分式复习课教案
分式复习教案

分式复习教案教案标题:分式复习教案教案目标:1. 复习和巩固学生对分式的理解和运用。
2. 帮助学生熟练掌握分式的加减乘除运算。
3. 提高学生解决实际问题时运用分式的能力。
教学内容:1. 分式的定义和基本概念。
2. 分式的化简和约分。
3. 分式的加减运算。
4. 分式的乘除运算。
5. 分式在实际问题中的应用。
教学准备:1. 教师准备白板、黑板笔、教学PPT等教学工具。
2. 学生准备教科书、笔记本和计算器。
教学过程:一、导入(5分钟)1. 教师通过提问和回顾上节课的知识,激发学生对分式的兴趣和回忆。
2. 提问:你们还记得分式的定义和基本概念吗?请举个例子。
二、知识讲解与示范(15分钟)1. 教师通过教学PPT或板书,对分式的定义和基本概念进行讲解,并给出示例进行说明。
2. 教师讲解分式的化简和约分的方法,并进行相关的示范演示。
三、练习与巩固(20分钟)1. 学生个别或小组完成一些基础练习题,巩固分式的化简和约分。
2. 学生进行分式的加减运算练习,教师进行讲解和指导。
3. 学生进行分式的乘除运算练习,教师进行讲解和指导。
四、拓展与应用(15分钟)1. 教师通过实际问题的讲解,引导学生将所学的分式知识应用到实际生活中。
2. 学生个别或小组完成一些实际问题的解答,教师进行讲解和指导。
五、总结与反思(5分钟)1. 教师对本节课的重点内容进行总结,并强调学生需要继续巩固和复习的部分。
2. 学生进行自我评价和反思,教师进行必要的点评和指导。
教学延伸:1. 鼓励学生进行分式的综合运用,解决更复杂的实际问题。
2. 提供更多的分式练习题和挑战题,以满足学生的不同需求和能力水平。
教学评估:1. 教师通过课堂练习和个别辅导,对学生的掌握情况进行评估。
2. 教师可以设计小测验或作业,检验学生对分式的理解和运用能力。
教学反思:1. 教师应根据学生的实际情况,调整教学内容和教学方法,确保教学效果。
2. 教师应及时收集学生的反馈和意见,不断改进教学策略和方法。
分式复习教案(二)

题型三:求待定字母的值
【例4】若关于 的分式方程 有增根,求 的值.
【例5】若分式方程 的解是正数,求 的取值范围.
提示: 且 , 且 .
题型四:解含有字母系数的方程
【例6】解关于 的方程
提示:(1) 是已知数;(2) .
题型五:列分式方程解应用题
练习:
1.解下列方程:
(1) ;(2) ;
例2分式方程的特殊解法
例3
例4分式方程求待定字母值的方法
例5
教后反思
备课专用稿纸
课题
分式复习教案(二)
主备教师
张华伟
备课时间
2012.2.29
课型
新授课
授课教师
授课时间
授课班级
八年级
教学目标
1.复习分式方程的概念以及解法;
2.复习分式方程产生增根的原因
3.复习分式方程的应用题
重点难点
重点:分式方程的应用。
难点:分式方程的应用。
教法学法
引导启发、讲练结合、归纳总结
教具学具
例3.若关于 分式方程 有增根,求 的值。
例4.若关于 的方程 有增根 ,求 的值。
课堂小结:
1.分式方程主要是看分母是否有外未知数;
2.解分式方程的关健是化分式方程为整式方程;方程两边同乘以最简公分母.
3.解分式方程的应用题关健是准确地找出等量关系,恰当地设末知数.
板书设计
分式复习教案(二)
例1例6
投影仪
教学过程
时间
批注
教学过程:
题型一:用常规方法解分式方程
【例1】解下列分式方程
(1) ;(2) ;(3) ;
提示易出错的几个问题:①分子不添括号;②漏乘整数项;③约去相同因式至使漏根;④忘记验
《分式复习》教案

《分式复习》教案一、教学目标:1. 知识与技能:(1)理解分式的概念,掌握分式的基本性质;(2)熟练运用分式的化简、运算和比较大小;(3)能够解决实际问题,运用分式进行合理计算。
2. 过程与方法:(1)通过复习,巩固分式的基本概念和性质;(2)运用举例、讲解、练习等方法,提高学生对分式的理解和运用能力;(3)培养学生独立思考、合作交流的学习习惯。
3. 情感态度与价值观:(2)培养学生勇于探索、积极向上的精神风貌;(3)培养学生运用数学知识解决实际问题的能力。
二、教学内容:1. 分式的概念与基本性质;2. 分式的化简与运算;3. 分式的比较大小;4. 分式在实际问题中的应用。
三、教学重点与难点:1. 重点:分式的概念、基本性质、化简、运算和比较大小;2. 难点:分式的化简与运算,以及分式在实际问题中的应用。
四、教学过程:1. 导入:回顾分式的概念和基本性质,引导学生进入复习状态;2. 新课:讲解分式的化简与运算,通过例题展示解题思路和方法;3. 练习:学生独立完成练习题,教师巡回指导,解答疑难问题;4. 应用:结合实际问题,引导学生运用分式进行计算和解决问题;五、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,评价学生的学习态度和积极性;2. 练习完成情况:检查学生完成的练习题,评价学生的掌握程度;3. 实际应用:评估学生在解决实际问题时运用分式的准确性和灵活性。
教学资源:教材、PPT、练习题、实际问题案例。
教学时间:1课时。
六、教学步骤:1. 复习分式的概念与基本性质,通过提问方式检查学生对分式知识的掌握情况。
2. 讲解分式的化简与运算,包括分式的乘法、除法、加法和减法,通过例题展示解题思路和方法。
3. 进行分式化简与运算的练习,学生独立完成练习题,教师巡回指导,解答疑难问题。
4. 结合实际问题,引导学生运用分式进行计算和解决问题,培养学生的应用能力。
七、教学方法:1. 采用问题驱动法,通过提问引导学生思考和复习分式的概念与基本性质。
初中数学分式教案【优秀4篇】

初中数学分式教案【优秀4篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!初中数学分式教案【优秀4篇】作为一名教师,时常要开展教案准备工作,教案是实施教学的主要依据,有着至关重要的作用。
(完整版)分式复习课教案

分式复习课学案教学目标1. 理解分式定义,掌握分式有意义的条件。
2. 掌握分式的加减乘除运算及混合运算。
3. 掌握分式方程的解法,会列分式方程解决实际问题。
教学重点: 分式加减乘除混合运算及分式方程 教学难点:列分式方程解决实际问题 、预习作业1. 分式的概念:2. 分式的基本性质:(1) 分式的分子分母同乘(或除以)一个 _________________________ ,分式的值 _________ (2) 分子,分母的公因式,系数的 __________ 与各 ______ 因式的 __________ 的积(3) ___________________________________________ 各分式的最简公分母,各分母系数的_____________________________________________________ 与 _______ 因式 ____________ 的积 3•分式的运算法则:(1) 乘法法则 ____________________________________________ (2) 除法法则 ____________________________________________ (3) 分式的乘方 _____________________________________ (4) 加减法则同分母分式相加减 ____________________________________________ 异分母分式相加减 ____________________________________________(5) 分式加、减、乘、除、乘方的混合运算法则 __________________________________________mn“m 、n“・、nm n“a 、n(6) a a ________ (a )____ (ab) _________ a a _________ (_) ____b(7) 当n 是正整数时 a -n = ______________ ( __________ ) 4.解分式方程的步骤(1) ___________________________________________ 去分母,方程两边同乘 化成整式方程(1) 分式的定义:一般地 (2) 分式有意义的条件是 (3) 分式无意义的条件是 (4) 分式为零的条件是 A , B 是两个 ________ ,且 ___________ 不等于0 ___________ 等于0 ______ 不等于0,且 _____A中含有字母,那么-叫分式B等于0(2)解出整式方程的解(3) _____________________________________ 将整式方程的解代入进行检验,若不为零,则整式方程的解就是_______________________ ,若等于零,则这个解 ___________ 原方程的解(3)二、预习交流三、展示探究例1.填空1.下列代数式中:2x2xx 1-,2X1-------- 2 2va b x y a 1曰八卡砧若y, , ,, 是分式的有、a b x y x m yx 12 .当x满足时,分式(x 1)(x 2)有意义。
初中数学《分式》优秀教案(通用12篇)

初中数学《分式》优秀教案〔通用12篇〕篇1:初中数学分式教案初中分式教案初中数学分式教学反思经历了三周多的学习,学生已根本掌握了分式的有关知识(分式的概念、分式的根本性质、约分、通分、分式的运算、分式方程和能化为一元一次方程的分式方程的应用题等),并且获得了学习代数知识的常用方法,感受到代数学习的实际应用价值。
但是,“分式运算”教学中,学生在课堂上感觉不差,做作业或测试时却错处百出,尤其在分式的混合运算更是出错多、空白多、究其根,均属于运算才能问题,因此在教学中应特别关注这一深层根,并根据学生的实际情况寻找相应对策。
下面是我在教学中的几点体会:一、教学中的发现1、本章可以让学生通过观察、类比、猜测、尝试等活动学习分式的运算法那么,开展他们的合情推理才能,所以教学时重点应放在对法那么的探究过程上。
一定要让学生充分活动起来。
在观察、类比、猜测、尝试当一系列思想活动中发现法那么、理解法那么、应用法那么,同时还要关注学生对算理的理解,以培养学生的代数表达才能、运算才能和有理的考虑问题才能。
可是我在知识的传授上并没有注重探究、类比法那么,而重在对分式四那么运算法那么的运用和分式方程的运用上,没有抓住教学的关键环节恰当的选择教学方法。
今后要防止类似事情的发生。
2、问题(1) 分式的运算错的较多。
分式加减法主要是当分子是屡次式时,假如不把分子这个整体用括号括上,容易出现符号和结果的错误。
所以我们在教学分式加减法时,应教育学生分子部分不能省略括号。
其次,分式概念运算应按照先乘方、再乘除,最后进展加减运算的顺序进展计算,有括号先做括号里面的。
(2)分式方程也是错误重灾区。
一是增根定义模糊,对此,我对增根的概念进展深化浅出的阐述,⑴增根是分式方程的去分母后化成的整式方程的根,但不是原方程的根;⑵增根能使最简公分母等于0;二是解分式方程的步骤不标准,大多数同学缺少“检验”这一重要步骤,不能从解整式方程的形式中跳出来;(3)列分式方程错误百出。
分式单元复习教案教师版

分式单元复习教案教师版一、教学目标1. 知识与技能:理解和掌握分式的概念、分式的运算规则、分式的性质和分式的应用。
2. 过程与方法:通过复习和练习,提高学生解决实际问题的能力,培养学生的逻辑思维和运算能力。
3. 情感态度价值观:激发学生对数学的兴趣,培养学生的团队合作意识和坚持不懈的精神。
二、教学内容1. 分式的概念:复习分式的定义,理解分式的分子和分母的概念。
2. 分式的运算:复习分式的加减乘除运算规则,掌握分式的运算方法。
3. 分式的性质:复习分式的基本性质,如分式的符号变化、分式的乘除性质等。
4. 分式的应用:解决实际问题,如比例计算、溶液浓度计算等。
三、教学重点与难点1. 教学重点:分式的概念、分式的运算规则、分式的性质和分式的应用。
2. 教学难点:分式的运算规则的理解和应用,解决实际问题的方法。
四、教学方法1. 讲解法:教师对分式的概念、运算规则、性质等进行讲解,引导学生理解和掌握。
2. 练习法:学生通过练习题目的方式,巩固所学知识,提高解题能力。
3. 案例分析法:教师给出实际问题,学生分组讨论和解决问题,培养学生的团队合作意识。
五、教学准备1. 教学课件:制作课件,展示分式的概念、运算规则、性质等知识点。
2. 练习题目:准备分式的练习题目,包括基础题和提高题。
3. 教学工具:准备黑板、粉笔等教学工具。
六、教学过程1. 导入新课:通过复习问题和回顾已学过的分式知识,激发学生的学习兴趣。
2. 分式概念复习:讲解分式的定义,强调分子和分母的概念,举例说明。
3. 分式运算复习:复习分式的加减乘除运算规则,进行示例运算,让学生跟随。
4. 分式性质复习:讲解分式的基本性质,如符号变化、乘除性质等,并进行示例说明。
5. 分式应用复习:解决实际问题,如比例计算、溶液浓度计算等,引导学生应用所学知识。
七、课堂练习1. 基础练习:提供一些基础的分式运算题目,让学生独立完成,巩固运算规则。
2. 提高练习:提供一些综合性的分式运算题目,让学生思考和解答,提高解题能力。
分式复习教案(经典)

分式(一):【知识梳理】 1.分式有关概念(1)分式:分母中含有字母的式子叫做分式。
对于一个分式来说:①当____________时分式有意义。
②当____________时分式没有意义。
③只有在同时满足____________,且____________这两个条件时,分式的值才是零。
(2)最简分式:一个分式的分子与分母______________时,叫做最简分式。
(3)约分:把一个分式的分子与分母的_____________约去,叫做分式的约分。
将一个分式约分的主要步骤是:把分式的分子与分母________,然后约去分子与分母的_________。
(4)通分:把几个异分母的分式分别化成与____________相等的____________的分式叫做分式的通分。
通分的关键是确定几个分式的___________ 。
(5)最简公分母:通常取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。
求几个分式的最简公分母时,注意以下几点:①当分母是多项式时,一般应先 ;②如果各分母的系数都是整数时,通常取它们的系数的 作为最简公分母的系数;③最简公分母能分别被原来各分式的分母整除;④若分母的系数是负数,一般先把“-”号提到分式本身的前边。
2.分式性质: (1)基本性质:分式的分子与分母都乘以(或除以)同一个 ,分式的值 .即:(0)A A M A M M BB MB M⨯÷==≠⨯÷其中(2)符号法则:____ 、____ 与__________的符号, 改变其中任何两个,分式的值不变。
即:a a a ab bbb--==-=---3.分式的运算:注意:为运算简便,运用分式的基本性质及分式的符号法则:()nn a b a b c ca c ad bc d bd a c ac d bd a c a d ad dbc bc a a n b⎧±⎧±=⎪⎪⎪⎪⎨±⎪⎪±=⎪⎪⎩⎪⎧⎪⋅=⎪⎪⎪⎨⎨⎪⎪÷=⋅=⎪⎪⎩⎪⎪=⎪⎪⎪⎩n 同分母c 加减异分母b 乘b 分式运算乘除除b 乘方()为整数b①若分式的分子与分母的各项系数是分数或小数时,一般要化为整数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式复习课学案
教学目标
1.理解分式定义,掌握分式有意义的条件。
2.掌握分式的加减乘除运算及混合运算。
3.掌握分式方程的解法,会列分式方程解决实际问题。
教学重点:分式加减乘除混合运算及分式方程
教学难点:列分式方程解决实际问题
一、预习作业
1.分式的概念:
(1)分式的定义:一般地A ,B 是两个_______,且_____中含有字母,那么
B A 叫分式 (2)分式有意义的条件是___________不等于0
(3)分式无意义的条件是___________等于0
(4)分式为零的条件是________不等于0,且_________等于0
2.分式的基本性质:
(1)分式的分子分母同乘(或除以)一个__________________,分式的值_________
(2)分子,分母的公因式,系数的_________与各______因式的_________的积
(3)各分式的最简公分母,各分母系数的___________与_______因式___________的积
3.分式的运算法则:
(1)乘法法则________________________________________
(2)除法法则________________________________________
(3)分式的乘方_________________________________
(4)加减法则
同分母分式相加减_______________________________________
异分母分式相加减_______________________________________
(5)分式加、减、乘、除、乘方的混合运算法则___________________________________
(6)=n m a a ______ =n m )a (______ =n )ab (______ =÷n m a a _____ =n )b
a
(______ (7)当n 是正整数时=a
-n _____________ (_________)
4.解分式方程的步骤 (1)去分母,方程两边同乘________________________化成整式方程
(2)解出整式方程的解
(3)将整式方程的解代入___________________进行检验,若不为零,则整式方程的解就是_____________________,若等于零,则这个解__________原方程的解
二、预习交流
三、展示探究
例1.填空
1. 下列代数式中:x 2x 2,y x y x y x y x b a b a y x x -++-+--1
,,,21,22π,m 1a 是分式的有______________ 2.当x 满足__________时,分式1(1)(2)x x x -+-有意义。
当x=__________时,分式29
3
x x -+的值为零,当x 满足____________时,分式21
3x x +-值为正,当x 满足___________时,分
式|
1x |51x 2---无意义
例2.计算
(1)222212142144a a a a a a a a -++•÷--+-+ (2)ab a b a +-2÷4222a b a a ab --×a
b -1
(3)44622+--x x x ÷-2x x 4-12×31+x (4)2
42331q p 85q p 21⎪⎭
⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛----
例3.计算 计算:(1)221224a a a a +÷+--(
) (2)265(2)22x x x x -÷----
(3)
12)1(242+-----a a a a (4)
例4.解方程(1)
2
2
42
1
11
x x x
x x
-
+=
-+ (2 )
21
5
33
x
x x
-
=-
--
例5.先化简,再求值
1.
2.
3. 当
例6应用题
1.A城市每立方米水的水费是B城市的1.25倍,同样交水费20元,在B城市比在A城市可多用2立方米水,那么A、B两城市每立方米水的水费各是多少元?
2.有一段公路急需抢修,此项工程原计划由甲工程队单独完成,需要20天,在甲工程队施工4天后,为了加快工程进度,又调来乙工程队与甲工程队共同施工,结果比原计划提前10天,求乙工程队单独完成这项工程需要多少天?
四、当堂检测
1.当x 取何值时,下列分式有意义?
(1)1x
21x -- (2)22671x x x --+
2.不改变分式的值,使分式2
312x x x x +---的分子、分母中最高次项的系数为正数。
3.计算:(1)22x xy y xy y x -•- (2)
25363458a b a b a b a b a b a b a b b a -------+-+-
4.某校八年级两个班各为玉树地震灾区捐款1800元。
已知2班比1班人均捐款多4元,2班的人数比1班的人数少10%。
请你根据上述信息,就这两个班的“人数”或“人均捐款”提出一个用分式方程解决的问题,并写出解题过程。
5.如果34(1)(2)21x A B x x x x -=+
----,求实数A 、B 的值
6.已知:511=+y x ,求y
xy x y xy x +++-2232的值
7. 解方程(1)
114112=-+-+x x x (2)91232312-=--+x x x。