三种常用的T检验

合集下载

(完整word版)T检验分为三种方法

(完整word版)T检验分为三种方法

T 检验分为三种方法:1. 单一样本t 检验( One-sample t test ),是用来比较一组数据的平均值和一个数值有无差异。

例如,你选取了5 个人,测定了他们的身高,要看这五个人的身高平均值是否高于、低于还是等于1.70m ,就需要用这个检验方法。

2. 配对样本t 检验( paired-samples t test ),是用来看一组样本在处理前后的平均值有无差异。

比如,你选取了5 个人,分别在饭前和饭后测量了他们的体重,想检测吃饭对他们的体重有无影响,就需要用这个t 检验。

注意,配对样本t 检验要求严格配对,也就是说,每一个人的饭前体重和饭后体重构成一对。

3. 独立样本t 检验( independent t test ),是用来看两组数据的平均值有无差异。

比如,你选取了5 男 5 女,想看男女之间身高有无差异,这样,男的一组,女的一组,这两个组之间的身高平均值的大小比较可用这种方法。

总之,选取哪种t 检验方法是由你的数据特点和你的结果要求来决定的。

t 检验会计算出一个统计量来,这个统计量就是t 值,spss 根据这个t 值来计算sig 值。

因此,你可以认为t 值是一个中间过程产生的数据,不必理他,你只需要看sig 值就可以了。

sig 值是一个最终值,也是t 检验的最重要的值。

sig 值的意思就是显著性 (significance ),它的意思是说,平均值是在百分之几的几率上相等的。

一般将这个sig 值与0.05 相比较,如果它大于0.05 ,说明平均值在大于5%的几率上是相等的,而在小于95% 的几率上不相等。

我们认为平均值相等的几率还是比较大的,说明差异是不显著的,从而认为两组数据之间平均值是相等的。

如果它小于0.05 ,说明平均值在小于5% 的几率上是相等的,而在大于95%的几率上不相等。

我们认为平均值相等的几率还是比较小的,说明差异是显著的,从而认为两组数据之间平均值是不相等的。

T检验及其与方差分析的区别

T检验及其与方差分析的区别

T检验及其与方差分析的区别假设检验是通过两组或多组的样本统计量的差别或样本统计量与总体参数的差异来推断他们相应的总体参数是否相同。

t 检验:1.单因素设计的小样本(n<50)计量资料2.样本来自正态分布总体3.总体标准差未知4.两样本均数比较时,要求两样本相应的总体方差相等?根据研究设计t检验可由三种形式:–单个样本的t检验–配对样本均数t检验(非独立两样本均数t检验)–两个独立样本均数t检验(1)单个样本t检验?又称单样本均数t检验(one sample t test),适用于样本均数与已知总体均数μ0的比较,其比较目的是检验样本均数所代表的总体均数μ是否与已知总体均数μ0有差别。

?已知总体均数μ0一般为标准值、理论值或经大量观察得到的较稳定的指标值。

?单样t检验的应用条件是总体标准未知的小样本资料( 如n<50),且服从正态分布。

(2)配对样本均数t检验?配对样本均数t检验简称配对t检验(paired t test),又称非独立两样本均数t检验,适用于配对设计计量资料均数的比较,其比较目的是检验两相关样本均数所代表的未知总体均数是否有差别。

?配对设计(paired design)是将受试对象按某些重要特征相近的原则配成对子,每对中的两个个体随机地给予两种处理。

?应用配对设计可以减少实验的误差和控制非处理因素,提高统计处理的效率。

?配对设计处理分配方式主要有三种情况:①两个同质受试对象分别接受两种处理,如把同窝、同性别和体重相近的动物配成一对,或把同性别和年龄相近的相同病情病人配成一对;②同一受试对象或同一标本的两个部分,随机分配接受两种不同处理,如例 5.2资料;③自身对比(self-contrast)。

即将同一受试对象处理(实验或治疗)前后的结果进行比较,如对高血压患者治疗前后、运动员体育运动前后的某一生理指标进行比较。

(3)两独立样本t检验两独立样本t 检验(two independent samples t-test),又称成组t 检验。

u检验、t检验、F检验、X2检验

u检验、t检验、F检验、X2检验

u检验、t检验、F检验、X2检验常用显著性检验1.t检验适用于计量资料、正态分布、方差具有齐性的两组间小样本比较。

包括配对资料间、样本与均数间、两样本均数间比较三种,三者的计算公式不能混淆。

2.t'检验应用条件与t检验大致相同,但t′检验用于两组间方差不齐时,t′检验的计算公式实际上是方差不齐时t检验的校正公式。

3.U检验应用条件与t检验基本一致,只是当大样本时用U检验,而小样本时则用t检验,t检验可以代替U检验。

4.方差分析用于正态分布、方差齐性的多组间计量比较。

常见的有单因素分组的多样本均数比较及双因素分组的多个样本均数的比较,方差分析首先是比较各组间总的差异,如总差异有显著性,再进行组间的两两比较,组间比较用q检验或LST检验等。

5.X2检验是计数资料主要的显著性检验方法。

用于两个或多个百分比(率)的比较。

常见以下几种情况:四格表资料、配对资料、多于2行*2列资料及组内分组X2检验。

6.零反应检验用于计数资料。

是当实验组或对照组中出现概率为0或100%时,X2检验的一种特殊形式。

属于直接概率计算法。

7.符号检验、秩和检验和Ridit检验三者均属非参数统计方法,共同特点是简便、快捷、实用。

可用于各种非正态分布的资料、未知分布资料及半定量资料的分析。

其主要缺点是容易丢失数据中包含的信息。

所以凡是正态分布或可通过数据转换成正态分布者尽量不用这些方法。

8.Hotelling检验用于计量资料、正态分布、两组间多项指标的综合差异显著性检验。

计量经济学检验方法讨论计量经济学中的检验方法多种多样,而且在不同的假设前提之下,使用的检验统计量不同,在这里我论述几种比较常见的方法。

在讨论不同的检验之前,我们必须知道为什么要检验,到底检验什么?如果这个问题都不知道,那么我觉得我们很荒谬或者说是很模式化。

检验的含义是要确实因果关系,计量经济学的核心是要说因果关系是怎么样的。

那么如果两个东西之间没有什么因果联系,那么我们寻找的原因就不对。

t检验、u检验、卡方检验、F检验、方差分析

t检验、u检验、卡方检验、F检验、方差分析

统计中经常会用到各种检验,如何知道何时用什么检验呢,根据结合自己的工作来说一说:t检验有单样本t检验,配对t检验和两样本t检验.单样本t检验:是用样本均数代表的未知总体均数和已知总体均数进行比较,来观察此组样本与总体的差异性。

配对t检验:是采用配对设计方法观察以下几种情形,1,两个同质受试对象分别接受两种不同的处理;2,同一受试对象接受两种不同的处理;3,同一受试对象处理前后。

u检验:t检验和就是统计量为t,u的假设检验,两者均是常见的假设检验方法。

当样本含量n较大时,样本均数符合正态分布,故可用u检验进行分析。

当样本含量n小时,若观察值x符合正态分布,则用t检验(因此时样本均数符合t 分布),当x为未知分布时应采用秩和检验。

F检验又叫方差齐性检验。

在两样本t检验中要用到F检验。

从两研究总体中随机抽取样本,要对这两个样本进行比较的时候,首先要判断两总体方差是否相同,即方差齐性。

若两总体方差相等,则直接用t检验,若不等,可采用t’检验或变量变换或秩和检验等方法.其中要判断两总体方差是否相等,就可以用F检验.简单的说就是检验两个样本的方差是否有显著性差异这是选择何种T检验(等方差双样本检验,异方差双样本检验)的前提条件。

在t检验中,如果是比较大于小于之类的就用单侧检验,等于之类的问题就用双侧检验。

卡方检验是对两个或两个以上率(构成比)进行比较的统计方法,在临床和医学实验中应用十分广泛,特别是临床科研中许多资料是记数资料,就需要用到卡方检验。

方差分析用方差分析比较多个样本均数,可有效地控制第一类错误.方差分析(analysis of variance,ANOVA)由英国统计学家R.A.Fisher首先提出,以F命名其统计量,故方差分析又称F检验。

其目的是推断两组或多组资料的总体均数是否相同,检验两个或多个样本均数的差异是否有统计学意义.我们要学习的主要内容包括单因素方差分析即完全随机设计或成组设计的方差分析(one-way ANOVA):用途:用于完全随机设计的多个样本均数间的比较,其统计推断是推断各样本所代表的各总体均数是否相等。

t检验、u检验、卡方检验、F检验、方差分析

t检验、u检验、卡方检验、F检验、方差分析

统计中经常会用到各种检验, 如何知道何时用什么检验呢, 根据结合自己的工作来说一说:之欧侯瑞魂创t检验有单样本t检验, 配对t检验和两样本t检验.单样本t检验:是用样本均数代表的未知总体均数和已知总体均数进行比力, 来观察此组样本与总体的不同性.配对t检验:是采纳配对设计方法观察以下几种情形, 1, 两个同质受试对象分别接受两种分歧的处置;2,同一受试对象接受两种分歧的处置;3, 同一受试对象处置前后.u检验:t检验和就是统计量为t,u的假设检验, 两者均是罕见的假设检验方法.当样本含量n较年夜时, 样本均数符合正态分布,故可用u检验进行分析.当样本含量n小时, 若观察值x符合正态分布, 则用t检验(因此时样本均数符合t分布), 当x为未知分布时应采纳秩和检验.F检验又叫方差齐性检验.在两样本t检验中要用到F检验.从两研究总体中随机抽取样本, 要对这两个样本进行比力的时候, 首先要判断两总体方差是否相同, 即方差齐性.若两总体方差相等,则直接用t检验, 若不等, 可采纳t'检验或变量变换或秩和检验等方法.其中要判断两总体方差是否相等, 就可以用F检验.简单的说就是检验两个样本的方差是否有显著性不同这是选择何种T检验(等方差双样本检验, 异方差双样本检验)的前提条件.在t检验中, 如果是比力年夜于小于之类的就用单侧检验, 即是之类的问题就用双侧检验.卡方检验是对两个或两个以上率(构成比)进行比力的统计方法, 在临床和医学实验中应用十分广泛, 特别是临床科研中许多资料是记数资料, 就需要用到卡方检验.方差分析用方差分析比力多个样本均数,可有效地控制第一类毛病.方差分析(analysis of variance,ANOVA)由英国统计学家R.A.Fisher首先提出, 以F命名其统计量, 故方差分析又称F检验.其目的是推断两组或多组资料的总体均数是否相同, 检验两个或多个样本均数的不同是否有统计学意义.我们要学习的主要内容包括单因素方差分析即完全随机设计或成组设计的方差分析(oneway ANOVA):用途:用于完全随机设计的多个样本均数间的比力, 其统计推断是推断各样本所代表的各总体均数是否相等.完全随机设计(completely random design)不考虑个体差此外影响, 仅涉及一个处置因素, 但可以有两个或多个水平, 所以亦称单因素实验设计.在实验研究中按随机化原则将受试对象随机分配到一个处置因素的多个水平中去, 然后观察各组的试验效应;在观察研究(调查)中按某个研究因素的分歧水平分组, 比力该因素的效应.两因素方差分析即配伍组设计的方差分析(twoway ANOVA):用途:用于随机区组设计的多个样本均数比力, 其统计推断是推断各样本所代表的各总体均数是否相等.随机区组设计考虑了个体差此外影响, 可分析处置因素和个体不同对实验效应的影响, 所以又称两因素实验设计, 比完全随机设计的检验效率高.该设计是将受试对象先按配比条件配成配伍组(如植物实验时, 可按同窝别、同性别、体重相近进行配伍), 每个配伍组有三个或三个以上受试对象, 再按随机化原则分别将各配伍组中的受试对象分配到各个处置组.值得注意的是, 同一受试对象分歧时间(或部位)重复屡次丈量所获得的资料称为重复丈量数据(repeated measurement data), 对该类资料不能应用随机区组设计的两因素方差分析进行处置, 需用重复丈量数据的方差分析.方差分析的条件之一为方差齐, 即各总体方差相等.因此在方差分析之前, 应首先检验各样本的方差是否具有齐性.经常使用方差齐性检验(test for homogeneity of variance)推断各总体方差是否相等.本节将介绍多个样本的方差齐性检验, 本法由Bartlett于1937年提出, 称Bartlett法.该检验方法所计算的统计量服从分布.经过方差分析若拒绝了检验假设, 只能说明多个样本总体均数不相等或不全相等.若要获得各组均数间更详细的信息, 应在方差分析的基础上进行多个样本均数的两两比力.创作时间:二零二一年六月三十日。

t检验、u检验、卡方检验、F检验、方差分析

t检验、u检验、卡方检验、F检验、方差分析

统计中经常会用到各种检验,如何知道何时用什么检验呢,根据结合自己的工作来说一说:t检验有单样本t检验,配对t检验和两样本t检验。

单样本t检验:是用样本均数代表的未知总体均数和已知总体均数进行比较,来观察此组样本与总体的差异性。

配对t检验:是采用配对设计方法观察以下几种情形,1,两个同质受试对象分别接受两种不同的处理;2,同一受试对象接受两种不同的处理;3,同一受试对象处理前后。

u检验:t检验和就是统计量为t,u的假设检验,两者均是常见的假设检验方法。

当样本含量n较大时,样本均数符合正态分布,故可用u检验进行分析。

当样本含量n小时,若观察值x符合正态分布,则用t检验(因此时样本均数符合t 分布),当x为未知分布时应采用秩和检验。

F检验又叫方差齐性检验。

在两样本t检验中要用到F检验。

从两研究总体中随机抽取样本,要对这两个样本进行比较的时候,首先要判断两总体方差是否相同,即方差齐性。

若两总体方差相等,则直接用t检验,若不等,可采用t'检验或变量变换或秩和检验等方法。

其中要判断两总体方差是否相等,就可以用F检验。

简单的说就是检验两个样本的方差是否有显著性差异这是选择何种T检验(等方差双样本检验,异方差双样本检验)的前提条件。

在t检验中,如果是比较大于小于之类的就用单侧检验,等于之类的问题就用双侧检验。

卡方检验是对两个或两个以上率(构成比)进行比较的统计方法,在临床和医学实验中应用十分广泛,特别是临床科研中许多资料是记数资料,就需要用到卡方检验。

方差分析用方差分析比较多个样本均数,可有效地控制第一类错误。

方差分析(analysis of variance,ANOVA)由英国统计学家R.A.Fisher首先提出,以F命名其统计量,故方差分析又称F检验。

其目的是推断两组或多组资料的总体均数是否相同,检验两个或多个样本均数的差异是否有统计学意义。

我们要学习的主要内容包括单因素方差分析即完全随机设计或成组设计的方差分析(one-way ANOVA):用途:用于完全随机设计的多个样本均数间的比较,其统计推断是推断各样本所代表的各总体均数是否相等。

t检验、u检验、卡方检验、F检验、方差分析

t检验、u检验、卡方检验、F检验、方差分析

统计中经常会用到各种检验,如何知道何时用什么检验呢,根据结合自己的工作来说一说:t检验有单样本t检验,配对t检验和两样本t检验。

单样本t检验:是用样本均数代表的未知总体均数和已知总体均数进行比较,来观察此组样本与总体的差异性。

配对t检验:是采用配对设计方法观察以下几种情形,1,两个同质受试对象分别接受两种不同的处理;2,同一受试对象接受两种不同的处理;3,同一受试对象处理前后。

u检验:t检验和就是统计量为t,u的假设检验,两者均是常见的假设检验方法。

当样本含量n较大时,样本均数符合正态分布,故可用u检验进行分析。

当样本含量n小时,若观察值x符合正态分布,则用t检验(因此时样本均数符合t分布),当x为未知分布时应采用秩和检验。

F检验又叫方差齐性检验.在两样本t检验中要用到F检验。

从两研究总体中随机抽取样本,要对这两个样本进行比较的时候,首先要判断两总体方差是否相同,即方差齐性。

若两总体方差相等,则直接用t检验,若不等,可采用t'检验或变量变换或秩和检验等方法。

其中要判断两总体方差是否相等,就可以用F检验.简单的说就是检验两个样本的方差是否有显著性差异这是选择何种T检验(等方差双样本检验,异方差双样本检验)的前提条件。

在t检验中,如果是比较大于小于之类的就用单侧检验,等于之类的问题就用双侧检验。

卡方检验是对两个或两个以上率(构成比)进行比较的统计方法,在临床和医学实验中应用十分广泛,特别是临床科研中许多资料是记数资料,就需要用到卡方检验。

方差分析用方差分析比较多个样本均数,可有效地控制第一类错误。

方差分析(analysis of variance,ANOVA)由英国统计学家R.A。

Fisher首先提出,以F命名其统计量,故方差分析又称F检验.其目的是推断两组或多组资料的总体均数是否相同,检验两个或多个样本均数的差异是否有统计学意义。

我们要学习的主要内容包括单因素方差分析即完全随机设计或成组设计的方差分析(one-way ANOVA):用途:用于完全随机设计的多个样本均数间的比较,其统计推断是推断各样本所代表的各总体均数是否相等。

t检验三种类型

t检验三种类型

t检验三种类型区别:假设检验通常是检验样本对应的总体之间是否有显著性差异⽽关联性检验是检验是否显著相关。

⼀、单样本t检验 1、设计思想: 两个总体,总体A已知;总体B未知,但其样本已知,问题是未知总体B与已知总体A之间有⽆差异?实际上是验证该样本是否就是来⾃这个已知总体A? 2、适⽤: (1)已知⼀个总体和未知总体中的⼀个样本。

(2)样本数据符合正态分布,不符合时应采⽤⾮参检验。

3、SPSS处理解读三步法: ⼆、配对样本t检验 1、设计思想: 配对样本t检验是配对的两组数据相减变成⼀组数据,然后去和已知总体0⽐较,其实就是转化为单样本t检验。

2、适⽤: (1)检测的两组配对数据之间存在相关性⽽不独⽴,这与两独⽴样本设计有着本质的区别。

包括四种配对类型,3种为同体配对,1种异体配对(条件配对)。

(2)两组样本数据配对差值符合正态分布。

3、SPSS处理解读三步法: ⼀般,第⼆步可以忽略。

但从统计学⾓度,这⼀步是为了验证配对数据的⼀致性,⽤于说明实验措施的稳定性。

三、两独⽴样本t检验(A/Btest 背后原理) 1、设计思想:在两个未知的总体中分别抽取⼀个样本,然后⽐较两个总体之间是否有差异?实际是检验两样本所来⾃总体的均值是否相等。

注意:分为「两总体均值检验」和「两总体率值检验」 2、适⽤: (1)独⽴性。

完全随机设计的两样本均值的⽐较。

实践中,两个样本获取只有两种可能:随机分组或按属性分组。

不管哪种,均是保证两组相互独⽴,不受影响。

(2)正态性。

两独⽴样本t检验要求两样本所代表的总体分别服从正态分布N(µ1,σ^2)和N(µ2,σ^2)。

(3)⽅差齐性。

要求两个t分布形态相差不⼤。

即两总体⽅差σ1^2、σ2^2显著性相等。

(ps:若两总体⽅差不满⾜齐性,需要先进⾏变换校正)。

注意:实践中,两个样本的获取只有两种可能:⼀是随机分组,如60只SD⼤⿏,随机分2组,每组30只,分别接受不同的处理,然后⽐较某个计量效应指标;⼆是按照某种属性特征分组,如某班级按照性别分为男⽣组和⼥⽣组,然后⽐较男⼥⽣某门课程的考试成绩差异。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

独立样本的T检验
(independent-samples T T est)
对于相互独立的两个来自正态总体的样本,利用独立样本的T 检验来检验这两个样本的均值和方差是否来源于同一总体。

在SPSS 中,独立样本的T检验由“Independent-Sample T Test”过程来完成。

例:双语教师的英语水平有高低之分,他们(她们)所教的学生对双语教学的态度是否有显著差异?
例题分析:
——研究目的:寻找差异
——自变量:双语教师的英语水平(ordinal data等级变量),有两个水平:;level1低水平,level2 高水平
——因变量:学生的双语教学态度(interval data等距变量)
SPSS操作步骤
·Analyze→Compare Means→Independent Samples T Test
·Click the 双语教学态度to the column of “Test V ariable(s)” and
the 教师英语水平分组to the column of “Grouping variable”
·Click the button of “Define Groups…” and put the group numbers
“1” and “3” into Group 1 and Group 2, and “Continue” back, then
“OK”.
结果在论文中的呈现方式
独立样本T检验结果显示,双语教师的英语水平不同,其所教学生对双语教学的态度有显著差异(t=-3,249, df=72, p<0.05)。

双语教师英语水平较低所教的学生,他们对双语教学态度的得分也显著低于英语水平较高的双语教师所教的学生(MD=-0.65)。

这可能是因为……
练习:文科生和理科生对双语教学的态度是否有显著差异?
配对样本T检验(Paired-samples T Test)
配对样本T检验,用于检验两个相关的样本(配对资料)是否来自具有相同均值的总体。

例:本次调查中,学生对自己英语能力水平和英语知识水平的评价之间是否有显著差异?
例题分析:
——研究目的:寻找差异
——自变量:学生的评价对象(norminal data定类数据),有两个水平:level1对自身英语能力水平的评价,level2对自身英语知识水平的评价。

——因变量:学生自身英语能力和知识的评价分数
SPSS操作步骤
·Analyze→Compare Means→Paired-Samples T Test
·Click 学生英语能力and 学生英语知识to the box of “Paired Variables”·Then OK
结果在论文中的呈现方式
配对样本T检验结果显示,学生对自身英语能力水平和英语知识水平的评价有显著差异(t=9.875, df=296, p<0.05)。

他们对自己英语能力的评价显著高于对英语知识水平的评价(MD=0.38)。

这可能是因为……
练习:本次调查中,学生对双语教师英语水平的评价与对其专业水平的评价之间是否有显著差异?
单一样本的T检验(One-sample T T est)
如果已知总体均数,进行样本均数与总体均数之间的差异显著性检验属于单一样本的T检验。

在SPSS中,单一样本的T检验由“One-Sample T Test”过程来完成。

例:本次调查中,学生对双语教学的态度平均值与全国大学生双语教学态度平均值3.00之间是否有差异?
例题分析:
——研究目的:寻找差异
——自变量:给定数值,总体平均值3.00(interval data定距数据)
——因变量:学生对双语教学的态度(interval data定距数据)
SPSS操作步骤
·Analyze→Compare Means→One-Sample T test
·Click 双语教学态度to the “Test Variable(s)”
·Input 3.00 in the “ Test Value”
·Then OK
结果在论文中的呈现方式
单样本T检验结果显示,学生样本的双语教学态度均值(M=3.54)与全国大学生双语教学态度平均值3.00之间有显著差异(t=12.83, df=296, p<0.05)。

该样本的双语态度均值显著高于总体平均值(MD=0.54)。

这可能是因为……
练习:本次调查中,学生英语学习动机均值与全国大学生英语学习动机均值2.95之间是否有显著差异?
·············。

相关文档
最新文档