骤D、严格的调查取证纪律 [多选]水灰比可以影响到水泥商品混凝土的()A、坍落度B、耐久性C、工艺性D、强度 [单选]利用船尾叠标导航,叠标方位090°,驶真航向275°时,恰好保持前后标成一直线,表明()。A.船舶应向左转向B.受较大西南流的影响C.船舶应向右转向D.B或C [多选]预防并减少先天性髋关节脱位术后股骨头坏死的措施是A.运用抗生素B.术前有效牵引C.髋臼成形术D.缩短术后固定时间E.充分松解挛缩组织 [填空题]相对于其他的练习体系,普拉提比较安全,()冲击力,适合各个年龄层。 [单选,A1型题]初产妇第二产程时,何时应开始保护会阴()A.胎头仰伸时B.胎头拨露使会阴后联合紧张时C.宫口开全时D.胎头着冠时E.阴道口见胎头时 [单选,A2型题,A1/A2型题]患儿,男,9岁,以急性肾小球肾炎收住入院,经治疗患儿目前水肿消退,血压正常、肉眼血尿消失,现可允许患儿()A.卧床休息B.下床轻微活动C.下床正常活动D.可上学、但免体育活动E.恢复正常生活 [单选]朊毒体可以诱发机体产生()A.细胞免疫B.体液免疫C.补体D.细胞凋亡E.体液免疫和细胞免疫 [单选,A1型题]下列不能测量Meta分析中偏倚大小的方法是()A.残差图B.漏斗图C.敏感性分析D.线性回归方程E.失安全数 [单选,A1型题]"热因热用"属于()A.正治B.反治C.扶正D.因地制宜E.标本兼治 [单选]花卉园艺学研究对象是以下()。A.花朵美丽的草本观赏植物B.可用以观叶、观果为主的草本植物C.一些原产南方的盆栽花木类,以及少数的木本名花D.包括A、B、和C [填空题]氨极易溶于水,常温常压下1体积水可溶解()体积氨()。 [单选]检测客户现金收支或款项划转情况,对符合大额交易标准的,在该大额交易发生后()个工作日内,向中国反洗钱监测分析中心报告。A.3B.5C.10D.15 [单选]《突发公共卫生事件应急条例》正式实施的时间是()。A.2002年5月1日B.2003年5月1日C.2003年5月7日D.2003年5月9日E.2003年6月1日 [填空题]石油馏分越重,其自燃点越(),着火点越()。 [单选]人居环境可划分为以下哪几大系统()。A.自然系统、人类系统、社会系统、居住系统B.人类系统、居住系统、自然系统、社会系统、支撑系统C.自然系统、人类系统、社会系统、支撑系统D.自然系统、人类系统、支撑系统、居住系统E.社会系统、自然系统、人类系统、居住系统、公共系 [单选]低温对肌松药的影响,不正确的是()A.体温降至30℃的过程中,去极化肌松药的作用增强,时效延长B.体温降至30℃对非去极化肌松药作用强度很少受影响C.26℃以下低温,各种肌松药的作用均增强D.低温对去极化和非去极化肌松药的影响程度不一E.低温时泮库溴铵的肝肾排泄率减低 [单选]直连螺旋桨并装有极限调速器的船舶主机运转中油门一定时,若海面阻力降低,该主机的运转工况变化是()。A.转速降低后稳定工作B.减少油门后稳定工作C.转速增加后稳定工作D.增大油门后稳定工作 [单选]一般情况分散或小颗粒状夹杂对材料性能的()。A、没有影响B、影响很大C、影响不大D、影响较大 [单选]会计信息的次要质量要求中,()要求企业对交易或者事项进行会计确认、计量和报告时不应高估资产或者收益、低估负债或者费用。A.形式重于实质B.实质重于形式C.可理解性D.谨慎性 [单选]在A1.3建筑物区架设的10-20kV的架空线路,其轴线与1.3建筑物不应小于电杆高度的()。A.1倍B.1.2倍C.1.5倍D.2倍 [单选]下颌关节间隙正常值为()A.1.5mmB.1.8mmC.2.0mmD.2.5mmE.3.0mm [单选]原发性闭经是指()。A.年龄超过14岁,第二性征已发育,月经未来潮者B.年龄超过15岁,第二性征已发育,月经未来潮者C.年龄超过16岁,第二性征已发育,月经尚未来潮者D.年龄超过17岁,第二性征已发育,月经尚未来潮者E.年龄超过15岁,第二性征未发育者 [单选,A1型题]亡阳兼气脱证,首选的药对是()A.附子、桂枝B.附子、人参C.附子、高良姜D.附子、干姜E.肉桂、吴茱萸 [单选,A2型题,A1/A2型题]关于股骨颈骨折的描述不正确的是()A.囊内的头下型骨折固定不好极易形成股骨头缺血坏死B.好发于老年女性C.患肢多呈短缩、外旋、内收畸形,大转子上移D.根据病情可选择保守治疗或手术治疗E.内收型骨折较稳定、愈合率高 [填空题]CaO-Al2O3-SiO2-CaF2渣系随温度升高粘度();随CaF2含量(),粘度降低;随SiO2含量增加,粘度()。 [名词解释]40#机械油 [单选]关于安氏Ⅱ类错?,下列说法不正确的是()A.安氏Ⅱ类错?是一个单纯的错类型B.安氏Ⅱ类错?中大多数上颌骨位正常C.在上颌骨位置异常者中,上颌后明显多于上颌前突D.上牙弓后缩多于上牙弓前突E.安氏Ⅱ类错?中约60%患者下颌后缩 [单选]危机干预需要评估的下列哪项是错误的()A.现场干预B.认知状态C.情绪状态D.意志行为E.应对方法资源 [单选]免疫接种后易引起局部持久溃疡和形成肉芽肿的佐剂是()A.福氏完全佐剂B.福氏不完全佐剂C.细胞因子佐剂D.内毒素E.多聚核苷酸
相关文档
最新文档