浙教版八年级数学下册期末考试模拟复习试题(含答案)
【浙教版】初二数学下期末模拟试卷附答案(1)

一、选择题=,S2乙1.某次知识竞赛中,两组学生成绩如下表,通过计算可知两组的方差为S2甲172=,下列说法:256①两组的平均数相同;②甲组学生成绩比乙组学生成绩稳定;③甲组成绩的众数>乙组成绩的众数;④两组成绩的中位数均是80,但成绩≥80的人数甲比乙组多,从中位数来看,甲组成绩总体比乙组好;⑤成绩高于或等于90分的人数乙组比甲组多,高分段乙组成绩比甲组好.其中正确的有()个A.2 B.3 C.4 D.52.如图是根据我市某天七个整点时的气温绘制成的统计图,则下列说法正确的是()A.这组数据的众数是14B.这组数据的中位数是31C.这组数据的标准差是4D.这组是数据的极差是93.八(1)班45名同学一天的生活费用统计如下表:生活费(元)1015202530学生人数3915126(人)A.15B.20C.21D.254.甲、乙两位射击运动员参加射击训练,各射击20次,成绩如下表所示:设甲、乙两位运动员射击成绩的方差分别为S 2甲和S 2乙,则下列说法正确的是( ) A .S 2甲<S 2乙 B .S 2甲=S 2乙C .S 2甲>S 2乙D .无法比较S 2甲和S 2乙的大小5.如图,点O 为平面直角坐标系的原点,点A 在x 轴正半轴上,四边形OABC 是菱形.已知点B 坐标为(3,3),则直线AC 的函数解析式为( )A .y =3x+3 B .y =3x+23C .y =﹣3x+3 D .y =﹣3x+23 6.如图,已知在平面直角坐标系xOy 中.以(О为圆心,适当长为半径作圆弧,与x 轴交于点A ,与y 轴交于点,B 再分别以A B 、为圆心.大于12AB 长为半径作圆弧,两条圆弧在第四象限交于点C .以下四组x 与y 的对应值中,能够使得点(),1P x y -在射线OC 上的是( )A .2和1-B .2和2-C .2和2D .2和3 7.在直角坐标系中,点P 在直线x +y -4=0上,O 为原点,则OP 的最小值为( )A .2B .2C 6D 108.下列说法正确的是( )①从开始观察时起,50天后该植物停止长高;②直线AC 的函数表达式为165y x =+ ③第40天,该植物的高度为14厘米; ④该植物最高为15厘米A .①②③B .②④C .②③D .①②③④ 9.下列各组线段能构成直角三角形的一组是( )A .30,40,50B .8,12,13C .5,9,13D .3,4,610.如图,ABC 中,//DE BC ,//EF AB ,要判定四边形DBFE 是菱形,可添加的条件是( )A .BD EF =B .AD BD =C .BE AC ⊥D .BE 平分ABC ∠11.设a b 0>>,2240a b ab +-=,则a bb a+-的值是( ) A .2B .-3C .2-D .3-12.已知四边形ABCD 中,90A B C ∠=∠=∠=,如果添加一个条件,即可判定该四边形是正方形,那么所添加的这个条件可以是( ) A .90D ∠=;B .AB CD =;C .AD BC =;D .BC CD =.二、填空题13.若一组数据4,a ,7,8,3的平均是5,则这组数据的方差是_______. 14.某同学记录了自己一周每天的零花钱(单位:元),分别如下:5,4.5,5,5.5,5.5,5,4.5这组数据的众数和平均数分别是_______和_______.15.在平面直角坐标系中,Rt ABO 的顶点B 在x 轴上,90∠=︒ABO ,AB OB =,点()10,8C 在AB 边上,D 为OB 的中点,P 为边OA 上的动点(不与,O A 重合).下列说法正确的是________(填写所有正确的序号).①当点P 运动到OA 中点时,点P 到OB 和AB 的距离相等; ②当点P 运动到OA 中点时,APC DPO ∠=∠;③当点P 从点O 运动到点A 时,四边形PCBD 的面积先变大再变小;④四边形PCBD 的周长最小时,点P 的坐标为5050,77⎛⎫⎪⎝⎭.16.在计算机编程中有这样一个数字程序:对于二个数a ,b 用min{,}a b 表示这两个数中较小的数.例如:min{1,2}1-=-,则min{1,22}x x +-+的最大值为________. 17.如图,正方形ABCD 的边长为2,O 是对角线BD 上一动点(点O 与端点B ,D 不重合),OM ⊥AD 于点M ,ON ⊥AB 于点N ,连接MN ,则MN 长的最小值为_____.18.如图,边长分别为4和2的两个正方形ABCD 和CEFG 并排放在一起,连结EG 并延长交BD 于点N ,交AD 于点M .则线段MN 的长是__________.1983=______. 20.已知一个三角形工件尺寸(单位dm )如图所示,则高h =__dm .三、解答题21.为了解某校九年级学生的理化实验操作情况,随机抽查了40名同学实验操作的得分.根据获取的样本数据,制作了如下的条形统计图和扇形统计图.请根据相关信息,解答下列问题:(1)扇形①的圆心角的大小是度;(2)这40个样本数据的众数是_______;中位数是_______.(3)若该校九年级共有320名学生,估计该校理化实验操作得满分的学生人数.22.图甲和图乙分别是A,B两家酒店去年下半年的月营业额(单位:百万元)统计图.(1)求A酒店12月份的营业额a的值.(2)已知B酒店去年下半年的月平均营业额为2.3百万元,求8月份的月营业额,并补全折线统计图.(3)完成下面的表格(单位:百万元)(4)综合以上分析,你认为哪一些数据更能较为准确的反映酒店的经营业绩?你认为哪家酒店的经营状况较好?请简述理由.23.已知在平面直角坐标系中,直线()11140y k x k =+≠与直线()2220y k x k =≠交于点()6,12C ,直线1y 分别与x 轴,y 轴交于点A 和点B .(1)求直线1y 与2y 的表达式及点A ,点B 的坐标;(2)x 轴上是否存在点P ,使ACP ∆的面积为30,若存在,求出点P 的坐标;若不存在,说明理由;(3)x 轴上是否存在点Q ,使OCQ ∆为等腰三角形,若存在,请直接写出点Q 的坐标;若不存在,请说明理由.24.如图,CD 是线段AB 的垂直平分线,M 是AC 延长线上一点.(1)在图中补充完整以下作图,保留作图痕迹:作∠BCM 的角平分线CN ,过点B 作CN 的垂线,垂足为E ;(2)求证:四边形BECD 是矩形;(3)AB 与AC 满足怎样的数量关系时,四边形BECD 是正方形?证明你的结论. 25.解方程组和计算 (1)计算:6﹣153﹣12②4(3+7)0+12×8﹣(1﹣2)2(2)解方程组:①43522x yy x+=⎧⎨=-⎩;②3414 233x yx y-=⎧⎨-=⎩.26.亲爱的同学们,在全等三角形中,我们见识了很多线段关系的论证题,下面请你用本阶段所学知识,分别完成下列题目.(1)如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.容易证明△ACD≌△BCE,则①∠AEB的度数为;②直接写出AE、BE、CM之间的数量关系:(3)如图3,△ABC中,若∠A=90°,D为BC的中点,DE⊥DF交AB、AC于E、F,求证:BE2+CF2=EF2.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据中位数、众数、方差、平均数的概念来解答.【详解】解:①平均数:甲组:(50×2+60×5+70×10+80×13+90×14+100×6)÷50=80,乙组:(50×4+60×4+70×16+80×2+90×12+100×12)÷50=80,②S甲2=172<S乙2=256,故甲组学生成绩比乙组学生成绩稳定;③甲组成绩的众数90>乙组成绩的众数70;④成绩≥80的人数甲组33人比乙组26人多;从中位数来看,甲组成绩80=乙组成绩80,故错误.⑤成绩高于或等于90分的人数乙组24人比甲组20人多,高分段乙组成绩比甲组好.故①②③⑤正确.故选:C.【点睛】此题考查中位数和众数的定义.解题关键在于掌握各定义性质.2.D解析:D【解析】【分析】根据中位数,众数、极差、标准差的定义即可判断.【详解】解:七个整点时数据为:22,22,23,26,28,30,31所以中位数为26,众数为22,平均数为:22+22+23+26+28+3032167+=;极差是31-22=9,标准差是:故D正确,故选:D【点睛】此题考查中位数,众数、极差、标准差的定义,解题关键在于看懂图中数据3.C解析:C【分析】根据加权平均数公式列出算式求解即可.【详解】解:这45名同学一天的生活费用的平均数=103159201525123062145⨯+⨯+⨯+⨯+⨯=.故答案为C.【点睛】本题考查了加权平均数的计算,读懂题意,正确的运用公式是解题的关键4.C解析:C【解析】【分析】先计算两组数据的平均数,再计算它们的方差,选择正确的答案即可.【详解】 甲的平均数为:120×5×(7+8+9+10)=172 乙的平均数为:120×(4×7+6×8+6×9+4×10)=172S 甲2=120×{5×[(7-172)2+(8-172)2+(9-172)2+(10-172)2]}=14×[94+14+14+94] =54; S 乙2=120×[4×[(7-172)2+6×(8-172)2+6×(9-172)2+4×(10-172)2]=120×[9+64+64+9] =2120; ∵54>2120∴S 甲2>S 乙2 故选C . 【点睛】此题主要考查了平均数及方差的知识.方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.5.D解析:D 【分析】过B 点作BH ⊥x 轴于H 点,菱形的对角线的交点为P ,如图,设菱形的边长为t ,则OA =AB =t ,在Rt △ABH 中利用勾股定理得到(3﹣t )2+2=t 2,解方程求出t ,得到A(2,0),再利用P 为OB 的中点得到P (32AC 的解析式即可. 【详解】解:过B 点作BH ⊥x 轴于H 点,菱形的对角线的交点为P ,如图,∵四边形ABCO为菱形,∴OP=BP,OA=AB,设菱形的边长为t,则OA=AB=t,∵点B坐标为(33∴BH3AH=3﹣t,在Rt△ABH中,(3﹣t)2+32=t2,解得t=2,∴A(2,0),∵P为OB的中点,∴P(323设直线AC的解析式为y=kx+b,把A(2,0),P(32320332k bk b+=⎧⎪⎨+=⎪⎩,解得:323kb⎧=-⎪⎨=⎪⎩,∴直线AC的解析式为y33故选:D.【点睛】本题主要考查菱形的性质,勾股定理以及一次函数的待定系数法,熟练掌握菱形的性质和待定系数法,是解题的关键.6.A解析:A【分析】根据题意可得OC的解析式为y=-x,再由各选项的数字得到点P的坐标,代入解析式即可得出结论.【详解】解:由作图可知,OC为第四象限角的平分线,故可得直线OC的解析式为y=-x,A、当x=2,y=-1时,P(2,-2),代入y=-x,可知点P在射线OC上,故A符合题意;B、当x=2,y=-2时,P(2,-3),代入y=-x,可知点P不在射线OC上,故B不符合题意;C、当x=2,y=2时,P(2,1),代入y=-x,可知点P不在射线OC上,故C不符合题意;D/当x=2,y=3时,P(2,2),代入y=-x,可知点P不在射线OC上,故D不符合题意;故选:A.【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的性质,正确的理解题意是解题的关键.7.A解析:A【分析】当OP垂直于直线x+y-4=0时,|OP|取最小值.根据直线方程得到该直线与坐标轴的交点坐标,则易得△AOB为等腰直角三角形,等腰直角三角形斜边上的中线等于斜边的一半,据此求得线段OP的长度.【详解】解:由直线x+y-4=0得到该直线与坐标轴的两交点坐标是A(0,4)、B(4,0),则△AOB是等腰直角三角形,如图,∴22224442OA OB+=+=当OP⊥AB时,线段OP最短.此时OP=12AB=22故选:A.【点睛】本题考查了一次函数图象上点的坐标特征,垂线段最短.解题时,利用了直角三角形斜边上的中线等于斜边的一半求得OP的长度.8.A解析:A【分析】①根据平行线间的距离相等可知50天后植物的高度不变,也就是停止长高;②设直线AC的解析式为y=kx+b(k≠0),然后利用待定系数法求出直线AC线段的解析式,③把x=40代入②的结论进行计算即可得解;④把x=50代入②的结论进行计算即可得解.【详解】解:∵CD∥x轴,∴从第50天开始植物的高度不变,故①的说法正确;设直线AC的解析式为y=kx+b(k≠0),∵经过点A(0,6),B(30,12),∴30126k bb+=⎧⎨=⎩,解得156kb⎧=⎪⎨⎪=⎩,所以,直线AC的解析式为165y x=+(0≤x≤50),故②的结论正确;当x=40时,14065y=⨯+=14,即第40天,该植物的高度为14厘米;故③的说法正确;当x=50时,15065y=⨯+=16,即第50天,该植物的高度为16厘米;故④的说法错误.综上所述,正确的是①②③.故选:A.【点睛】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知自变量求函数值,仔细观察图象,准确获取信息是解题的关键.9.A解析:A【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【详解】解:A、∵302+402=502,∴该三角形符合勾股定理的逆定理,故是直角三角形,故正确;B、∵82+122≠132,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;C、∵52+92≠122,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;D、∵32+42≠62,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;故选:A.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.10.D解析:D【分析】当BE 平分∠ABC 时,四边形DBFE 是菱形,可知先证明四边形BDEF 是平行四边形,再证明BD=DE 即可解决问题.【详解】解:当BE 平分∠ABC 时,四边形DBFE 是菱形,理由:∵DE ∥BC ,∴∠DEB=∠EBC ,∵∠EBC=∠EBD ,∴∠EBD=∠DEB ,∴BD=DE ,∵DE ∥BC ,EF ∥AB ,∴四边形DBFE 是平行四边形,∵BD=DE ,∴四边形DBFE 是菱形.其余选项均无法判断四边形DBFE 是菱形,故选:D .【点睛】本题考查菱形的判定、平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.11.D解析:D【分析】由2240a b ab +-=可得2()6a b ab +=,2()2a b ab -=,然后根据0a b >>求得a b +和a b -的值,代入即可求解.【详解】∵2240a b ab +-=,即224a b ab +=,∴2()6a b ab +=,2()2a b ab -=,∵0a b >>, ∴a b +=a b -=,∴a b a b b a a b ++=---== 故选:D .【点睛】本题考查了求分式的值以及二次根式的除法运算,正确运用完全平方公式是解题的关键.12.D解析:D【分析】由已知可得该四边形为矩形,再添加条件:一组邻边相等,即可判定为正方形.【详解】解:由∠A=∠B=∠C=90°可判定四边形ABCD 为矩形,因此再添加条件:一组邻边相等,即可判定四边形ABCD 为正方形,故选:D .【点睛】本题考查正方形的判定.掌握相关判定定理正确推理论证是解题关键.二、填空题13.【分析】根据平均数求出a 再根据方差的公式计算得到答案【详解】∵数据4783的平均是5∴∴这组数据的方差是=故答案为:【点睛】此题考查根据平均数求某一数据方差的计算公式熟记方差的计算公式是解题的关键 解析:225【分析】根据平均数求出a ,再根据方差的公式计算得到答案.【详解】∵数据4,a ,7,8,3的平均是5,∴5547833a =⨯----=,∴这组数据的方差是22221(45)2(35)(75)(85)5⎡⎤-+⨯-+-+-⎣⎦=225, 故答案为:225. 【点睛】此题考查根据平均数求某一数据,方差的计算公式,熟记方差的计算公式是解题的关键. 14.55【解析】【分析】根据众数和平均数的定义求解【详解】解:5出现了三次出现次数最多所以这组数据的众数是5这组数据的平均数=(5+45+5+55+55+5+45)=5故答案为:5;5【点睛】本题考查平解析:5 5【解析】【分析】根据众数和平均数的定义求解.【详解】解:5出现了三次,出现次数最多,所以这组数据的众数是5,这组数据的平均数=17(5+4.5+5+5.5+5.5+5+4.5)=5. 故答案为:5;5.【点睛】 本题考查平均数的求法以及众数的定义:一组数据中出现次数最多的数据叫做众数. 15.①④【分析】①根据等腰直角三角形的性质可得BP 是∠ABO 的平分线从而可得结论;②可判断出∠DPO=45゜∠进而可得结论;③设P 点坐标为得出再根据一次函数的性质进行判断即可;④作点关于的对称点M 连接M 解析:①④【分析】①根据等腰直角三角形的性质可得BP 是∠ABO 的平分线,从而可得结论;②可判断出∠DPO=45゜,∠45APC <︒,进而可得结论;③设P 点坐标为(,)x x ,得出3402PCBD S x =-+四边形,再根据一次函数的性质进行判断即可;④作点D 关于OA 的对称点M ,连接MC ,交OA 于P ,可知当且仅当,,M P C 三点共线时四边形PCBD 的周长最小,求出直线MC 和OA 的交点坐标即可解决问题.【详解】解:①当点P 运动到OA 中点时,连接BP ,如图所示,∵,OB AB OP AP ==∴BP 平分∠ABO∴点P 到OB 和AB 的距离相等,故①正确②当点P 运动到OA 中点时,∵,90OB AB ABO =∠=︒∴∠45A =︒∵点D 是OB 的中点∴//PD AB∴∠45OPD A =∠=︒∵(10,8)C∴∠45APC <︒∴∠APC DPO ≠∠故②错误;③∵(10,8)C∴(10,0),(10,10),B A∴(5,0)D∴5,2OD AC ==∵点P 从点O 运动到点A ,OA 平分第一象限角∴设P 点坐标为(,)x x∴PCBD AOB POD ACP S S S S ∆∆∆=--四边形 = 111101052222x ⨯⨯-⨯⋅-⨯(10)x ⨯- 550102x x =--+ 3402x =-+ ∵302-< 可以发现当点P 从点O 运动到点A 时,四边形PCBD 的面积一直变小,故③错误. ④作点D 关于OA 的对称点M ,连接MC ,交OA 于P ,此时,PD PM =∴=PCBD C PC PD BD BC +++四边形PC PM BD CB =+++58PC PM =+++58PC PM =+++∴当且仅当,,M P C 三点共线时四边形PCBD 的周长最小,∵OA 平分第一象限角∴点(5,0)D 关于OA 的对称点M 落在y 轴上,M 点坐标为(0,5)设直线MC 的解析式为y kx b =+,则有5108b k b =⎧⎨+=⎩,解得,3105k b ⎧=⎪⎨⎪=⎩ ∴3510y x =+ ∵直线OA 的解析式为y=x 联立3510y x y x ⎧=+⎪⎨⎪=⎩,解得507507x y ⎧=⎪⎪⎨⎪=⎪⎩,即5050(,)77P 故四边形PCBD 的周长最小时,点P 的坐标为5050,77⎛⎫⎪⎝⎭,故④正确. ∴正确的是①④,故答案为:①④.【点睛】此题考查了三角形与一次函数的综合题,熟练掌握角平分线的性质以及一次函数的性质是解答此题的关键. 16.【分析】分别画出函数的图象根据图象可知在时有最大值求出此时的值即可【详解】解:令函数联立得函数图象如下根据函数图象可知当时min{x+1-2x+2}的最大值为故答案为:【点睛】本题考查一次函数与一元 解析:43【分析】分别画出函数1y x =+,22y x =-+的图象,根据图象可知min{1,22}x x +-+在13x =时有最大值,求出此时的值即可.【详解】解:令函数1y x =+,22y x =-+, 联立122y x y x =+⎧⎨=-+⎩得1343x y ⎧=⎪⎪⎨⎪=⎪⎩, 函数图象如下,根据函数图象可知,当时13x ,min{x+1,-2x+2}的最大值为43,故答案为:43.【点睛】本题考查一次函数与一元一次不等式.掌握数形结合思想,能借助图形分析是解题关键.17.1【分析】连接AO可证四边形AMON是矩形可得AO=MN当AO⊥BD时AO有最小值即MN有最小值由等腰直角三角形的性质可求解【详解】解:如图连接AO∵四边形ABCD是正方形∴AB=AD=BD=AB=解析:1.【分析】连接AO,可证四边形AMON是矩形,可得AO=MN,当AO⊥BD时,AO有最小值,即MN有最小值,由等腰直角三角形的性质可求解.【详解】解:如图,连接AO,∵四边形ABCD是正方形,∴AB=AD2BD2=2,∠DAB=90°,又∵OM⊥AD,ON⊥AB,∴四边形AMON是矩形,∴AO=MN,∵当AO⊥BD时,AO有最小值,∴当AO⊥BD时,MN有最小值,此时AB=AD,∠BAD=90°,AO⊥BD,∴AO=12BD=1,∴MN 的最小值为1,故答案为:1.【点睛】本题考查了正方形的性质,矩形的判定和性质,垂线段最短,等腰直角三角形的性质,利用矩形的对角线相等,把线段MN 的最小值转化为线段AO 的最小值是解题的关键. 18.【分析】根据题意易证明和是等腰直角三角形再根据勾股定理即可求出MN 【详解】∵四边形ABCD 和CEFG 为正方形∴∴和是等腰直角三角形∴∴在中故答案为:【点睛】本题考查正方形和平行线的性质等腰直角三角形【分析】根据题意易证明MND 和MDG 是等腰直角三角形,2DM DC GC =-=.再根据勾股定理即可求出MN .【详解】∵四边形ABCD 和CEFG 为正方形,//AD BE .∴45DMG BEM MDN DGM ∠=∠=∠=∠=︒,∴MND 和MDG 是等腰直角三角形,∴422DG DM DC GC ==-=-=.∴在Rt MND △中,2MN MD ===【点睛】本题考查正方形和平行线的性质,等腰直角三角形的判定和性质以及勾股定理.根据题意证明MND 是等腰直角三角形在结合勾股定理求解是解答本题的关键. 19.【分析】根据二次根式的性质进行化简【详解】解:故答案为:【点睛】本题考查了二次根式的性质与化简解题的关键是掌握二次根式的性质和分母有理化解析:3【分析】 根据二次根式的性质进行化简.【详解】=故答案为:3. 【点睛】 本题考查了二次根式的性质与化简.解题的关键是掌握二次根式的性质和分母有理化.20.4【分析】过点A作AD⊥BC于点D则AD=h根据等腰三角形的性质求出BD=BC=3dm利用勾股定理求出h【详解】解:过点A作AD⊥BC于点D则AD=h∵AB=AC=5dmBC=6dm∴AD是BC的垂解析:4【分析】过点A作AD⊥BC于点D,则AD=h,根据等腰三角形的性质求出BD=12BC=3dm,利用勾股定理求出h.【详解】解:过点A作AD⊥BC于点D,则AD=h.∵AB=AC=5dm,BC=6dm,∴AD是BC的垂直平分线,∴BD=12BC=3dm.在Rt△ABD中,AD=2222534AB BD-=-=dm,即h=4(dm).答:h的长为4dm.故答案为:4..【点睛】此题考查勾股定理的实际应用,等腰三角形三线合一的性质,正确理解题意构建直角三角形,利用勾股定理解决问题是解题的关键.三、解答题21.(1)36;(2)9; 8;(3)估计该校理化实验操作得满分的学生人数是56人.【分析】(1)用360°乘以①所占的百分比,计算即可得解;(2)众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数分别解答;(3)用九年级总人数乘以满分的人数所占的份数计算即可得解.【详解】(1)360°×(1-15%-27.5%-30%-17.5%)=360°×10%=36°;故答案为:36;(2)∵9出现了12次,次数最多,∴众数是9;∵将40个数字按从小到大排列,中间的两个数都是8,∴中位数是8882+=, 故答案为:9,8; (3)32017.5%56⨯=(人),估计该校理化实验操作得满分的学生人数是56人.【点睛】本题考查条形统计图、扇形统计图、众数与中位数的意义、用样本估计总体.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(1)4百万元;(2)3百万元,见解析;(3)2.5,见解析;(4)平均数,中位数反映酒店的经营业绩,A 酒店的经营状况较好,见解析【分析】(1)想办法求出12月份的扇形图中的圆心角,构建方程即可解决问题;(2)根据平均数的定义即可解决问题;(3)根据平均数,中位数,众数的定义计算即可;(4)平均数,中位数反映酒店的经营业绩,A 酒店的经营状况较好.【详解】解:(1)设7、8、9、10所占的圆心角为x .则有:2.4 2.2 2.2 1.2x +++=372, 解得x=192°, ∴12月份的圆心角为360°-192°-72°=96°,则有:a 96=372, ∴a=4百万元, (2)由题意,8月份的月营业额为3百万元.作图:(3)A 酒店的平均数=3 2.4 2.2 2.2 1.246+++++=2.5, B 酒店的中位数为1.9,众数为1.7,故答案为2.5,1.9,1.7. (4)平均数,中位数反映酒店的经营业绩,A 酒店的经营状况较好.理由:平均数.中位数比较大.【点睛】此题考查折线统计图、扇形统计图、中位数、平均数、众数,解题的关键是熟练掌握基本知识.23.(1)1443y x =+,22y x =,()30A -,,()0,4B ;(2)存在,()12,0P ,()28,0P -;(3)存在,1Q ,2(Q -,3(12,0)Q ,4(15,0)Q【分析】(1)把()6,12C 代入直线表达式即求出1y 与2y 的表达式,从而可求得B 的坐标; (2)由三角形面积可得到AP 的长,要注意P 点可能在A 点的左侧或右侧;(3)分OC=OQ ,OC=CQ ,CQ=OQ 三种情况讨论即可.【详解】解:(1)把()6,12C 代入114y k x =+中,得11264k =+, 解,得143k =, 1443y x ∴=+. 把()6,12C 代入22y k x =,得2126k =,解,得22k =,22y x ∴=.把0y =代入1443y x =+,得3x =-, ()3,0A ∴-, 把0x =代入1443y x =+,得4y =, ()0,4B ∴.(2)存在. P 在x 轴上,30ACP S ∆=,点C 的纵坐标为12,12302ACP AP S ∆⋅∴==, 解得5AP =,点P 可以在A 点的左边,也可以在A 点的右边,()12,0P ∴,()28,0P -.(3)存在1(65,0)Q ,2(65,0)Q -,3(12,0)Q ,4(15,0)Q .若OC=OQ 时,2261265OC =+=,∴65OQ =,∴1(65,0)Q ,2(65,0)Q -,若OC=CQ 时,根据等腰三角形“三线合一”可知OQ=12,∴3(12,0)Q ,若OQ=CQ 时,()2222612OQ CQ OQ -+==,解得OQ=15,∴4(15,0)Q ,综上所述,1(65,0)Q ,2(65,0)Q -,3(12,0)Q ,4(15,0)Q .【点睛】本题考查了一次函数的解析式,等腰三角形的性质,注意分类讨论是解题的关键. 24.(1)如图所示,见解析;(2)见解析;(3)当AB =2AC 时,矩形BECD 是正方形,证明见解析.【分析】(1)根据角平分线及垂线的作图方法依次作图;(2)根据CD 是AB 的垂直平分线,推出∠CDB =90°,AC =BC ,利用CN 平分∠BCM 求出∠DCN =∠DCB +∠BCN =90°,由BE ⊥CN 求得∠BEC =90°,即可得到结论;(3)当AB =2AC 时,矩形BECD 是正方形,由AD =BD ,AB =2AC ,求得BD =22AC ,根据AD ⊥CD ,∠CDB =90°,推出BD =CD ,由此得到矩形BECD 是正方形.【详解】(1)解:如图所示,(2)证明:∵ CD 是AB 的垂直平分线,∴ CD ⊥BD ,AD =BD ,∴∠CDB=90°,AC=BC,∴∠DCB=12∠ACB,∵CN平分∠BCM,∴∠BCN=12∠BCM,∵∠ACB+∠BCM=180°,∴∠DCN=∠DCB+∠BCN=12(∠ACB+∠BCM)=90°,∵BE⊥CN,∴∠BEC=90°,∴四边形BECD是矩形;(3)当AB时,矩形BECD是正方形∵AD=BD,ABAC,∴BD=2AC,∵AD⊥CD,∠CDB=90°,∴BD=CD,∴矩形BECD是正方形.【点睛】此题考查作图—角平分线、垂线,矩形的判定定理,正方形的判定定理,正确作图及熟练掌握矩形和正方形的判定定理是解题的关键.25.(1)①-②;(2)①111015xy⎧=⎪⎪⎨⎪=⎪⎩;②3019xy=⎧⎨=⎩【分析】(1)①直接利用二次根式的混合运算法则化简,进而计算得出答案;②直接利用负整数指数幂的性质以及二次根式的混合运算法则分别化简得出答案;(2)①直接利用代入消元法解方程得出答案;②直接利用加减消元法解方程得出答案.【详解】解:(1)①原式62=⨯==-,故答案为:-②原式=4+(122⨯+-=4+2-故答案为:;(2)解①方程组:435(1)22(2)+=⎧⎨=-⎩x y y x , 把(2)代入(1)中得:4x +3(2x ﹣2)=5,解得:x =1110, 把x =1110代入(2)得y =15,所以方程组的解为:111015x y ⎧=⎪⎪⎨⎪=⎪⎩, 故答案为111015x y ⎧=⎪⎪⎨⎪=⎪⎩; 解②方程组:3414(1)233(2)-=⎧⎨-=⎩x y x y , (1)×2﹣(2)×3得:-8y +9y =28﹣9,解得y =19,把y =19代入(2)中得:2x ﹣57=3,解得x =30,所以方程组的解为:3019x y =⎧⎨=⎩. 故答案为:3019x y =⎧⎨=⎩. 【点睛】本题考查了二次根式的四则运算及二元一次方程组的解法,属于基础题,计算过程中细心即可.26.(1)见解析;(2)①90°,②2AE BE CM =+;(3)见解析【分析】(1)利用AAS 证明△ABD ≌△CAE ,得到BD=AE ,AD=CE ,即可得到结论成立;(2)①由等腰直角三角形的性质,得∠CDE=∠CED=45°,则∠ADC=135°,由全等三角形的性质,∠BEC=135°,即可求出∠AEB 的度数;②由全等三角形的性质和等腰直角三角形的性质,得到AD=BE ,CM=DM=EM ,即可得到AE=BE+2CM ;(3)延长ED 到点G ,使DG=ED ,连结GF ,GC ,证明△DBE ≌△DCG ,得到BE=CG ,根据勾股定理解答.【详解】解:(1)如图1,∵∠BAC =90°,BD ⊥直线m ,CE ⊥直线m ,∴∠ADB=∠AEC=90°,∴∠BAD+∠ABD=∠BAD+∠CAE=90°,∴∠ABD=∠CAE ,∵AB =AC ,∴△ABD ≌△CAE ,∴BD=AE ,AD=CE ,∵DE DA AE CE BD =+=+;(2)如图2,①∵△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,∴∠CDE=∠CED=45°,∴∠ADC=180°-45°=135°,∵△ACD ≌△BCE ,∴AD=BE ,∠ADC=∠BEC=135°,∴∠AEB=∠BEC -∠CED=135°-45°=90°;②∵△DCE 均为等腰直角三角形,CM 为△DCE 中DE 边上的高,∴CM=DM=EM ,∵AD=BE ,∴AE=AD+DM+EM=BE+2CM ;故答案为:①90°;②2AE BE CM =+;(3)延长ED 到点G ,使DG=ED ,连结GF ,GC ,如图,∵ED ⊥DF ,DG=ED ,∴EF=GF ,∵D 是BC 的中点,∴BD=CD ,在△BDE 和△CDG 中,ED GD BDE GDC BD CD =⎧⎪∠=∠⎨⎪=⎩,∴△DBE ≌△DCG (SAS ),∴BE=CG ,∵∠A=90°,∴∠B+∠ACB=90°,∵△DBE ≌△DCG ,EF=GF ,∴BE=CG ,∠B=∠GCD ,∴∠GCD+∠ACB=90°,即∠GCF=90°,∴Rt △CFG 中,CF 2+GC 2=GF 2,∴BE 2+CF 2=EF 2.【点睛】本题考查的是全等三角形的判定和性质、等腰直角三角形的性质,以及勾股定理的应用,掌握全等三角形的判定定理和性质定理是解题的关键.。
【浙教版】初二数学下期末模拟试卷附答案

一、选择题1.某市连续10天的最低气温统计如下(单位:℃):4,5,4,7,7,8,7,6,5,7,该市这10天的最低气温的中位数是( )A .6℃B .6.5℃C .7℃D .7.5℃ 2.将一组数据中的每一个数减去50后,所得新的一组数据的平均数是2,则原来那组数据的平均数是( )A .50B .52C .48D .2 3.若一组数据2468x ,,,,的方差比另一组数据5791113,,,,的方差大,则 x 的值可以为( )A .12B .10C .2D .0 4.某公司全体职工的月工资如下: 月工资(元)18000 12000 8000 6000 4000 2500 2000 1500 1200 人数 1(总经理) 2(副总经理) 3 4 10 20 22 12 6 该公司月工资数据的众数为2000,中位数为2250,平均数为3115,极差为16800,公司的普通员工最关注的数据是( )A .中位数和众数B .平均数和众数C .平均数和中位数D .平均数和极差 5.如图,一次函数y =2x 和y =ax +4的图象相交于点A (m ,3),则不等式0<ax +4<2x的解集是( )A .0<x <32B .32<x <6C .32<x <4D .0<x <3 6.若实数k 、b 满足0k b +=,且k b >,则一次函数y kx b =+的图象可能是( ) A . B . C . D . 7.在数轴上,点A 表示-2,点B 表示4.,P Q 为数轴上两点,点Р从点A 出发以每秒1个单位长度的速度向左运动,同时点Q 从点B 出发以每秒2个单位长度的速度向左运动,点Q到达原点О后,立即以原来的速度返回,当点Q回到点B时,点Р与点Q同时停止运动.设点Р运动的时间为x秒,点Р与点Q之间的距离为y个单位长度,则下列图像中表示y与x的函数关系的是()A.B.C.D.8.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角ABC,使∠BAC=90°,如果点B的横坐标为x,点C的纵坐标为y,那么表示y与x的函数关系的图像大致是()A.B.C .D .9.已知正方形ABCD 中,对角线4AC =,这个正方形的面积是( )A .8B .16C .82D .16210.下列计算正确的是( )A .222()-=-B .257a a a +=C .()5210a a =D .6525125⨯=11.在Rt △ABC 中,∠C =90°,点P 在边AB 上.BC =6, AC =8, ( ) A .若∠ACP=45°, 则CP=5 B .若∠ACP=∠B ,则CP=5C .若∠ACP=45°,则CP=245D .若∠ACP=∠B ,则CP=24512.如图,将一根长为20cm 的筷子置于底面直径为5cm ,高为12cm 的圆柱形水杯中,筷子露在杯子外面的长度为( )A .13cmB .8cmC .7cmD .15cm二、填空题13.已知一组样本数据1x ,2x ,3x ,⋅⋅⋅,n x 的平均数为2,方差为3,则数据12+5x ,22+5x ,325x +,⋅⋅⋅,2+5n x 的平均数为__________,方差为__________.14.组数据2,x ,1,3,5,4,若这组数据的中位数是3,则x 的值是______. 15.如图,直线y =kx +1经过点A (-2,0)交y 轴于点B ,以线段AB 为一边,向上作等腰Rt ABC ,将ABC 向右平移,当点C 落在直线y =kx +1上的点F 处时,则平移的距离是_________.16.如图,正方形ABCD ,CEFG 边在x 轴的正半轴上,顶点A ,E 在直线12y x =上,如果正方形ABCD 边长是1,那么点F 的坐标是______.17.如图,点O 是菱形ABCD 对角线的交点,DE //AC ,CE //BD ,连接OE ,设AC =12,BD =16,则OE 的长为_____.18.比较大小:310-__________5-.19.如图,将一张长方形纸片折叠成一个等腰梯形,则这个梯形的面积是_____cm 2.20.如图,ABC 中,17AB =,10BC =,21CA =,AM 平分BAC ∠,点D .E 分别为AM 、AB 上的动点,则BD DE +的最小值是__________.三、解答题21.为了强化暑期安全,在放暑假前夕,某校德育处利用班会课对全校师生进行了一次名为“暑期学生防溺水”的主题教育活动.活动结束后为了解全校各班学生对防溺水知识的掌握程度,德育处对他们进行了相关的知识测试.现从初一、初二两个年级各随机抽取了15名学生的测试成绩,得分用x 表示,共分成4组::6070A x ≤<,:7080B x ≤<,:8090C x ≤<,:90100D x ≤≤,对得分进行整理分析,给出了下面部分信息: 初一的测试成绩在C 组中的数据为:81,85,88.初二的测试成绩:76,83,71,100,81,100,82,88,95,90,100,86,89,93,86.成绩统计表如下:学部平均数中位数最高分众数初一88a9898初二8886100ba=(2)通过以上数据分析,你认为______(填“初一”或“初二”)学生对暑期防溺水知识的掌握更好?请写出一条理由:________.(3)若初一、初二共有800名学生,请估计此次测试成绩达到90分及以上的学生约有多少人?22.某班级从甲、乙两位同学中选派一人参加知识竞赛,老师对他们的五次模拟成绩(单位:分)进行了整理,并计算出甲成绩的平均数是80分,甲、乙成绩的方差分别是320,40,但绘制的统计图表尚不完整.甲、乙两人模拟成绩统计表第一次第二次第三次第四次第五次甲成绩901009050a乙成绩8070809080甲、乙两人模拟成绩折线图根据以上信息,请你解答下列问题:(1)a=(2)请完成图中表示甲成绩变化情况的折线;(3)求乙成绩的平均数;(4)从平均数和方差的角度分析,谁将被选中.23.如图,已知直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的函数表达式.(2)已知直线AB上一点C在第一象限,且点C的坐标为(a,2),求a的值及△BOC的面积.24.已知:如图,在梯形ABCD中,DF平分D∠,若以点D为圆心,DC长为半径作弧,交边AD于点E,联结EF、BE、EC.(1)求证:四边形EDCF是菱形;(2)若点F是BC的中点,请判断线段BE和EC的位置关系,并证明你的结论.25.先化简,再求值:(1+12x+)÷293xx--,其中x=3﹣2.26.在如图方格纸中,每个小方格的边长为1.请按要求解答下列问题:(1)以格点为顶点,画一个三角形ABC,使∠ACB=90°,三边中有两边边长都是无理数;(2)在图中建立正确的平面直角坐标系,并写出ABC各顶点的坐标;(3)作ABC关于y轴的轴对称图形A B C'''.(不要求写作法).【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由于10天天气,根据数据可以知道中位数是按从小到大排序,第5个与第6个数的平均数.【详解】解:10天的气温排序为:4,4,5,5,6,7,7,7,7,8,中位数为:6+72=6.5,故选B.【点睛】本题属于基础题,要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.2.B解析:B【详解】解:由题意知,新的一组数据的平均数=1n[(1x﹣50)+(2x﹣50+…+(n x﹣50)]=1 n [(12x x++…+nx)﹣50n]=2,∴1n (12x x++…+nx)﹣50=2,∴1n (12x x++…+nx)=52,即原来的一组数据的平均数为52.故选B.3.A解析:A【解析】∵5791113,,,,的平均数是9,方差是8,一组数据2,4,6,8,x的方差比数据5791113,,,,的方差大,∴这组数据可能是x (x<0),2,4,6,8或2,4,6,8,x (x>10),观察只有A 选项符合,故选A .4.A解析:A【分析】根据中位数、众数、平均数及极差的意义分别判断后即可得到正确的选项.【详解】∵数据的极差为16800,较大,∴平均数不能反映数据的集中趋势,∴普通员工最关注的数据是中位数及众数,故选A .【点睛】本题考查了统计量的选择的知识,解题的关键是了解有关统计量的意义,难度不大. 5.B解析:B【分析】先求解A 的坐标,再求解一次函数的解析式及B 的坐标,结合函数图像解0<ax +4<2x 即可得到答案.【详解】 解: 一次函数y =2x 和y =ax +4的图象相交于点A (m ,3),23,m ∴=3,2m ∴= 3,3,2A ⎛⎫∴ ⎪⎝⎭3+4=32a ∴, 2,3a ∴=- 24,3y x ∴=-+ 令0,y = 则240,3x -+= 6,x ∴=()6,0,B ∴不等式0<ax +4,4y ax ∴=+的图像上的点在x 轴的上方,所以结合图像可得:x <6,ax +4<2x ,2y x ∴=的图像在4y ax =+的图像的上方, 3,3,2A ⎛⎫ ⎪⎝⎭x >32, 所以:不等式0<ax +4<2x 的解集是32<x <6. 故选:.B【点睛】本题考查的是利用待定系数法求解一次函数的解析式,利用一次函数的图像解不等式组,掌握利用图像解决问题是解题的关键.6.A解析:A【分析】根据0k b +=,且k b >确定k ,b 的符号,从而求解.【详解】解:因为实数k 、b 满足k+b=0,且k >b ,所以k >0,b <0,所以它的图象经过一、三、四象限,故选:A .【点睛】本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y=kx+b 所在的位置与k 、b 的符号有直接的关系.k >0时,直线必经过一、三象限.k <0时,直线必经过二、四象限.b >0时,直线与y 轴正半轴相交.b=0时,直线过原点;b <0时,直线与y 轴负半轴相交.7.B解析:B【分析】数轴上两点之间的距离等于靠近右边点对应的数值减去左边点对应的数值,这是计算的基础;其次,要学会分段分析,分0≤<x≤2和2<x≤4求解,用x 表示点P 表示的数为-2-x,点Q 表示的数为4-2x 或2x-4,具体计算画图即可.【详解】∵A 表示-2,B 表示4,∴BA=4-(-2)=6,∴当x=0时,PQ=AB=6;∵OB=4个单位,点Q 的速度是2个单位/s ,∴Q 运动到原点的时间为4÷2=2(s ),∴当0<x≤2时,点P 表示的数为-2-x,点Q 表示的数为4-2x,∴PQ=4-2x-(-2-x )=6-x ,∴当x=2时,y=6-2=4,∴当2<x≤4时,点Q 从返回运动,点P 表示的数为-2-x,点Q 表示的数为2x-4,∴PQ=2x-4-(-2-x )=3x-2,∴当x=4时,y=12-2=10,只有B 图像与上面的分析一致,故选B.【点睛】本题考查了数轴上两点之间的距离,数轴上的点与表示的数的关系,路程,速度和时间的关系,根据时间的大小,正确分类表示动线段PQ 的长度是解题的关键.8.A解析:A【分析】先作出合适的辅助线,再证明△ADC 和△AOB 的关系,即可建立y 与x 的函数关系,从而确定函数图像.【详解】解:由题意可得:OB=x ,OA=1,∠AOB=90°,∠BAC=90°,AB=AC ,点C 的纵坐标是y , 作AD ∥x 轴,作CD ⊥AD 于点D ,如图所示:∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC ,在△OAB 和△DAC 中,AOB ADC OAB DAC AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△OAB ≌△DAC (AAS ),∴OB=CD ,∴CD=x ,∵点C 到x 轴的距离为y ,点D 到x 轴的距离等于点A 到x 的距离1,∴y=x+1(x >0).故选A .【点睛】本题考查动点问题的函数图象,明确题意、建立相应的函数关系式是解答本题的关键. 9.A解析:A【分析】根据勾股定理,可得正方形的边长,进而可得正方形的面积.【详解】∵正方形ABCD 中,对角线4AC =,∴AB 2+BC 2=AC 2,∴2AB 2=42,∴AB 2=8.故选:A .【点睛】本题主要考查的是正方形的性质,勾股定理,熟练掌握勾股定理是解题的关键. 10.C解析:C【分析】直接利用二次根式的性质化简以及结合合并同类项法则和幂的乘方运算法则化简求出答案;【详解】A 2= ,故此选项错误;B 、2525a a a a +=+,故此选项错误;C 、()5210a a =,故此选项正确;D 、5=60⨯,故此选项错误;故选:C .【点睛】本题主要考查了二次根式的性质以及结合合并同类项法则和幂的乘方运算法则,正确化简各式是解题的关键;11.D解析:D【分析】四个选项,A、C选项CP为顶角的平分线, B、D选项CP为底边上的高线,根据直角三角形斜边上的中线可得斜边上的中线等于5,利用等面积法可得底边上的高线等于245,易得三角形不是等腰三角形,所以它斜边上的高线、中线和直角的角平分线不是同一条,可得正确的为D选项.【详解】解:∵∠C=90°,点P在边AB上.BC=6,AC=8,∴22228610AB AC BC+=+=,当CP为AB的中线时,152CP AB==,若∠ACP=45°,如图1,则CP为直角∠ACB的平分线,∵BC≠AC,∴CP与中线、高线不重合,不等于5,故A选项错误;若∠ACP=∠B,如图2∵∠ACB=90°,∴∠A+∠B=90°,∴∠A+∠ACP =90°,∴∠APC=90°,即CP为AB的高线,∵BC≠AC,∴CP与中线不重合,不等于5,故B选项错误;当CP为AB的高线时,1122ABCS AC BC AB PC =⋅=⋅△,即11861022PC⨯⨯=⨯⋅,解得245PC=,故D选项正确,C选项错误.故选:D.【点睛】本题考查直角三角形斜边上的中线,等腰三角形三线合一,勾股定理等.能根据等面积法算出斜边上的高线的长度是解题关键.12.C【分析】根据勾股定理求出杯子内的筷子长度,即可得到答案.【详解】解:由题意可得:,则筷子露在杯子外面的筷子长度为:20﹣13=7(cm ).故选:C .【点睛】此题考查勾股定理的实际应用,熟记勾股定理的计算公式是解题的关键.二、填空题13.912【分析】利用平均数求法和方差的方法分别列式求得平均数和方差得出答案即可【详解】∵x1x2…xn 的平均数为2∴x1+x2+…+xn=2n ∴=2×2+5=9∵原平均数为2新数据的平均数变为9则原来解析:9 12【分析】利用平均数求法和方差的方法分别列式求得平均数和方差得出答案即可.【详解】∵x 1、x 2、…x n 的平均数为2,∴x 1+x 2+…+x n =2n , ∴12252525n x x x n++++⋯++ =2×2+5=9, ∵原平均数为2,新数据的平均数变为9,则原来的方差S 12=1n [(x 1-2)2+(x 2-2)2+…+(x n -2)2]=3, 现在的方差S 22=1n [(2x 1+5-9)2+(2x 2+5-9)2+…+(2x n +5-9)2] =1n[4(x 1-2)2+4(x 2-2)2+…+4(x n -2)2]=4×3=12. 故答案为:9,12.【点睛】此题考查平均数与方差的意义,掌握平均数与方差的计算方法是解题的关键.14.3【解析】【分析】利用中位数的定义只有x 和3的平均数可能为3从而得到x 的值【详解】解:除x 外5个数由小到大排列为12345因为原数据有6个数所以最中间的两个数的平均数为3所以只有x+3=2×3即x=解析:3【解析】利用中位数的定义,只有x和3的平均数可能为3,从而得到x的值.【详解】解:除x外5个数由小到大排列为1、2、3、4、5,因为原数据有6个数,所以最中间的两个数的平均数为3,所以只有x+3=2×3,即x=3.故答案为3.【点睛】本题考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.15.5【分析】先把A坐标代入y=kx+1求得k=则直线AB的解析式为y=x+1再确定B点坐标(01)作CH⊥x轴于H如图根据等腰直角三角形的性质得AC=AB∠BAC=90°接着证明△ABO≌△CAH得到解析:5【分析】先把A坐标代入y=kx+1求得k=12,则直线AB的解析式为y=12x+1,再确定B点坐标(0,1),作CH⊥x轴于H,如图,根据等腰直角三角形的性质得AC=AB,∠BAC=90°,接着证明△ABO≌△CAH,得到OB=AH=1,OA=CH=2,于是可确定C点坐标(-3,2),然后根据平移的性质得点F的纵坐标与C点的纵坐标相等,则可把y=2代入y=12x+1得12x+1=2,解得x=2,所以F点的坐标为(2,2),点F与点C的横坐标之差就是平移的距离.【详解】解:把A(-2,0)代入y=kx+1得-2k+1=0,解得k=12,则直线AB的解析式为y=12x+1,当x=0时,y=12x=1=1,则B点坐标为(0,1),如图,作CH⊥x轴于H∵△ABC为等腰直角三角形,∴AC=AB,∠BAC=90°,∴∠BAO+∠CAH=90°,而∠BAO+∠ABO=90°,∴∠ABO=∠CAH,在△ABO和△CAH中,AOB CHAABO CAHAB CA∠∠⎧⎪∠∠⎨⎪⎩===,∴△ABO≌△CAH,∴OB=AH=1,OA=CH=2,∴OH=OA+AH=3,∴C点坐标为(-3,2),∵△ABC向右平移,∴F的纵坐标与C点的纵坐标相等,把y=2代入y=12x+1得12x+1=2,解得x=2,∴F点的坐标为(2,2),∴点C向右平移了2-(-3)=5个单位.故答案为5.【点睛】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(-bk,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了等腰直角三角形的性质和平移的性质.16.【分析】令y=1可得x=2即点A(21)根据正方形的性质可得点E的横坐标待入解析式即可求得点E的纵坐标继而根据正方形的性质可得点F的坐标【详解】∵正方形边在轴的正半轴上∴AB=BC=CD=AD=1C解析:93, 22⎛⎫ ⎪⎝⎭【分析】令y=1可得x=2,即点A(2,1)根据正方形的性质可得点E的横坐标,待入解析式即可求得点E 的纵坐标,继而根据正方形的性质可得点F 的坐标.【详解】∵正方形ABCD ,CEFG 边在x 轴的正半轴上,∴AB =BC =CD =AD =1,CE =CG =EF =GF ,AB 、CD 、CE 、FG ⊥x 轴,∵顶点A ,E 在直线12y x =令y =1,则x =2∴点A (2,1)∴点E 的横坐标为3将x =3代入直线12y x =,得32y = ∴点E 、F 的纵坐标是32 即32CE FG EF === ∴点F 的横坐标为39322+= 即点F (92,32) 故答案为:(92,32) 【点睛】本题考查一次函数的应用,涉及到正方形的性质、点的坐标,解题的关键是熟练掌握正方形的性质求得点A 、E 的坐标.17.10【分析】由菱形的性质和勾股定理求出CD =20证出平行四边形OCED 为矩形得OE =CD =10即可【详解】解:∵DEACCEBD ∴四边形OCED 为平行四边形∵四边形ABCD 是菱形∴AC ⊥BDOA =O解析:10【分析】由菱形的性质和勾股定理求出CD =20,证出平行四边形OCED 为矩形,得OE =CD =10即可.【详解】解:∵DE //AC ,CE //BD ,∴四边形OCED 为平行四边形,∵四边形ABCD 是菱形,∴AC ⊥BD ,OA =OC =12AC =6,OB =OD =12BD =8,∴∠DOC =90︒,CD=10,∴平行四边形OCED 为矩形,∴OE =CD =10,故答案为:10.【点睛】本题考查了菱形的性质、矩形的判定与性质以及平行四边形判定与性质等知识;熟练掌握特殊四边形的判定与性质是解题的关键.18.>【分析】根式比较大小:通常先转化成分数指数幂寻找分母的最小公倍数作为新的指数从而进行解题【详解】解:分母2和3的最小公倍数为6;∴由于即故所以故答案为:>【点睛】本题考查了实数的比较大小解题的关键 解析:>【分析】根式比较大小:通常先转化成分数指数幂,寻找分母的最小公倍数作为新的指数.从而进行解题.【详解】 1310=125=,分母2和3的最小公倍数为6; ∴16623(10)10100===,16632(5)5125===,由于100125<,即66<,,所以>.故答案为:>.【点睛】本题考查了实数的比较大小,解题的关键是掌握比较大小的法则进行计算. 19.40【分析】先由矩形的性质得AD=BC=13cm ∠A=∠D=90°AD ∥BC 再由折叠的性质得AB=AB=4cmAE=AE=3cmCD=CD=4cmDF=DF=3cm 求出EF 的长然后由梯形面积公式即可解析:40【分析】先由矩形的性质得AD=BC=13cm ,∠A=∠D=90°,AD ∥BC ,再由折叠的性质得AB=A'B=4cm ,AE=A'E=3cm ,CD=CD'=4cm ,DF=D'F=3cm ,求出EF 的长,然后由梯形面积公式即可得出答案.【详解】解:如图所示:∵四边形ABCD 是矩形,∴AD=BC=13cm ,∠A=∠D=90°,AD ∥BC ,∴EF ∥BC ,AB ⊥AD ,由折叠的性质得:AB=A'B=4cm ,AE=A'E=3cm ,CD=CD'=4cm ,DF=D'F=3cm ,∴EF=AD-AE-DF=13-3-3=7(cm ),∴等腰梯形BCFE 的面积=12(EF+BC )×AB=12(7+13)×4=40(cm 2), 故答案为:40.【点睛】本题考查了翻折变换的性质、矩形的性质、等腰梯形的性质等知识;熟练掌握翻折变换和矩形的性质是解题的关键. 20.8【分析】过B 点作于点与交于点根据三角形两边之和小于第三边可知的最小值是线段的长根据勾股定理列出方程组即可求解【详解】过B 点作于点与交于点作点E 关于AM 的对称点G 连结GD 则ED=GD 当点BDG 三点在 解析:8【分析】过B 点作BF AC ⊥于点 F , BF 与AM 交于D 点,根据三角形两边之和小于第三边,可知 BD DE +的最小值是线段BF 的长,根据勾股定理列出方程组即可求解.【详解】过B 点作BF AC ⊥于点 F , BF 与AM 交于D 点,作点E 关于AM 的对称点G ,连结GD ,则ED=GD ,当点B 、D 、G 三点在一直线上时较短,BG BF >,当线段BG 与BF 重合时最短,BD+BE=BD+DG=BF ,设AF=x ,CF-21-x ,根据题意列方程组:()222222172110BF x BF x ⎧+=⎪⎨+-=⎪⎩, 解得:158x BF =⎧⎨=⎩,158x BF =⎧⎨=-⎩(负值舍去). 故BD +DE 的值是8,故答案为8,【点睛】本题考查轴对称的应用,角平分线的性质,点到直线的距离,勾股定理的应用,掌握轴对称的性质,角平分线的性质,点到直线的距离,勾股定理的应用,会利用轴对称找出最短路径,再利用勾股定理构造方程是解题关键.三、解答题21.(1)85,100;(2)初二,在平均数相同时,初二的众数(中位数)更大;(3)320人.【分析】(1)根据条形图排序中位数在C 组数据为81,85,88.根据中位数定义知中位数位于(15+1)÷2=8位置,第8个数据为85,将初二的测试成绩重复最多是3次的100即可; (2)由平均数相同,从众数和中位数看,初二众数100,中位数86都比初一大即可得出结论;(3)求出初一初二 90分以上占样本的百分比,此次测试成绩达到90分及以上的学生约:总数×样本中90分以上的百分比即可.【详解】解:(1)A 与B 组共有6个,D 组有6个为此中位数落在C 组,而C 组数据为81,85,88.根据中位数定义知中位数在(15+1)÷2=8位置上,第8个数据为85,中位数为85,85a ,观察初二的测试成绩,重复次数最多是3次的100, 为此初二的测试成绩的众数为100, 100b =;(2)初二,从众数和中位数看,初二众数100,中位数86都比初一大,在平均数相同时,初二的众数(中位数)更大;说明初二的大部分学生的测试成绩优于初一; (3)初一:90100D x ≤≤,由6人,初二90分以上有6人,初一初二 90分以上占样本的百分比为66100%=40%30+⨯, 此次测试成绩达到90分及以上的学生约:80040%320⨯=,答:此次测试成绩达到90分及以上的学生约有320人.【点睛】本题考查中位数,众数,平均数,利用中位数和众数进行决策,利用样本的百分含量估计总体的数量,掌握中位数,众数,平均数,利用中位数和众数进行决策,利用样本的百分含量估计总体的数量是解题关键.22.(1)70;(2)详见解析;(3)80;(4)乙将被选中,理由详见解析【分析】(1)根据平均数公式即可求得a 的值;(2)根据(1)计算的结果即可作出折线图;(3)利用平均数公式即可秋求解;(4)首先比较平均数,选择平均数大的,若相同,则比较方差,选择方差小,比较稳定的.【详解】解:(1)根据题意得:901009050805a ++++=,解得:a=70. (2)完成图中表示甲成绩变化情况的折线如图:(3)()乙1=8070809080=805x ++++, (4)甲乙成绩的平均数相同,乙的方差小于甲的方差,乙比甲稳定,所以乙将被选中.【点睛】本题考查了折线图的意义和平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数. 23.(1)y =2x ﹣2;(2)a =2,S △BOC =2.【分析】(1)设函数的关系式,把点A 、B 的坐标代入,即可求出待定系数,确定函数关系式, (2)把C (a ,2)代入y=2x-2,即可求得a 的值,然后根据三角形面积公式△BOC 的面积.【详解】解:(1)设一次函数的关系式为y=kx+b ,把A (1,0),B (0,-2)代入得,02kx b b +=⎧⎨=-⎩,解得,22k b =⎧⎨=-⎩∴直线AB 的表达式为y=2x-2;;(2)∵点C (a ,2)在直线y =2x ﹣2上,∴2=2a ﹣2,∴a =2,∴C (2,2),∴S △BOC =1222⨯⨯=2. 【点睛】 本题考查待定系数法求一次函数的关系式,一次函数图象上点的坐标特征以及三角形的面积,熟练掌握待定系数法是解题的关键.24.(1)见解析;(2)线段BE 和EC 的位置关系是垂直.证明见解析.【分析】(1)根据题意可得ED=DC ,根据SAS 证明△EDF ≌△CDF ,可得EF=CF ,根据梯形的性质和平行线的性质,由等角对等边可得CF=CD ,再根据菱形的判定即可求解;(2)先根据平行四边形的判定可证四边形BEDF 是平行四边形,再根据菱形的性质即可求解.【详解】(1)∵DF 平分EDC ∠,∴EDF CDF ∠=∠.由题意,ED DC =.在△EDF 与△CDF 中,ED DC EDF CDF DF DF =⎧⎪∠=∠⎨⎪=⎩.∴△EDF ≌△CDF .∴EF CF =.∵四边形ABCD 为梯形.∴AD ∥BC .∴EDF DFC ∠=∠.∴DFC CDF ∠=∠.∴CF CD =.∴ED CD CF EF ===.∴四边形ECDF 是菱形.(2)线段BE 和EC 的位置关系是垂直. 理由如下:∵点F是BC的中点,∴BF CF=.∴BF ED=.∵ED∥BF,∴四边形BEDF是平行四边形.∴BE∥DF.∵四边形EDCF是菱形,∴EC⊥DF.∴BE⊥EC.【点睛】考查了梯形的性质、全等三角形的判定与性质、平行四边形的判定和性质及菱形的判定和性质,熟悉相关定理进行正确推理是关键.25.12x+,33【分析】首先计算括号里面的加法,再算括号外的除法,化简后,再代入x的值可得答案.【详解】解:原式=(22xx+++12x+)•3(3)(3)xx x-+-,=32xx++•3(3)(3)xx x-+-,=12 x+,当x32322-+33【点睛】此题主要考查了分式的化简求值,关键是掌握计算顺序和计算法则,正确进行化简.26.(1)见解析;(2)见解析,A(0,0),B(﹣5,0),C(﹣4,2);(3)见解析【分析】(1)每个小正方形的边长为1,对角线就是无理数,根据要求画出图形(答案不唯一).(2)构建平面直角坐标系,写出坐标即可;(3)分别作出 A ,B ,C 的对应点 A ',B ',C'即可.【详解】解:(1)如图,△ABC即为所求(答案不唯一).(2)平面直角坐标系如图所示,A(0,0),B(﹣5,0),C(﹣4,2).(3)如图,△A′B′C′即为所求.【点睛】本题考查作图-轴对称变换,勾股定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.。
浙教版八年级下册数学期末模拟试卷(Word版,含答案)

浙教版八年级下册数学期末模拟试卷一、选择题(共10题;共30分)1.下面四个图形,是中心对称图形的是( )A. B. C. D.2.小明同学一周的体温监测结果如表:分析表中的数据,众数、中位数、平均数分别是( )A. 36.6,36.4,36.4B. 36.0,36.4,36.7C. 36.0,36.3,36.4D. 36.6,36.3,36.73.已知x >2,则下列二次根式定有意义的是( )A. √2−xB. √x −1C. √x −3D. √x −44.一元二次方程x (x ﹣2)=x ﹣2的根是( )A. x =2B. x 1=0,x 2=2C. x 1=2,x 2=1D. x =﹣15.一个n 边形的每个外角都是45°,则这个n 边形的内角和是( ) A. 1080° B. 540° C. 2700° D. 2160°6.如图,在□ABCD 中,对角线AC ,BD 相交于点O ,E 是BC 的中点,若OE =3,则AB 的长为( )A. 3B. 6C. 9D. 127.如图,点E 是矩形ABCD 的边CD 上一点,作AF ⊥BE 于F ,连接DF ,若AB =6,DF =BC ,则CE 的长度为( )A. 2B. 52C. 3D. 728.已知反比例函数y= k x ,点A (m ,y 1),B (m+2,y 2 )是函数图象上两点,且满足 1y 1=1y 2−12 ,则k 的值为( )A. 2B. 3C. 4D. 59.若关于x 的一元二次方程(k-1)x 2+2x-2=0有实数根,则k 的取值可能是( ) A. -2 B. 0 C. 12 D. 1 10.如图是清朝李演撰写的《仇章算术细草图说》中的“勾股圆方图”,四边形ABCD ,四边形EBGF ,四边形HNQD 均为正方形,BG ,NQ ,BC 是某个直角三角形的三边,其中BC 是斜边,若HM :EM=8:9,HD=2,则AB 的长为( )A. 114B. 2910 C. 3 D. 2√2 二、填空题(共6题;共24分)11.计算 √75 ﹣6 √13 的结果是________. 12.若数据2,3,5,a ,8的方差是0.7,则数据12,13,15,a+10,18的方差是________13.已知当x >0时,反比例函数 y =k+1x 的函数值y 随x 的增大而增大,则k 的取值范围是________.14.如图,在△ABC 中,AB =AC ,延长CB 至点E ,点D 在AC 边上,以CE ,CD 为边作 ▱ DCEF.若∠F =70°,则∠A 的度数为________度.15.已知a 是方程x 2+3x ﹣4=0的根,则代数式2a 2+6a+4的值是________.16.如图,已知矩形ABCD 的顶点A 、B 分别落在双曲线y = kx 上,顶点C 、D 分别落在y 轴、x 轴上,双曲线y = kx 经过AD 的中点E , 若OC =3,则k 的值为________.三、解答题(共9题;共66分)17.计算:(1)(−√6)2−√25+√(−3)2(2)√3(√2−√3)−√24−|√6−3|18.解方程:(1)x2-6x-9=0;(2)9(2x+3)2=16(1−3x)219.近年来,中国快递业发展迅速,2020年的政府工作报告提出促进网上购物和快递的健康发展,发展环保绿色快递,各方都在积极行动,努力形成合力.某社区为倡导“绿色快递需了解该社区家庭平均每周所收到快递的情况,随机调查了30户家庭平每周收到的快递件数,收集整理数据得到如下条形统计图:抽样调查该社区30户家庭平均每周收快递的数量统计图(1)请补全条形统计图;(2)这30户家庭平均每周收到快递件数的众数是________件,平均数是件________;(3)若该社区共有3000户家庭,请估计该社区平均每周共收到快递件数大约是多少?20.关于x的一元二次方程x2−2mx+(m−1)2=0有两个不相等的实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.21.如图,在平行四边形ABCD中,E,F是对角线BD上的点,且BE=DF,连接AE,CF .(1)求证△ADE≅△CBF;(2)连接AF,CE,若AB=AD,求证:四边形AFCE是菱形.的图象交于A(−2,1),B(1,n)两点.22.如图,一次函数y=kx+b的图象与反比例函数y=mx(1)求一次函数与反比例函数的表达式;(2)求△AOB的面积;的解集.(3)根据所给条件,请直接写出不等式kx+b<mx23.某商店准备进一批季节性小家电,单价为每个40元,经市场预测,销售定价为每个52元时,可售出180个,定价每增加1元,销售量净减少10个,定价每减少1元,销售量净增加10个,因受库存的影响,每批次进货个数不超过180个,商店准备获利2000元.(1)该商店考虑涨价还是降价?请说明理由.(2)应进货多少个?定价为每个多少元?24.如图①,四边形ABCD是正方形,E是对角线BD上一点,连接AE、CE(1)求证:AE=CE;(2)如图②,点P是边CD上的一点,且PE⊥BD于E,连接BP,点O为BP的中点,连接OE。
【浙教版】初二数学下期末模拟试卷(带答案)

一、选择题1.某校篮球队10名队员的年龄情况如下,则篮球队队员年龄的众数和中位数分别是( )年龄13141516人数2341A.15,15 B.14,15 C.14,14.5 D.15,14.52.数据5,2,3,0,5的众数是( )A.0 B.3 C.6 D.53.如图是根据我市某天七个整点时的气温绘制成的统计图,则下列说法正确的是()A.这组数据的众数是14B.这组数据的中位数是31C.这组数据的标准差是4D.这组是数据的极差是94.在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是()A.9.7m,9.9m B.9.7m,9.8m C.9.8m,9.7m D.9.8m,9.9m 5.甲、乙两汽车从A城出发前往B城,在整个行程中,汽车离开A城的距离y与时间t的对应关系如图所示.下列结论错误的是().A .A ,B 两城相距300km B .行程中甲、乙两车的速度比为3∶5C .乙车于7:20追上甲车D .9:00时,甲、乙两车相距60km 6.若点P 在一次函数31y x =-+的图象上,则点P 一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限7.关于x 的一次二项式ax+b 的值随x 的变化而变化,分析下表列举的数据,若ax+b =11,则x 的值是( ) x ﹣1 0 1 1.5 ax+b﹣3﹣112A .3B .﹣5C .6D .不存在8.对函数22y x =-+的描述错误是( ) A .y 随x 的增大而减小B .图象经过第一、三、四象限C .图象与x 轴的交点坐标为(1,0)D .图象与坐标轴交点的连线段长度等于59.已知正方形ABCD 中,对角线4AC =,这个正方形的面积是( ) A .8B .16C .82D .16210.已知方程x +3y =300,则此方程的正整数解的组数是( ) A .1B .2C .3D .411.平行四边形一边的长是12cm ,则这个平行四边形的两条对角线长可以是( ) A .4cm 或6cmB .6cm 或10cmC .12cm 或12cmD .12cm 或14cm12.如图,将一根长为20cm 的筷子置于底面直径为5cm ,高为12cm 的圆柱形水杯中,筷子露在杯子外面的长度为( )A .13cmB .8cmC .7cmD .15cm二、填空题13.一组数据1x ,2x ,3x ,4x ,5x 的平均数是5,方差是3,则143x -,243x -,343x -,443x -,543x -的平均数是________,方差是________.14.在新年晚会的投飞镖游戏环节中,7名同学的投掷成绩(单位:环)分别是:7,9,9,6,9,8,8,则这组数据的方差是______________________ .15.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,设行驶的时间为x (时),两车之间的距离为y (千米),图中的折线表示从两车出发至快车到达乙地过程中y 与x 之间的函数关系,已知两车相遇时快车比慢车多行驶40千米,快车到达乙地时,慢车还有______千米到达甲地.16.如图,正方形ABCD 的边长为4,A 为坐标原点,AB 和AD 分别在x 轴、y 轴上,点E 是BC 边的中点,过点A 的直线y kx =交线段DC 于点F ,连接EF ,若AF 平分DFE ∠,则k 的值为_________.17.如图,在平面直角坐标系xOy 中,点A 的坐标为(10,8),过点A 作AB x ⊥轴于点B ,AC y ⊥轴于点C ,点D 在AB 上.将△CAD 沿直线CD 翻折,点A 恰好落在x 轴上的点E 处,则点D 的坐标为_______.18.已知22x x --+3,则x-y=_____________.19.如图,长方形ABCD 中,4=AD ,3AB =,点P 是AB 上一点,1AP =,点E 是BC上一动点,连接PE ,将BPE 沿PE 折叠,使点B 落在B ',连接DB ',则PB DB ''+的最小值是________.20.已知O 为平面直角坐标系的坐标原点,等腰三角形AOB 中,A(2,4),点B 是x 轴上的点,则AOB 的面积为_____.三、解答题21.甲、乙两位同学5次数学选拔赛的成绩统计如表,他们5次考试的总成绩相同,请同学们完成下列问题:第1次 第2次 第3次 第4次 第5次 甲成绩 80 40 70 50 60 乙成绩705070a70= ,甲同学成绩的极差为 ;(2)小颖计算了甲同学的成绩平均数为60,方差是S 甲2=15[(80﹣60)2+(40﹣60)2+(70﹣60)2+(50﹣60)2+(60﹣60)2]=200.请你求出乙同学成绩的平均数和方差; (3)从平均数和方差的角度分析,甲、乙两位同学谁的成绩更稳定.22.为了倡导“节约用水,从我做起”的活动,某市政府决定对市直机关500户家庭的用水情况作一次调查,调查小组随机抽查了其中100户家庭一年的月平均用水量(单位:吨).并将调查结果制成了如图所示的条形统计图.(1)这100个样本数据的平均数是 、众数是 和中位数是 ;(2)根据样本数据,估计该市直机关500户家庭中月平均用水量不超过12吨的约有多少户?23.某水果超市营销员的个人收入与他每月的销售量成一次函数关系,其图象如下,请你根据图象提供的信息,解答以下问题:(1)求营销员的个人收入y (元)与营销员每月销售量x (千克)(0x ≥)之间的函数关系式;(2)营销员佳妮想得到收入1600元,她应销售水果多少千克?24.如图,在Rt ABC △中,90BAC ∠=︒,中线BD ,CE 相交于点O ,点F ,G 分别为OB ,OC 的中点.(1)求证://EF DG ,EF DG =;(2)若3AB =,4AC =,求四边形EFGD 的面积.25.计算: (1)27125032-+; (2)()3218722-+÷26.如图,小区有一块三角形空地ABC ,为响应沙区创文创卫,美化小区的号召,小区计划将这块三角形空地进行新的规划,过点D 作垂直于AB 的小路DE .经测量,15AB =米,13AC =米,12AD =米,5DC =米.(1)求BD 的长; (2)求小路DE 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】众数就是出现次数最多的数,而中位数就是大小处于中间位置的数,根据定义即可求解.【详解】在这10名队员的年龄数据里,15岁出现了4次,次数最多,因而众数是15;10名队员的年龄数据里,第5和第6个数据分别为14,15,其平均数141514.52+=,因而中位数是14.5.故选:D.【点睛】本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.2.D解析:D【分析】根据众数的概念直接求解,判定正确选项.【详解】数据5出现了2次,次数最多,所以众数是5.故选:D.【点睛】考查了众数的概念.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.3.D解析:D【解析】【分析】根据中位数,众数、极差、标准差的定义即可判断.【详解】解:七个整点时数据为:22,22,23,26,28,30,31所以中位数为26,众数为22,平均数为:22+22+23+26+28+3032167+=;极差是31-22=9,标准差是:故D 正确, 故选:D 【点睛】此题考查中位数,众数、极差、标准差的定义,解题关键在于看懂图中数据4.B解析:B 【分析】将这7个数据从小到大排序后处在第4位的数是中位数,利用算术平均数的计算公式进行计算即可. 【详解】把这7个数据从小到大排列处于第4位的数是9.7m ,因此中位数是9.7m , 平均数为:(9.59.69.79.79.810.110.2)79.8++++++÷=m , 故选B . 【点睛】考查中位数、算术平均数的计算方法,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数就是这组数据的中位数,平均数则是反映一组数据的集中水平.5.C解析:C 【分析】根据题意得A ,B 两城相距300km ,结合图表甲、乙两车消耗的总时间,可计算得甲、乙两车的速度,从而得到乙车追上甲车和在9:00时甲、乙两车的距离,从而得到答案. 【详解】根据题意得:A ,B 两城相距300km ,故选项A 结论正确;根据题意得:甲车从A 城出发前往B 城共消耗5小时,乙车从A 城出发前往B 城共消耗3小时; 甲车的速度300==60km/h 5乙车的速度300==100km/h 3∴行程中甲、乙两车的速度比为603=1005,故答案B 结论正确; 设乙车出发x 小时后,乙车追上甲车得:()601100x x += ∴32x =∵乙车于6:00出发∴乙车于7:30追上甲车,故选项C 结论错误; ∵9:00时,甲车还有一个小时的到B 城∴9:00时,甲、乙两车相距60160km ⨯=,故选项D 结论正确; 故选:C . 【点睛】本题考查了函数图像和一元一次方程的知识;解题的关键是熟练掌握函数图像的性质,从而完成求解.6.C解析:C 【分析】根据一次函数图象与系数的关系解答. 【详解】∵一次函数31y x =-+中,k=-3<0,b=1>0, ∴一次函数的图象经过第一、二、四象限, ∵点P 在一次函数31y x =-+的图象上, ∴点P 一定不在第三象限, 故选:C . 【点睛】此题考查一次函数图象与系数的关系: k>0,b>0时,直线经过第一、二、三象限; k>0,b<0时,直线经过第一、三、四象限; k<0;b>0时,直线经过第一、二、四象限; k<0,b<0时,直线经过第二、三、四象限.7.C解析:C 【分析】设y=ax+b ,把x=0,y=-1和x=1,y=1代入求出a 与b 的值,即可求出所求. 【详解】 解:设y =ax+b ,把x=0,y=-1和x=1,y=1代入得:11a b b +=⎧⎨=-⎩,解得:21a b =⎧⎨=-⎩,∴2x ﹣1=11, 解得:x =6. 故选:C . 【点睛】此题考查了解二元一次方程组以及代数式求值,一次函数的解析式,熟练掌握解二元一次方程组是解本题的关键.8.B解析:B 【分析】根据一次函数的图象与性质即可判断A 、B 两项,求出直线与x 轴的交点即可判断C 项,求出直线与y 轴的交点,再根据勾股定理即可求出图象与坐标轴交点的连线段长度,进而可判断D 项,于是可得答案. 【详解】解:A 、因为﹣2<0,所以y 随x 的增大而减小,故本选项说法正确,不符合题意; B 、函数22y x =-+的图象经过第一、二、四象限,故本选项说法错误,符合题意; C 、当y=0时,220x -+=,所以x=1,所以图象与x 轴的交点坐标为(1,0),故本选项说法正确,不符合题意;D 、图象与x 轴的交点坐标为(1,0),与y 轴的交点坐标为(0,2),所以图象与坐标轴交= 故选:B . 【点睛】本题考查了一次函数的图象与性质、一次函数与坐标轴的交点以及勾股定理等知识,属于基础题目,熟练掌握一次函数的基本知识是解题的关键.9.A解析:A 【分析】根据勾股定理,可得正方形的边长,进而可得正方形的面积. 【详解】∵正方形ABCD 中,对角线4AC =, ∴AB 2+BC 2=AC 2, ∴2AB 2=42, ∴AB 2=8. 故选:A . 【点睛】本题主要考查的是正方形的性质,勾股定理,熟练掌握勾股定理是解题的关键.10.C解析:C 【分析】为同类根式,即可得到此方程的正整数解的组数有三组. 【详解】 解:∵,x ,y 为正整数,∴====∴11327x y =⎧⎨=⎩,224812x y =⎧⎨=⎩,331473x y =⎧⎨=⎩,共有三组正整数解.故选:C.【点睛】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.11.D解析:D【分析】由四边形ABCD是平行四边形,可得OA=12AC,OB=12BD,然后利用三角形三边关系分析求解即可求得答案.【详解】解:∵四边形ABCD是平行四边形,∴OA=12AC,OB=12BD,A、∵AC=4cm,BD=6cm,∴OA=2cm,OB=3cm,∴OA+OB=5cm<12cm,不能组成三角形,故不符合;B、∵AC=6cm,BD=10cm,∴OA=3cm,OB=5cm,∴OA+OB=8cm<12cm,不能组成三角形,故不符合;C、∵AC=12cm,BD=12cm,∴OA=6cm,OB=6cm,∴OA+OB=12cm=12cm,不能组成三角形,故不符合;D、∵AC=12cm,BD=14cm,∴OA=6cm,OB=7cm,∴OA+OB=13cm>12cm,能组成三角形,故符合;故选D.【点睛】此题考查了平行四边形的性质以及三角形的三边关系.注意掌握平行四边形的对角线互相平分.12.C解析:C【分析】根据勾股定理求出杯子内的筷子长度,即可得到答案.【详解】解:由题意可得:,则筷子露在杯子外面的筷子长度为:20﹣13=7(cm ).故选:C .【点睛】此题考查勾股定理的实际应用,熟记勾股定理的计算公式是解题的关键.二、填空题13.1748【分析】根据平均数和方差公式的变形即可得到结果【详解】一组数据x1x2x3x4x5的平均数是5则4x1-34x2-34x3-34x4-34x5-3的平均数是4(x1+x2+x3+x4+x5)解析:17 48【分析】根据平均数和方差公式的变形即可得到结果.【详解】一组数据x 1,x 2,x 3,x 4,x 5的平均数是5,则4x 1-3,4x 2-3,4x 3-3,4x 4-3,4x 5-3的平均数是15[4(x 1+x 2+x 3+x 4+x 5)-15]=17, ∵新数据是原数据的4倍减3;∴方差变为原来数据的16倍,即48.故答案为:17;48.【点睛】本题考查方差的计算公式的运用:一般地设有n 个数据,x 1,x 2,…x n ,若每个数据都放大或缩小相同的倍数后再同加或同减去一个数,其平均数也有相对应的变化,方差则变为这个倍数的平方倍. 14.【解析】分析:先计算出这组数据的平均数再根据方差公式进行计算即可详解:故答案为:点睛:此题考查了方差用到的知识点是方差公式一般地设n 个数据x1x2…xn 的平均数为则方差它反映了一组数据的波动大小方差 解析:87【解析】分析:先计算出这组数据的平均数,再根据方差公式进行计算即可. 详解:1(7996988)87x =++++++=, 2222218[(78)3(98)(68)2(88)]77S =-+-+-+-=. 故答案为:87点睛:此题考查了方差,用到的知识点是方差公式,一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差2222121[()()...()]n S x x x x x x n=-+-++-,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 15.70【分析】利用待定系数法求出相遇前y 与x 的关系式确定出甲乙两地的距离进而求出两车的速度即可确定出所求【详解】解:设线段AB 的解析式为把与代入得:解得即令则即甲乙两地相距280千米设两车相遇时慢车行 解析:70【分析】利用待定系数法求出相遇前y 与x 的关系式,确定出甲乙两地的距离,进而求出两车的速度,即可确定出所求.【详解】解:设线段AB 的解析式为y kx b =+,把()1.5,70与()2,0代入得: 1.57020k b k b +=⎧⎨+=⎩, 解得140280k b =-⎧⎨=⎩, 即140280y x =-+,令0x =,则280y =,即甲乙两地相距280千米,设两车相遇时,慢车行驶了x 千米,则快车行驶了()40x +千米,根据题意得:40280x x ++=,解得:120x =,即两车相遇时,慢车行驶了120千米,则快车行驶了160千米,∴快车的速度为80千米/时,慢车速度为60千米/时,根据题意得:()28016080 1.5-÷=(小时),1.56090⨯=(千米),2801209070--=(千米),则快车到达乙地时,慢车还有70千米到达甲地.【点睛】本题考查一次函数的应用,解题的关键是能看懂函数图象,利用数形结合的思想将图象与已知条件联系在一起,灵活变化,找出所求问题需要的条件.16.1或3【分析】分两种情况:①当点F 在DC 之间时作出辅助线求出点F 的坐标即可求出k 的值;②当点F 与点C 重合时求出点F 的坐标即可求出k 的值【详解】解:①如图作AG ⊥EF 交EF 于点G 连接AE ∵AF 平分∠D解析:1或3.【分析】分两种情况:①当点F 在DC 之间时,作出辅助线,求出点F 的坐标即可求出k 的值;②当点F 与点C 重合时求出点F 的坐标即可求出k 的值.【详解】解:①如图,作AG ⊥EF 交EF 于点G ,连接AE ,∵AF 平分∠DFE ,∴DA=AG=4,在RT △ADF 和RT △AGF 中,AD AG AF AF=⎧⎨=⎩, ∴RT △ADF ≌RT △AGF (HL ),∴DF=FG ,∵点E 是BC 边的中点,∴BE=CE=2,∴22AB BE +5 ∴22AE AG -,∴在Rt △FCE 中,EF 2=FC 2+CE 2,即(DF+2)2=(4-DF )2+22,解得DF=43, ∴点F (43,4), 把点F 的坐标代入y=kx 得:4=43k ,解得k=3; ②当点F 与点C 重合时,∵四边形ABCD 是正方形,∴AF 平分∠DFE ,∴F (4,4), 把点F 的坐标代入y=kx 得:4=4k ,解得k=1.故答案为:1或3.【点睛】本题主要考查了一次函数综合题,涉及角平分线的性质,三角形全等的判定及性质,正方形的性质理,及勾股定解题的关键是分两种情况求出k .17.【分析】如详解中图先作出△CDE;再由折叠性质得到CE=CA=10DE=DA=8-m利用勾股定理计算出OE=6则EB=4在Rt△DBE中利用勾股定理得到(8-m)2=m2+42然后解方程求出m即可得解析:(10,3)【分析】如详解中图,先作出△CDE;再由折叠性质得到CE=CA=10,DE=DA=8-m,利用勾股定理计算出OE=6,则EB=4.在Rt△DBE中利用勾股定理得到(8-m)2=m2+42.然后解方程求出m即可得到点D的坐标.【详解】解:如图,作△CDE.设DB=m.由题意可得,OB=CA=10,OC=AB=8,∵△CED与△CAD关于直线CD对称,∴CE=CA=10,DE=DA=8-m,在Rt△COE中,22,108∴EB=10-6=4.在Rt△DBE中,∠DBE=90°,∴DE2=DB2+EB2.即(8-m)2=m2+42.解得m=3,∴点D的坐标是(10,3).故答案为(10,3).【点睛】本题考查了作图以及利用折叠的性质和勾股定理解直角三角形,掌握相关性质是解答此题的关键.18.﹣1【分析】根据二次根式有意义的条件可得关于x的不等式组进而可求出xy然后把xy的值代入所求式子计算即可【详解】解:由题意得:所以x=2当x=2时y=3所以x-y=2-3=﹣1故答案为:﹣1【点睛】解析:﹣1【分析】根据二次根式有意义的条件可得关于x的不等式组,进而可求出x、y,然后把x、y的值代入所求式子计算即可.【详解】解:由题意得:2020x x -≥⎧⎨-≥⎩,所以x=2, 当x=2时,y=3,所以x -y=2-3=﹣1.故答案为:﹣1.【点睛】本题考查了二次根式有意义的条件、代数式求值和一元一次不等式组,属于基础题目,熟练掌握基本知识是解题的关键. 19.【分析】根据题意可知最小时落在线段PD 上利用勾股定理求出PD 即可【详解】如图连接PD 根据题意可知当落在线段PD 上时最小且最小值为PD 长在中综上可知最小值为故答案为:【点睛】本题考查翻折的性质结合题意 解析:17 【分析】 根据题意可知PB DB ''+最小时,B '落在线段PD 上,利用勾股定理求出PD 即可.【详解】如图,连接PD ,根据题意可知当B '落在线段PD 上时,PB DB ''+最小,且最小值为PD 长.在Rt APD 中,2211617PD AP AD =+=+=.综上可知PB DB ''+最小值为17.17【点睛】本题考查翻折的性质,结合题意根据两点之间线段最短得出当B '落在线段PD 上时,PB DB ''+最小是解答本题的关键.20.8或4或10【分析】根据已知画出坐标系进而得出AE 的长以及BO 的长即可得出△AOB 的面积【详解】解:如图所示:过点A 作AE ⊥x 轴于点E ∵点O (00)A (24)∴AE =4OE =2OA =当OA =AB 时∴解析:8或510【分析】根据已知画出坐标系,进而得出AE 的长以及BO 的长,即可得出△AOB 的面积.【详解】解:如图所示:过点A 作AE ⊥x 轴于点E ,∵点O (0,0),A (2,4),∴AE =4,OE =2,OA 222425+=当OA =AB 时,∴AE 是△AOB 边OB 的垂直平分线,∴BE=OE=2,∴OB=4,∴B 的坐标为(4,0),此时S △AOB =12OB AE •=1442⨯⨯=8; 当OA =OB 时, ∴25OB OA ==,∴B 的坐标为(5±0),此时S △AOB =12OB AE •=12542⨯=45 当OB =AB 时, 设AB OB x ==,则2BE x =-,∴2224(2)x x =+-,解得:5x =,∴5OB =,∴B 的坐标为(5,0),此时S △AOB =12OB AE •=1542⨯⨯=10; ∴△AOB 的面积为:8或510.故答案为:8或510.【点睛】此题主要考查了三角形面积以及坐标与图形的性质,利用等腰三角形的性质求得OB的长是解题关键.三、解答题21.(1)40,40;(2)平均数为60,方差160;(3)见解析.【分析】(1)由“他们5次考试的总成绩相同”可求得a的值,利用极差的定义求解可得;(2)利用方差公式计算出乙的方差;(3)根据平均数与方差的意义进行判断,即可得出结论.【详解】解:(1)a=(80+40+70+50+60)﹣(70+50+70+70)=40,甲同学成绩的极差为:80﹣40=40,故答案为:40,40;(2)乙同学的成绩平均数为15×(70+50+70+40+70)=60,方差S乙2=15[(70﹣60)2+(50﹣60)2+(70﹣60)2+(40﹣60)2+(70﹣60)2]=160;(3)因为甲乙两位同学的平均数相同,S甲2>S乙2,所以乙同学的成绩更稳定.【点睛】本题主要考查平均数、方差,解题的关键是掌握方差、平均数、极差的计算方法和方差的意义.22.(1)11.6吨,11吨,11吨;(2)约有350户.【分析】(1)根据平均数的计算公式、众数与中位数的定义即可得;(2)先求出月平均用水量不超过12吨的户数占比,再乘以500即可得.【详解】(1)这100个样本数据的平均数是1020114012101320141011.6100⨯+⨯+⨯+⨯+⨯=(吨),因为11吨出现的次数最多,所以众数是11吨,由中位数的定义得:将这100个样本数据按从小到大进行排序后,第50个和第51个数据的平均数即为中位数,则中位数是1111112+=(吨),故答案为:11.6吨,11吨,11吨;(2)月平均用水量不超过12吨的户数占比为204010100%70% 100++⨯=,则70%500350⨯=(户),答:500户家庭中月平均用水量不超过12吨的约有350户.【点睛】本题考查了平均数的计算公式、众数与中位数的定义、用样本估计总体,熟练掌握数据分析的相关知识是解题关键.23.(1)0.2500y x =+;(2)营销员佳妮想得到收入1600元,她应销售5500斤水果.【分析】(1)设500y kx =+,用待定系数法求解即可;(2)令y=1600求解即可.【详解】解:(1)设500y kx =+,把x=4000,y=1300代入得40005001300k +=,解得 0.2k =,∴ y 与x 之间的函数关系式是0.2500y x =+.(2)当1600y =时,0.25001600x +=,解得 5500x =,答:营销员佳妮想得到收入1600元,她应销售5500斤水果.【点睛】本题考查了一次函数的应用,熟练掌握待定系数法是解答本题的关键.24.(1)见解析;(2)2【分析】(1)利用中位线性质可得12ED BC =,//ED BC .12FG BC =,//FG BC .可证四边形EFGD 是平行四边形.由平行四边形性质可得EF DG =,//EF DG .(2)由EFGD 和OG GC =,可推得EO OG CG ==.求13462ABC S =⨯⨯=△由点D 是AC 中点,1322DEC AEC S S ==△△.由三等分可求2231332DEG DEC S S ==⨯=△△.根据平行四边形性质可得四边形DEFG 的面积22DEG S ==△.【详解】(1)证明:∵点E ,D 分别是AB ,AC 的中点, ∴12ED BC =,//ED BC . ∵点F ,G 分别是OB ,OC 的中点, ∴12FG BC =,//FG BC . ∴FG ED =,//FG ED .∴四边形EFGD 是平行四边形.∴EF DG =,//EF DG ;(2)解:∵EFGD ,∴EO OG =.又∵OG GC =,∴EO OG CG ==. ∵3AB =,4AC =, ∵13462ABC S =⨯⨯=△, ∵点D 是AC 中点, ∴1322DEC AEC S S ==△△. ∴2231332DEG DEC S S ==⨯=△△. ∴四边形DEFG 的面积22DEG S ==△.【点睛】本题考查中位线性质,平行四边形的判定与性质,中线的性质,掌握中位线性质,平行四边形的判定与性质,中线的性质,注意中线与中位线的区别以及它们性质是解题关键. 25.(1)6;(2)7.【分析】(1)利用二次根式的除法运算计算后,再分别计算算术平方根,相加、减即可; (2)利用二次根式的除法运算计算后,再分别计算算术平方根,相加、减即可.【详解】解:(1)原式=3-2+5=6;(2==4-3+6=7.【点睛】0,0)a b =≥>是解题关键.26.(1)9米;(2)365米. 【分析】(1)先由13125AC AD CD ===,,,证明90,ADC ∠=︒ 可得90,ADB ∠=︒ 再由勾股定理可求BD 的长;(2)由,,DE AB AD BC ⊥⊥ 可得,AB DE AD BD =代入数据从而可得答案.【详解】解:(1)13125AC AD CD ===,,,22222212516913,AD CD AC ∴+=+===90ADC ∴∠=︒,90ADB ∴∠=︒,15AB =,9.BD ∴====BD ∴为9米.(2),,DE AB AD BC ⊥⊥11,22ABD S AB DE AD BD ∴== ,AB DE AD BD ∴= 15129DE ∴=⨯, 36.5DE ∴=DE ∴为365米. 【点睛】本题考查的是勾股定理与勾股定理的逆定理的应用,利用等面积法求解直角三角形斜边上的高,掌握以上知识是解题的关键.。
浙教版八年级下册数学期末练习卷(含答案)

浙教版八年级下册数学期末练习卷一、选择题(共10题;共30分)1.(3分)下列式子中,x可以取−1和2的是( )A.1x−2B.x−1C.x+2D.x2−2 2.(3分)既是轴对称图形又是中心对称图形的是( )A.B.C.D.3.(3分)如图,在▱ABCD中,∠A+∠C=80°,则∠D=( )A.140°B.40°C.70°D.80°4.(3分)将一元二次方程x2-x-1=0配成(x+p)2=q的形式,则p的值是( )A.-1B.1C.12D.−125.(3分)牛顿曾说过:“反证法是数学家最精良的武器之一”那么我们用反证法证明:“在一个三角形中,至少有一个内角小于或等于60°”时,第一步先假设( )A.三角形中有一个内角小于60°B.三角形中有一个内角大于60°C.三角形中没有一个内角小于60°D.三角形中每个内角都大于60°6.(3分)甲、乙、丙、丁四名射击运动员进行射击测试,每人10次射击成绩的平均数(单位:环).及方差s2(单位:环2)如下表所示,根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( )甲乙丙丁A.甲B.乙C.丙D.丁7.(3分)《算法统宗》是中国古代数学名著,作者是明代数学家程大位.书中记载了一道“荡秋千”问题:“平地秋千未起,踏板一尺离地;送行二步与人齐,五尺人高曾记;仕女佳人争蹴,终朝笑语欢嬉;良工高士素好奇,算出索长有几?”译文:“秋千静止的时候,踏板高地1尺,将它往前推送两步(两步=10尺)时,此时踏板升高到离地5尺,秋千的绳索始终拉得很直,试问秋千绳索有多长?”如图,若设秋千绳索长为x尺,则可列方程为( )A.x2+102=(x+1)2B.x2+102=x2C.(x−4)2+10=x2D.x2+102=(x−4)28.(3分)已知点A(x₁,y₁),B(x₂,y₂)在反比例函数y =6的图象上,且:x1<0<x2,则下列结论x一定正确的是( )A.y₁+y₂<0B.y₁+y₂>0C.y₁<y₂D.y₁>y₂9.(3分)如图所示,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函数y=k(k≠0)在第一象限x的图.象经过顶点A(m,m+3)和CD上的点E,且OB−CE=1,过点E的直线l交x轴于点F,交y轴于点G(0,−3),则OF的长为( )A.4.5B.5C.5.4D.610.(3分)如图,在正方形ABCD中,已知点P是线段AB上的一个动点(点P与点A不重合),作CQ⊥DP 交AD于点Q.现以PQ,CQ为邻边构造平行四边形PECQ,连接BE,则∠BEP+∠PQC的最小值为( )A.90°B.45°C.22.5°D.60°二、填空题(共6题;共18分)11.(3分)若二次根式x−4在实数范围内有意义,则x的取值范围是 .12.(3分)下面是某班23名女同学每分钟仰卧起坐的测试情况统计表:个数/个3538424548人数35744则该班女同学每分钟仰卧起坐个数的中位数是 .13.(3分)若n边形的每一个外角都是40°,则n的值为 14.(3分)已知关于x的一元二次方程a x2+bx+c=0满足a−b+c=0,则方程必有一个根为 .15.(3分)如图,用4张全等的直角三角形纸片拼成的图案,若直角三角形纸片的较长直角边为4,拼成的中间小正方形面积为1,则四边形ABCD的面积为 .16.(3分)如图,A,C是正比例函数y=x的图象与反比例函数y=4的图象的交点,过点A作AD⊥xx轴于点D,过点C作CB⊥x轴于点B,则四边形ABCD的周长为 .三、解答题(共8题;共72分)17.(8分)计算.(1)(4分)8+32−18(2)(4分)12+|3−2|+(12)−118.(8分)解方程:(1)(4分)x2+6x=−3;(2)(4分)x(x−7)=8(7−x)19.(6分)在“书香进校园”读书活动中,为了解学生课外读物的阅读情况,随机调查了部分学生的课外阅读量.绘制成不完整的扇形统计图(图1)和条形统计图(图2),其中条形统计图被墨汁污染了一部分.(1)(2分)条形统计图中被墨汁污染的人数为 人.“8本”所在扇形的圆心角度数为 °;(2)(2分)求被抽查到的学生课外阅读量的平均数和中位数;(3)(2分)随后又补查了m名学生,若已知他们在本学期阅读量都是10本,将这些数据和之前的数据合并后,发现阅读量的众数没改变,求m的最大值.20.(6分)如图,△ABC的中线BE、CF相交于点G,已知点P,Q分别是BG,C的中点.(1)(3分)求证:四边形EFPQ是平行四边形;(2)(3分)若FG⊥BF,请判断FP与GE的数量关系,并说明理由.21.(8分)如图,一次函数y=-x+4的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A(1,a)和B(b,1)两点,与x轴交于点C,与y轴交于点D.(1)(3分)求点B的坐标和反比例函数的表达式;(2)(2分)直接写出当x>0时,不等式-x+4-kx>0的解集;(3)(3分)若点P在y轴上,且△APB的面积为3,求点P的坐标.22.(10分)如图,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.(1)(3分)求证:△ABF≌△EDF;(2)(7分)如图,过点D作DG∥BE,交BC于点G,连接FG交BD于点O.①判断四边形BFDG的形状,并说明理由;②若AB=6,AD=8,求FG的长.23.(12分)根据以下素材,探索完成任务.如何改造硬纸板制作无盖纸盒?背景学校手工社团小组想把一张长50cm,宽40cm的矩形硬纸板,制作成一个高5cm,容积4680c m3的无盖长方体纸盒,且纸盒的长不小于32cm (纸板的厚度忽略不计).方案初始方案:将矩形硬纸板竖着裁剪xcm(阴影部分),剩余纸板的四周各剪去一个同样大小的正方形.改进方案:将矩形硬纸板竖着裁剪xcm ,横着裁剪ycm (阴影部分),剩余纸板的四周各剪去一个同样大小的正方形.问题解决任务1判断方案请通过计算判断初始方案是否可行?任务2改进方案改进方案中,当x =y 时,求x 的值.任务3探究方案当裁剪后能制作成符合要求的纸盒时,写出y关于x 的函数关系式.24.(14分) 阅读材料:已知a ,b 为非负实数,∵a +b−2ab =(a )2+(b )2−2a ⋅b =(a −b )2≥0,∴a +b ≥2ab ,当且仅当“a =b ”时,等号成立.这个结论就是著名的“均值不等式”,“均值不等式”在一类最值问题中有着广泛的应用.例:已知x >0,求代数式x +4x最小值.解:令a =x ,b =4x ,则由a +b ≥2ab ,得x +4x ≥2x ⋅4x =4.当且仅当x =4x,即x =2时,代数式取到最小值,最小值为4.根据以上材料解答下列问题:(1)(3分)已知x >0,则当x = 时,代数式x +3x到最小值,最小值为 ;(2)(3分)用篱笆围一个面积为100m 2的矩形花园,则当这个矩形花园的长、宽各为多少时,所用的篱笆最短?最短的篱笆的长度是多少米?(3)(5分)已知x >0,则自变量x 取何值时,代数式xx 2−2x +9取到最大值?最大值为多少?(4)(3分)若x 为任意实数,代数式xx 2+4x +5的值为m ,则m 范围为 .答案解析部分1.【答案】C2.【答案】B3.【答案】A4.【答案】D5.【答案】D6.【答案】D7.【答案】C8.【答案】C9.【答案】C10.【答案】B11.【答案】x≥412.【答案】4213.【答案】914.【答案】x=-115.【答案】2516.【答案】45+417.【答案】(1)解:原式=22+32-32=22(2)解:原式=23+2-3+2=4+318.【答案】(1)x1=−3+6,x2=−3−6(2)x1=7,x2=−819.【答案】(1)4;108(2)被调查同学阅读量的平均数为8.7本,中位数为9本(3)m的最大值为320.【答案】(1)证明:∵BE、CF是△ABC的中线,∴EF 是△ABC 的中位线,∴EF ∥BC ,EF =12BC ,∵P 、Q 分别是BG 、CG 的中点,∴ PQ 是△BCG 的中位线,∴PQ ∥BC ,PQ =12BC ,∴EF ∥OQ ,EF =PQ ,∴四边形EFPQ 是平行四边形;(2)解:FP =GE ,理由如下:∵四边形EFPQ 是平行四边形,∴GP =GE ,∵FG ⊥BF ∴∠BFG =90°,又∵P 是BG 中点,∴FP =GP =12BG .∴FP =GE .21.【答案】(1)解:把点B(b ,1)代人y=-x+4 ,得1=-b+4 ,解得b=3,∴B(3,1).∵反比例函数y=kx(k≠0)的图象经过点B ,∴ k=3×1=3,∴反比例函数的表达式为y=3x.(2)1<x<3(3)解:当x=0时,则y=-x+4=4,∴点D 的坐标为(0,4),设点P 的坐标为(0,y).∵ S △APB =S △BPD -S △APD =12PD·xp-12PD·x=3,∴12×(3-1)PD=3,∴PD=3,∴点P 的坐标为(0,1)或(0,7).22.【答案】(1)证明:∵四边形ABCD 是矩形∴∠A =∠C ,AB =CD又∵矩形ABCD 沿BD 折叠∴∠C =∠E ,CD =ED ∴∠A =∠E ,AB =DE在△ABF 和△EDF 中{∠A =∠E ∠AFB =∠EFD AB =DE∴△ABF≌△EDF (AAS )(2)解:①四边形BFDG 是菱形,理由如下:∵四边形ABCD 是矩形∴FD ∥BG又∵DG ∥BF ,FD ∥BG ∴四边形BFDG 是平行四边形又∵四边形BFDG 是平行四边形,DF =BF ∴四边形BFDG 是菱形②∵四边形ABCD 是矩形,AB =6,AD =8∴BD =AB 2+AD 2=62+82=10,OB =12BD =5设BF =DF =x ,则AF =AD−DF =8−x 在Rt △ABF 中,A B 2+A F 2=B F 2∴62+(8−x )2=x 2解得:x =254,即BF =254∴FO =BF 2−OB 2=(254)2−52=154∴FG =2FO =15223.【答案】解:任务1:根据题意得:(50−x−2×5)×(40−2×5)×5=4680,解得:x =8.8,此时长方体盒子的长为:50−8.8−2×5=31.2(cm)<32cm ∴初始方案是不可行;任务2:当x =y 时,根据题意得:(50−x−2×5)×(40−x−2×5)×5=4680, 解得:x 1=4或x 2=66,当x 1=4时,盒子的长为50−2×5−4=36>32,符合题意; 当x 2=66时,盒子的长为50−2×5−66=−26<32,不符合题意;∴x 的值为4;任务3:y =30−93640−x,24.【答案】(1)3;23(2)解:设这个矩形的长为x 米,篱笆周长为y 米,根据题意,用篱笆围一个面积为100m 2的矩形花园,则矩形的宽为100x米,∴y =2(x +100x )≥4x ⋅100x=40,当且仅当x =100x时,取等号,即当x =10时,函数有最小值,最小值为40,∴这个矩形花园的长、宽均为10米时,所用的篱笆最短,最短的篱笆的长度是40米(3)解:∵x >0,∴y =xx 2−2x +9=1x−2+9x =1x +9x −2,又∵x +9x ≥2x ⋅9x=6,当且仅当x =9x 时,即当x =3时,(x +9x)取最小值,最小值为6,∴此时y 有最大值,最大值为y =16−2=14,∴自变量x =3时,函数y =x x 2−2x +9取最大值,最大值为14.(4)−52−1≤m ≤52−1。
【浙教版】初二数学下期末模拟试题附答案

一、选择题1.近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某校举行了“建设宜居成都,关注环境保护”的知识竞赛,某班的学生成绩统计如下:成绩(分)60708090100人数4812115则该办学生成绩的众数和中位数分别是()A.70分,80分B.80分,80分C.90分,80分D.80分,90分2.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙丁平均数(环)9.149.159.149.15方差 6.6 6.8 6.7 6.6根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁3.甲、乙、丙、丁四位同学五次数学测验成绩统计如右表所示,如果从这四位同学中,选出一位同学参加数学竞赛,那么应选___________去.甲乙丙丁平均分85909085方差50425042A.甲B.乙C.丙D.丁4.下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择( )A.甲B.乙C.丙D.丁BC=,动点P沿折线BCD从点B开始运动到点5.如图,在矩形ABCD中,3AB=,4D,设点P运动的路程为x,ADP△的面积为y,那么y与x之间的函数关系的图象大致是( )A .B .C .D .6.若关于x 、y 的二元一次方程组42313312x y a x y a +=+⎧⎪⎨-=+⎪⎩的解为非负数,且a 使得一次函数(1)3y a x a =++-图象不过第四象限,那么所有符合条件的整数a 的个数是( )A .2B .3C .4D .57.对于函数31y x =-+,下列结论正确的是( ) A .y 随x 的增大而增大 B .它的图象经过第一、二、三象限 C .它的图象必经过点()0,1D .当1x >时,0y >8.对于实数a 、b ,我们定义max {a ,b }表示a 、b 两数中较大的数,如max {2,5}=5, max {3,3}=3.则以x 为自变量的函数y =max {-x +3,2x -1}的最小值为( ). A .-1B .3C .43D .539.在ABCD 中AB BC ≠.F 是BC 上一点,AE 平分FAD ∠,且E 是CD 的中点,则下列结论:①AB BF =;②AF CF CD =+;③AF CF AD =+;④AE EF ⊥,其中正确的是( )A .①②B .②④C .③④D .①②④10.下列各式不是最简二次根式的是( ) A .21a +B .21π+C .2b D .0.1y11.已知矩形ABCD ,下列条件中不能判定这个矩形是正方形的是( ) A .AC BD ⊥B .AC BD =C .AC 平分BAD ∠ D .ADB ABD ∠=∠12.如图,是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是12,小正方形的面积是2,直角三角形的短直角边为a ,较长的直角边为b ,那么(a+b)2的值为( )A .144B .22C .16D .13二、填空题13.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图6-Z -2所示,那么三人中成绩最稳定的是________.14.甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是2S 甲、2S 乙,且22S S >甲乙,则队员身高比较整齐的球队是_____.15.如图,在平面直角坐标系中,(0,2)A ,(4,2)B ,点P 是x 轴上任意一点,当PA PB +有最小值时,P 点的坐标为________.16.一次函数2y x b =+的图象过点()0,2,将函数2y x b =+的图象向下平移5个单位长度,所得图象的函数表达式为______.17.如图,在矩形ABCD 中,连接AC ,按以下步骤作图:分别以点A ,C 为圆心,以大于12AC 的长为半径作弧,两弧分别相交于点M ,N ,作直线MN 交BC 于点E ,连接AE .若AB =1,BC =2,则BE =_____.18.如图,EF 过ABCD 对角线的交点O ,交AD 于E ,交BC 于F ,若ABCD 的周长为19, 2.5OE =,则四边形EFCD 的周长为_____.19.计算()()2323-⨯+的结果是_____.20.如图,在Rt ABC 中,∠ACB =90°,AC =BC ,边AC 落在数轴上,点A 表示的数是1,点C 表示的数是3.以点A 为圆心、AB 长为半径画弧交数轴负半轴于点B 1,则点B 1所表示的数是_____.三、解答题21.某学校抽查了某班级某月5天的用电量,数据如下表(单位:度): 度数91011天数311(1)求这5天的用电量的平均数; (2)求这5天用电量的众数、中位数;(3)学校共有36个班级,若该月按22天计,试估计该校该月的总用电量.22.某校举办了一次知识竞赛,满分10分,学生得分均为整数.这次竞赛中甲、乙两组学生统计如下: 分数 3分 5分 6分 7分 8分 9分 10分 甲组(人) 151111乙组(人)0 2 1 2 4 1 0(1)计算甲、乙两组的平均分.(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名中游偏上!”观察上表可知,小明是那一组的学生?请说明理由.23.平面直角坐标系中,直线24y x =+与x 轴、y 轴分别交于点B 、A . (1)直接写出直线AB 关于x 轴对称的直线BC 的解析式______.(2)如图,直线BC 与直线y x =-交于E 点,点P 为y 轴上一点,PE PB =,求P 点坐标.(3)如图,点P 为y 轴上一点,OEB PEA ∠=∠,直线EP 与直线AB 交于点M ,求M 点的坐标.24.(1)如图,已知线段a ,c ,求作Rt ABC ,使得90C ∠=︒,BC a =,AB c =;(2)在Rt ABC 中,斜边AB 边上的中线长为5,7BC =,试比较AC ,BC 的大小. 25.计算: (1)27125032-+; (2)()3218722-+÷26.为迎接十四运,我区强力推进“三改一通一落地”,加速城市更新步伐.绿地广场有一块三角形空地将进行绿化,如图,在ABC 中,AB AC =,E 是AC 上的一点,5CE =,13BC =,12BE =.(1)判断ABE △的形状,并说明理由. (2)求线段AB 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】试题分析:众数是在一组数据中,出现次数最多的数据,这组数据中80出现12次,出现的次数最多,故这组数据的众数为80分;中位数是一组数据从小到大(或从大到小)排列后,最中间的那个数(最中间两个数的平均数).因此这组40个按大小排序的数据中,中位数是按从小到大排列后第20,21个数的平均数,而第20,21个数都在80分组,故这组数据的中位数为80分. 故选B .考点:1.众数;2.中位数.2.D解析:D 【解析】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加. 【详解】∵==x x x x >乙丁甲丙, ∴从乙和丁中选择一人参加比赛,∵22S S >乙丁,∴选择丁参赛, 故选D .【点睛】本题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.3.B解析:B 【分析】本题首先可通过四位同学的平均分比较,择高选取;继而根据方差的比较,择低选取求解本题. 【详解】通过四位同学平均分的比较,乙、丙同学平均数均为90,高于甲、丁同学,故排除甲、丁;乙、丙同学平均数相同,但乙同学方差更小,说明其发挥更为稳定,故选择乙同学. 故选:B . 【点睛】本题考查平均数以及方差,平均数表示其平均能力的高低;方差表示数据波动的大小,即稳定性高低,数值越小,稳定性越强,考查对应知识点时严格按照定义解题即可.4.C解析:C 【解析】 【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,选出方差最小,而且平均数较大的同学参加数学比赛. 【详解】 ∵3.6<7.4<8.1,∴甲和丙的最近几次数学考试成绩的方差最小,发挥稳定, ∵95>92,∴丙同学最近几次数学考试成绩的平均数高,∴要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择丙. 故选C . 【点睛】此题主要考查了方差的含义和求法,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.5.D解析:D 【分析】分别求出04x ≤≤、47x <<时函数表达式,即可求解. 【详解】解:由题意当04x ≤≤时,如题图,1134622y AD AB =⨯⨯=⨯⨯=, 当47x <<时,如下图,11(7)414222y PD AD x x =⨯⨯=⨯-⨯=-.故选:D . 【点睛】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.6.C解析:C 【分析】由题意,先求出二元一次方程组的解,结合解为非负数得到a 的取值范围,再根据一次函数的性质,即可得到答案. 【详解】解:42313312x y a x y a +=+⎧⎪⎨-=+⎪⎩ 解方程组,得:521322x a y a ⎧=+⎪⎪⎨⎪=-+⎪⎩,∵方程的解是非负数,∴50213022a a ⎧+≥⎪⎪⎨⎪-+≥⎪⎩,解得:532a -≤≤, ∵一次函数(1)3y a x a =++-图象不过第四象限,∴1030a a +>⎧⎨-≥⎩,∴13a -<≤,∴a 的取值范围是13a -<≤,∴所有符合条件的整数a 有:0,1,2,3,共4个; 故选:C . 【点睛】本题考查了一次函数的性质,解二元一次方程组,解不等式组,解题的关键是掌握运算法则,正确求出a 的取值范围.7.C解析:C 【分析】根据一次函数的图象与性质逐项判断即可得. 【详解】一次函数31y x =-+中的30k =-<, y ∴随x 的增大而减小,则选项A 错误;一次函数31y x =-+中的30,10k b =-<=>,∴它的图象经过第一、二、四象限,则选项B 错误;当0x =时,1y =,∴它的图象必经过点()0,1,则选项C 正确;当0y =时,310x -+=,解得13x =, y 随x 的增大而减小,∴当13x<时,0y>,则选项D错误;故选:C.【点睛】本题考查了一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题关键.8.D解析:D【分析】分x≤43和x>43两种情况进行讨论计算.【详解】解:当-x+3≥2x-1,∴x≤43,即-x≥-43时,y=-x+3,∴当-x=-43时,y的最小值=53,当-x+3<2x-1,∴x>43,即:x>43时,y=2x-1,∵x>43,∴2x>83,∴2x-1>53,∴y>53,∴y的最小值=53,故选:D.【点睛】此题是分段函数题,以及一次函数的性质,主要考查了新定义,解本题的关键是分段.9.C解析:C【分析】首先延长AD ,交FE 的延长线于点M ,易证得△DEM ≌△CEF ,即可得EM =EF ,又由AE 平分∠FAD ,即可判定△AEM 是等腰三角形,由三线合一的知识,可得AE ⊥EF ,进而可对各选项进行判断.【详解】解:延长AD ,交FE 的延长线于点M ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠M =∠EFC ,∵E 是CD 的中点,∴DE =CE ,在△DEM 和△CEF 中,M EFC DEM CEF DE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEM ≌△CEF (AAS ),∴EM =EF ,∵AE 平分∠FAD ,∴AM =AF ,AE ⊥EF .即AF =AD +DM =CF +AD ;故③,④正确,②错误.∵AF 不一定是∠BAD 的角平分线,∴AB 不一定等于BF ,故①错误.故选:C .【点睛】此题考查了平行四边形的性质、等腰三角形的判定与性质以及全等三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.10.D解析:D【分析】满足下列条件的二次根式,叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式,据此判断即可.【详解】A 21a +是最简二次根式,故本选项错误;B 21π+是最简二次根式,故本选项错误;C.24b是最简二次根式,故本选项错误;D、100.1yy=,不是最简二次根式.故选:D.【点睛】本题考查了最简二次根式的定义,掌握最简二次根式条件,是解题的关键.11.B解析:B【分析】根据矩形的性质及正方形的判定进行分析即可.【详解】解:四边形ABCD是矩形,AC BD⊥,∴矩形ABCD是正方形;四边形ABCD是矩形,//AD BC∴,DAC BCA∴∠=∠,AC平分BAD∠,BAC DAC∴∠=∠,BAC ACB∴∠=∠,∴AB BC=,∴矩形ABCD是正方形;ADB ABD∠=∠,∴AB AD=,∴四边形ABCD是矩形,∴矩形ABCD是正方形;故选:B.【点睛】本题考查矩形的判定,解题的关键是掌握正方形的判定方法.12.B解析:B【分析】先求出四个直角三角形的面积,再求出直角三角形的斜边的长即可求解.【详解】解:∵大正方形的面积12,小正方形的面积是2,∴四个直角三角形的面积和是12-2=10,即4×12ab =10 ∴2ab=10,∵直角三角形的短直角边为a ,较长的直角边为b∴a 2+b 2=12∴(a+b)2= a 2+b 2+2ab=22.故答案为B .【点睛】本题主要考查了勾股定理、三角形的面积、完全平方公式等知识点,完全平方公式和勾股定理的灵活变形是解答本题的关键. 二、填空题13.乙【分析】通过图示波动的幅度即可推出【详解】通过图示可看出一至三次甲乙丙中乙最稳定波动最小四至五次三人基本一样故选乙【点睛】考查数据统计的知识点解析:乙【分析】通过图示波动的幅度即可推出.【详解】通过图示可看出,一至三次甲乙丙中,乙最稳定,波动最小,四至五次三人基本一样,故选乙【点睛】考查数据统计的知识点14.乙【分析】根据方差的意义可作出判断方差是用来衡量一组数据波动大小的量方差越小表明这组数据分布比较集中各数据偏离平均数越小即波动越小数据越稳定【详解】解:∵∴队员身高比较整齐的球队是乙故答案为乙【点睛 解析:乙【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵22S S 甲乙,∴队员身高比较整齐的球队是乙,故答案为乙.【点睛】本题考查方差.解题关键在于知道方差是用来衡量一组数据波动大小的量15.(20)【分析】作点A 关于x 轴的对称点C 连接BC 交x 轴于一点即为点P 此时有最小值则C (0-2)求出直线BC 的解析式即可得到答案【详解】作点A 关于x 轴的对称点C 连接BC 交x 轴于一点即为点P 此时有最小值解析:(2,0)【分析】作点A 关于x 轴的对称点C ,连接BC 交x 轴于一点即为点P ,此时PA PB +有最小值,则C (0,-2),求出直线BC 的解析式,即可得到答案.【详解】作点A 关于x 轴的对称点C ,连接BC 交x 轴于一点即为点P ,此时PA PB +有最小值,则C (0,-2),设直线BC 的解析式为y=kx+b ,将点B 、C 的坐标代入,得422k b b +=⎧⎨=-⎩,解得12k b =⎧⎨=-⎩, ∴直线BC 的解析式为y=x-2,当y=0时,得x-2=0,解得x=2,∴P (2,0),故答案为:(2,0)..【点睛】此题考查最短路径问题,待定系数法求函数解析式,正确理解最短路径问题作点A 的对称点利用一次函数图象与x 轴的交点求出答案是解题的关键.16.【分析】根据待定系数法求得b 然后根据函数图象平移的法则上加下减就可以求出平移以后函数的解析式【详解】解:∵一次函数y=2x+b 的图象过点(02)∴b=2∴一次函数为y=2x+2将函数y=2x+2的图解析:23y x =-【分析】根据待定系数法求得b ,然后根据函数图象平移的法则“上加下减”,就可以求出平移以后函数的解析式.【详解】解:∵一次函数y=2x+b 的图象过点(0,2),∴b=2,∴一次函数为y=2x+2,将函数y=2x+2的图象向下平移5个单位长度,所得函数的解析式为y=2x+2-5,即y=2x-3.故答案为:y=2x-3.【点睛】本题考查了一次函数图象与几何变换,利用函数图象平移的规律是解题关键,注意求直线平移后的解析式时要注意平移时k的值不变.17.【分析】根据作图过程可得MN是AC的垂直平分线可得EA=EC再根据矩形性质和勾股定理即可得到结论【详解】解:在矩形ABCD中∠B=90°根据作图过程可知:MN是AC的垂直平分线∴EA=EC∴EA=C解析:3 4【分析】根据作图过程可得MN是AC的垂直平分线,可得EA=EC,再根据矩形性质和勾股定理即可得到结论.【详解】解:在矩形ABCD中,∠B=90°,根据作图过程可知:MN是AC的垂直平分线,∴EA=EC,∴EA=CE=BC-BE=2-BE,在Rt△ABE中,根据勾股定理,得222EA AB BE=+,∴22221BE BE-=+(),解得BE=34,故答案为34.【点睛】本题考查了作图-基本作图,线段垂直平分线的性质,矩形的性质,解决本题的关键是掌握基本作图方法.18.145【分析】根据平行四边形的性质易证三角形全等进而易得AE=CF故四边形的周长=AD+CD+EF根据已知求解即可【详解】解:在平行四边形ABCD中AD∥BCAC与BD互相平分∴AO=OC∠DAC=解析:14.5【分析】根据平行四边形的性质易证三角形全等,进而易得AE=CF,故四边形EFCD的周长=AD+CD+EF,根据已知求解即可.【详解】解:在平行四边形ABCD中,AD∥BC,AC与BD互相平分∴AO=OC,∠DAC=∠ACB,∠AOE=∠COF∴△AOE≌△COF∴AE=CF,OF=OE=2.5∴四边形EFCD的周长=CF+DE+CD+EF =AE+DE+CD+EF=AD+CD+EF=192.5 2+×2=14.5.故答案为:14.5.【点睛】本题考查了平行四边形的性质以及三角形全等的证明,将所求线段转化为已知线段是解题的关键.19.1【分析】根据二次根式混合运算的法则进行计算即可【详解】解:原式=故答案为:1【点睛】本题考查二次根式的混合运算熟练掌握运算法则是解题的关键解析:1【分析】根据二次根式混合运算的法则进行计算即可.【详解】解:原式=222431 -=-=,故答案为:1.【点睛】本题考查二次根式的混合运算,熟练掌握运算法则是解题的关键.20.1﹣2【分析】先求出AC的长度再根据勾股定理求出AB的长度然后根据数轴的特点从点A向左AB个单位即可得到点B1【详解】解:根据题意AC=3﹣1=2∵∠ACB=90°AC=BC∴AB=∴点B1表示的数解析:1﹣【分析】先求出AC的长度,再根据勾股定理求出AB的长度,然后根据数轴的特点,从点A向左AB个单位即可得到点B1.【详解】解:根据题意,AC=3﹣1=2,∵∠ACB=90°,AC=BC,∴AB==∴点B1表示的数是1﹣故答案为:1﹣.【点睛】本题考查勾股定理、实数与数轴,解题的关键是利用勾股定理求出AB.三、解答题21.(1)9.6度;(2)9度;9度;(3)7603.2度.【分析】(1)用加权平均数的计算方法计算平均用电量即可;(2)分别利用众数、中位数及极差的定义求解即可;(3)用班级数乘以日平均用电量乘以天数即可求得总用电量.【详解】(1)平均用电量为:(9×3+10×1+11×1)÷5=9.6度;(2)9度出现了3次,最多,故众数为9度;第3天的用电量是9度,故中位数为9度;(3)总用电量为22×9.6×36=7603.2度.22.(1)甲组平均分为6.7分,乙组平均分为7.1分;(2)甲组,理由见解析【分析】(1)根据平均数的计算公式即可;(2)根据中位数的意义即可判断.【详解】解:(1)31506571819110167 6.715111110x ⨯+⨯+⨯+⨯+⨯+⨯+⨯===+++++甲(分) 305261728491100717.12124110x ⨯+⨯+⨯+⨯+⨯+⨯+⨯===++++乙(分) (2)∵甲的中位数是6,乙的中位数是8,小明7分中等偏上,∴是甲组的.【点睛】 本题考查了加权平均数以及中位数的意义,解题的关键熟记平均数的计算公式以及中位数的意义.23.(1)24y x =--;(2)70,2⎛⎫ ⎪⎝⎭;(3)420,77⎛⎫-⎪⎝⎭或428,55⎛⎫ ⎪⎝⎭. 【分析】(1)由轴对称的性质得出点C 的坐标,则可得出答案; (2)求出点E 的坐标为()44-,,设,4OP a AP a ==-,由勾股定理得出()224164a a +=+-,解得72a =,则可得答案; (3)分两种情况:点点P 在点A 的下方或点P 在点A 的上方,求出直线EP 的解析式,解方程组可求出答案.【详解】解:(1)直线24y x =+与x 轴、y 轴分别交于点B 、A∴()0,4A ,()2,0B -,直线AB 与直线BC 关于x 轴对称,∴C 点坐标为()0,4-,设直线BC 的解析式为y kx b =+,∴402b k b -=⎧⎨=-+⎩, 解得:24k b =-⎧⎨=-⎩ ∴直线BC 的解析式为:24y x =--.(2)()44E -,AE AO ∴⊥设,4OP a AP a ==-在Rt BOP △和Rt EAP 中,224BP a =+,()22164PE a =+- PE PB =()224164a a ∴+=+- 解得:72a = 702P ⎛⎫∴ ⎪⎝⎭, (3)①如图,当点P 在点A 的下方,,45OEB PEA AEO ∠=∠∠=︒45PEB ∴∠=︒过点B 作BN BE ⊥交直线EP 于点N,过点N 作NQ OB ⊥于点Q ,过点E 作EH OB ⊥于点HEBN ∴△为等腰直角三角形EB BN ∴=90BEH EBH ∠+∠=︒,90EBH NBQ ∠+∠=︒BEH NBQ ∴∠=∠又90EHB BQN ∠=∠=︒()EHB BQN AAS ∴≅△△2NQ BH ∴==,4BQ EH ==,()2,2N ∴设直线EN 的解析式为y kx b =+由4422k b k b -+=⎧⎨+=⎩解得:1383k b ⎧=-⎪⎪⎨⎪=⎪⎩∴直线EN 的解析式为1833y x =-+,83OP = 84433PA ∴=-= 由183324y x y x ⎧=-+⎪⎨⎪=+⎩ 解得:47207x y ⎧=-⎪⎪⎨⎪=⎪⎩即420,77M ⎛⎫- ⎪⎝⎭②P 点在A 点的上方,由①知,43PA = 416433OP OA PA ∴=+=+= 设直线EP 的解析式为163y mx =+()44E -,16443m ∴-+= 解得:13m = ∴直线EP 的解析式为11633y x =+ 由1163324y x y x ⎧=+⎪⎨⎪=+⎩ 解得:45285x y ⎧=⎪⎪⎨⎪=⎪⎩ 428,55M ⎛⎫∴ ⎪⎝⎭综上所述:M 坐标为420,77⎛⎫-⎪⎝⎭或428,55⎛⎫ ⎪⎝⎭. 【点睛】本题考查了一次函数的综合应用,考查了轴对称的性质、函数图象与坐标的交点、待定系数法、全等三角形的判定及性质、等腰三角形的判定及性质、勾股定理等知识,熟练掌握待定系数法是解题的关键.24.(1)见解析;(2)BC <AC【分析】(1)画射线BD,以B为端点取BC=a,过点C作BD的垂线,再以点B为圆心,c为半径画弧,与该垂线交于点A即可;(2)根据直角三角形的性质得到AB,利用勾股定理求出AC,再比较大小即可.【详解】解:(1)如图,△ABC即为所作;(2)如图,直角三角形ABC中,∠C=90°,D为AB中点,则CD=5,BC=7,∴AB=10,∴AC=22-=51,107∵7=49<51,∴BC<AC.【点睛】本题考查了尺规作图,直角三角形的性质,勾股定理,实数的大小比较,解题的关键是依据题意作出图形.25.(1)6;(2)7.【分析】(1)利用二次根式的除法运算计算后,再分别计算算术平方根,相加、减即可;(2)利用二次根式的除法运算计算后,再分别计算算术平方根,相加、减即可.【详解】解:(1)原式9425=3-2+5=6;(2==4-3+6=7.【点睛】0,0)a b =≥>是解题关键.26.(1)ABE △是直角三角形;理由见解析;(2)线段AB 的长为16.9.【分析】(1)根据勾股定理的逆定理证明即可;(2)设AB AC x ==,则5AE x =-,由勾股定理列得222BE AE AB +=,代入数值得22212(5)x x +-=,计算即可.【详解】解:(1)ABE △是直角三角形.理由:∵22222213169,12144,525BC BE CE ======,∴222169BE CE BC +==,∴90BEC ∠=︒,∴BE AC ⊥,∴ABE △是直角三角形.(2)设AB AC x ==,则5AE x =-,由(1)可知ABE △是直角三角形,∴222BE AE AB +=,∴22212(5)x x +-=,解得16.9x =,∴线段AB 的长为16.9.【点睛】此题考查勾股定理及逆定理,熟练掌握勾股定理及逆定理的运算及应用是解题的关键.。
八年级下学期期末数学试卷含参考答案与试题解析(浙教版)

八年级下学期期末数学试卷一、仔细选一选(本题有10 个小题,每小题3 分,共30 分)1.已知二次根式,则a 的取值范围是()A. B. C. D.2.下列图形是中心对称图形的个数有()A.1 个B.2 个C.3 个D.4 个3.为了比较甲、乙两块地的小麦哪块长得更整齐,应选择的统计量为()A.平均数B.中位数C.众数D.方差4.矩形具有而菱形不具有的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.对角线平分一组对角5.用下列哪种方法解方程3x2=16x 最合适()A.开平方法B.配方法C.因式分解法D.公式法6.如图,等腰三角形ABC 的顶点A 在原点,顶点B 在x 轴的正半轴上,顶点C 在函数y=(x>0)的图象上运动,且AC=BC,则△ABC 的面积大小变化情况是()A.一直不变B.先增大后减小C.先减小后增大D.先增大后不变7.已知(﹣3,y1),(﹣15,y2),在反比例函数y=﹣上,则y1,y2,y3 的大小关系为()A.y1>y2>y3 B.y1>y3>y2 C.y3>y2>y1 D.y3>y1>y28.用反证法证明命题“钝角三角形中必有一个内角小于45°”时,首先应该假设这个三角形中()A.有一个内角小于45°B.每一个内角都小于45°C.有一个内角大于等于45°D.每一个内角都大于等于45°9.直线与x 轴,y 轴分别交于A,B 两点,把△AOB 绕着A 点旋转180°得到△AO′B′,则点B′的坐标为()A.(4,2)B.(4,﹣2)C.(,2)D.(,﹣2)10.如图,以▱ABCD 的四条边为边,分别向外作正方形,连结EF,GH,IJ,KL.如果▱ABCD 的面积为8,则图中阴影部分四个三角形的面积和为()A.8 B.12 C.16 D.20二、认真填一填(本题有6 小题,每小题4 分,共24 分)11.在、、、、中,是最简二次根式的是.12.已知多边形的内角和等于外角和的三倍,则内角和为;边数为.13.已知=0 是关于x 的一元二次方程,则k 为.14.如图,四边形ABCD 是菱形,对角线AC=8,BD=6,E,F 分别是AB,AD 的中点,连接EO 并延长交CD 于G 点,连接FO 并延长交CB 于H 点,△OEF 与△OGH 组成的图形称为蝶形,则蝶形的周长为.15.如图,将边长为6 的正方形ABCD 沿其对角线AC 剪开,再把△ABC 沿着AD 方向平移,得到△A′B′C′,当两个三角形重叠部分为菱形时,则AA′为.16.如图,一个正方形内两个相邻正方形的面积分别为 4 和 2,它们都有两个顶点在大正方形的边 上且组成的图形为轴对称图形,则图中阴影部分的面积为 .三、全面答一答(本题有 7 个小题,共 66 分.要求写出文字说明、证明过程或推演步骤) 17.计算: (1).18.如图,AC 是▱ABCD 的一条对角线,BE ⊥AC ,DF ⊥AC ,垂足分别为 E ,F . (1)求证:△ADF ≌△CBE ; 求证:四边形 DFBE 是平行四边形.19.如图,将表面积为 550cm 2 的包装盒剪开,铺平,纸样如图所示,包装盒的高为 15cm ,请求出 包装盒底面的长与宽.(3)20.某初中要调查学校学生(总数1000 人)双休日课外阅读情况,随机调查了一部分学生,调查得到的数据分别制成频数直方图(如图1)和扇形统计图(如图2).(1)请补全上述统计图(直接填在图中);试确定这个样本的中位数和众数;(3)请估计该学校1000 名学生双休日课外阅读时间不少于4 小时的人数.21.已知方程:x2﹣2x﹣8=0,解决一下问题:(1)不解方程判断此方程的根的情况;请按要求分别解这个方程:①配方法;②因式分解法.(3)这些方法都是将解转化为解;(4)尝试解方程:x3+2x2+x=0.22.在矩形ABCD 中,AB=3,BC=4,E,F 是对角线ACS 行的两个动点,分别从A,C 同时出发相向而行,速度均为1cm/s,运动时间为t 秒,当其中一个动点到达后就停止运动.(1)若G,H 分别是AB,DC 中点,求证:四边形EGFH 始终是平行四边形.在(1)条件下,当t 为何值时,四边形EGFH 为矩形.(3)若G,H 分别是折线A﹣B﹣C,C﹣D﹣A 上的动点,与E,F 相同的速度同时出发,当t 为何值时,四边形EGFH 为菱形.23.如图1,正方形ABCD 的边长为4,以AB 所在的直线为x 轴,以AD 所在的直线为y 轴建立平面直角坐标系.反比例函数的图象与CD 交于E 点,与CB 交于F 点.(1)求证:AE=AF;若△AEF 的面积为6,求反比例函数的解析式;(3)在的条件下,将△AEF 以每秒1 个单位的速度沿x 轴的正方向平移,如图2,设它与正方形ABCD 的重叠部分面积为S,请求出S 与运动时间t(秒)的函数关系式(0<t<4).八年级下学期期末数学试卷参考答案与试题解析一、仔细选一选(本题有10 个小题,每小题3 分,共30 分)1.已知二次根式,则a 的取值范围是()A. B. C. D.【考点】二次根式有意义的条件.【分析】直接利用二次根式的性质得出a 的取值范围.【解答】解:∵二次根式有意义,∴2a﹣1≥0,解得:a≥,则a 的取值范围是:a≥.故选:D.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的性质是解题关键.2.下列图形是中心对称图形的个数有()A.1 个B.2 个C.3 个D.4 个【考点】中心对称图形.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形进行分析.【解答】解:第一、四个图形是中心对称图形,第二、三个图形不是中心对称图形,故选:B.【点评】此题主要考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180 度后与原图重合.3.为了比较甲、乙两块地的小麦哪块长得更整齐,应选择的统计量为()A.平均数B.中位数C.众数D.方差【考点】统计量的选择.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:为了比较甲、乙两块地的小麦哪块长得更整齐,应选择的统计量为方差.故选:D.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4.矩形具有而菱形不具有的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.对角线平分一组对角【考点】矩形的性质;菱形的性质.【专题】推理填空题.【分析】根据矩形的对角线互相平分、相等和菱形的对角线互相平分、垂直、对角线平分一组对角,即可推出答案.【解答】解:A、对角线互相平分是菱形矩形都具有的性质,故A 选项错误;B、对角线互相垂直是菱形具有而矩形不具有的性质,故B 选项错误;C、矩形的对角线相等,菱形的对角线不相等,故C 选项正确;D、对角线平分一组对角是菱形具有而矩形不具有的性质,故D 选项错误;故选:C.【点评】本题主要考查对矩形的性质,菱形的性质等知识点的理解和掌握,能熟练地根据矩形和菱形的性质进行判断是解此题的关键.5.用下列哪种方法解方程3x2=16x 最合适()A.开平方法B.配方法C.因式分解法D.公式法【考点】解一元二次方程-因式分解法.【专题】计算题;一次方程(组)及应用.【分析】观察方程特点确定出适当的解法即可.【解答】解:方程3x2=16x 最合适因式分解法.故选C【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解法是解本题的关键.6.如图,等腰三角形ABC 的顶点A 在原点,顶点B 在x 轴的正半轴上,顶点C 在函数y=(x>0)的图象上运动,且AC=BC,则△ABC 的面积大小变化情况是()A.一直不变B.先增大后减小C.先减小后增大D.先增大后不变【考点】反比例函数系数k 的几何意义.【专题】探究型.【分析】根据三角形ABC 的面积是点C 的横坐标与纵坐标的乘积除以2,和点C 在函数y= (x>0)的图象上,可以解答本题.【解答】解:∵等腰三角形ABC 的顶点A 在原点,顶点B 在x 轴的正半轴上,顶点C 在函数y= (x >0)的图象上运动,且AC=BC,设点C 的坐标为(x,),∴(k 为常数).即△ABC 的面积不变.故选A.【点评】本题考查反比例函数系数k 的几何意义,解题的关键是将反比例的系数k 与三角形的面积联系在一起.7.已知(﹣3,y1),(﹣15,y2),在反比例函数y=﹣上,则y1,y2,y3 的大小关系为()A.y1>y2>y3 B.y1>y3>y2 C.y3>y2>y1 D.y3>y1>y2【考点】反比例函数图象上点的坐标特征.【分析】先根据反比例函数的解析式判断出函数图象所在的象限及其增减性,再由各点横坐标的值即可得出结论.【解答】解:∵反比例函数y=﹣中k=﹣a2<0,∴此函数图象的两个分支分别位于二四象限,并且在每一象限内,y 随x 的增大而增大.∵(﹣3,y1),(﹣15,y2),在反比例函数y=﹣上,∴(﹣3,y1),(﹣15,y2)在第二象限,点在第四象限,∴y3<y2<y1.故选A.【点评】本题考查的是反比例函数函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.8.用反证法证明命题“钝角三角形中必有一个内角小于45°”时,首先应该假设这个三角形中()A.有一个内角小于45°B.每一个内角都小于45°C.有一个内角大于等于45°D.每一个内角都大于等于45°【考点】反证法.【分析】反证法的步骤中,第一步是假设结论不成立,反面成立.【解答】解:用反证法证明“钝角三角形中必有一个内角小于45°”时,应先假设这个三角形中每一个内角都不小于或等于45°,即每一个内角都大于45°.故选:D.【点评】此题考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.9.直线与x 轴,y 轴分别交于A,B 两点,把△AOB 绕着A 点旋转180°得到△AO′B′,则点B′的坐标为()A.(4,2)B.(4,﹣2)C.(,2)D.(,﹣2)【考点】坐标与图形变化-旋转;一次函数图象上点的坐标特征.【专题】计算题.【分析】先根据一次函数图象上点的坐标特征求出A 点和B 点坐标,则可得到OA=2,OB=2,再根据旋转的性质得到AO′=AO=2,O′B′=OB=2,∠AO′B′=∠AOB=90°,然后根据第二象限点的坐标特征写出点B′的坐标.【解答】解:当y=0 时,﹣x+2=0,解得x=2 ,则A,所以OA=2 ,当x=0 时,=2,则B(0,2),所以OB=2,因为△AOB 绕着A 点旋转180°得到△AO′B′,所以AO′=AO=2,O′B′=OB=2,∠AO′B′=∠AOB=90°,所以点B′的坐标为(4,﹣2).故选D.【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.也考查了一次函数图象上点的坐标特征.10.如图,以▱ABCD 的四条边为边,分别向外作正方形,连结EF,GH,IJ,KL.如果▱ABCD 的面积为8,则图中阴影部分四个三角形的面积和为()A.8 B.12 C.16 D.20【考点】全等三角形的判定与性质;平行四边形的性质;正方形的性质.【分析】过D 作DN⊥AB 于N,过E 作EM⊥FA 交FA 延长线于M,连接AC,BD,求出∠EAM=∠BAD,根据锐角三角形函数定义求出EM=DN,求出△AEF 和△ABD 面积相等,同理求出理S△BHG=S△ABC,S△CIJ=S△CBD,S△DLK=S△DAC,代入S=S△AEF+S△BGH+S△CIJ+S△DLK 得出S=2S 平行四边形ABCD,代入求出即可.【解答】解:过D 作DN⊥AB 于N,过E 作EM⊥FA 交FA 延长线于M,连接AC,BD,∵四边形ABGF 和四边形ADLE 是正方形,∴AE=AD,AF=AB,∠FAB=∠EAD=90°,∴∠EAF+∠BAD=360°﹣90°﹣90°=180°,∵∠EAF+∠EAM=180°,∴∠EAM=∠DA N,∴sin∠EAM= ,sin∠DAN= ,∵AE=AD,∴EM=DN,∵S△AEF = AF×EM,S△ADB = AB×DN,∴S△AEF=S△ABD,同理S△BHG=S△ABC,S△CIJ=S△CBD,S△DLK=S△DAC,∴阴影部分的面积S=S△AEF+S△BGH+S△CIJ+S△DLK=2S平行四边形ABCD=2×8=16.故选C【点评】本题考查了平行四边形的性质,锐角三角函数的定义,三角形的面积等知识点的应用,关键是根据S△BHG=S△ABC,S△CIJ=S△CBD,S△DLK=S△DAC,进行计算解答即可.二、认真填一填(本题有6 小题,每小题4 分,共24 分)11.在、、、、中,是最简二次根式的是.【考点】最简二次根式.【分析】直接利用最简二次根式的概念:(1)被开方数不含分母;被开方数中不含能开得尽方的因数或因式,分析得出答案.【解答】解:在、、、、中,只有是最简二次根式.故答案为:.【点评】此题主要考查了最简二次根式,正确把握定义是解题关键.12.已知多边形的内角和等于外角和的三倍,则内角和为1080°;边数为 8 .【考点】多边形内角与外角.第10 页(共22 页)【分析】首先设边数为n,由题意得等量关系:内角和=360°×3,根据等量关系列出方程,可解出n 的值,然后再利用内角和公式计算内角和.【解答】解:设边数为n,由题意得:180(n﹣2)=360×3,解得:n=8,内角和为:180°×(8﹣2)=1080°,故答案为:1080°;8.【点评】此题主要考查了多边形的内角与外角,关键是掌握多边形内角和定理:(n﹣2)•180°(n≥3)且n 为整数),多边形的外角和等于360 度.13.已知=0 是关于x 的一元二次方程,则k 为﹣2 .【考点】一元二次方程的定义.【分析】根据一元二次方程:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数,可得答案.【解答】解:由=0 是关于x 的一元二次方程,得k2﹣2=2,且1﹣k≥0,解得k=﹣2,故答案为:﹣2.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.14.如图,四边形ABCD 是菱形,对角线AC=8,BD=6,E,F 分别是AB,AD 的中点,连接EO 并延长交CD 于G 点,连接FO 并延长交CB 于H 点,△OEF 与△OGH 组成的图形称为蝶形,则蝶形的周长为 16 .【考点】菱形的性质.【分析】利用菱形的性质结合三角形中位线的性质得出GE=BC,HF=AB,进而得出答案.【解答】解:∵四边形ABCD 是菱形,对角线AC=8,BD=6,∴BO=DO=3,CO=AO=4,BD⊥AC,∴BC=CD=AD=AB=5,∵E,F 分别是AB,AD 的中点,∴EF= BD=3,∵E 是AB 的中点,O 是AC 的中点,∴EO∥BC,∴GO∥BC,则EG=BC=5,同理可得:HF=5,HG=3,故蝶形的周长为:5+5+3+3=16.故答案为:16.【点评】此题主要考查了菱形的性质以及三角形中位线的性质,根据题意得出EG=BC=5 是解题关键.15.如图,将边长为6 的正方形ABCD 沿其对角线AC 剪开,再把△ABC 沿着AD 方向平移,得到△A′B′C′,当两个三角形重叠部分为菱形时,则AA′为12﹣6.【考点】菱形的性质;正方形的性质;平移的性质.【分析】利用菱形的性质结合正方形的性质得出A′D=DF,AA′=A′E,进而利用勾股定理得出答案.【解答】解:如图所示:∵四边形A′ECF 是菱形,∴A′E=EC=FC=A′F,∵边长为6 的正方形ABCD 沿其对角线AC 剪开,再把△ABC 沿着AD 方向平移,∴∠A=∠ACD=45°,∴AD=DC,则A′D=DF,AA′=A′E,∴设A′E=x,则A′D=DF=6﹣x,A′F=x,故在Rt△A′DF 中,x2=(6﹣x)2+(6﹣x)2,解得:x1=12﹣6 ,x2=12+6 >6(不合题意舍去),故AA′为:12﹣6 .故答案为:12﹣6 .【点评】此题主要考查了菱形的性质和正方形的性质、勾股定理等知识,得出A′D=DF,AA′=A′E是解题关键.16.如图,一个正方形内两个相邻正方形的面积分别为4 和2,它们都有两个顶点在大正方形的边上且组成的图形为轴对称图形,则图中阴影部分的面积为+ .【考点】正方形的性质;轴对称图形.【分析】连接AC;由正方形的性质和已知条件得出EF= ,GH=2,∠EAF=∠GCH=90°,由轴对称图形的性质得出AE=AF,CG=CH,得出AM=EF= ,CN= GH=1,求出AC 的长,得出正方形ABCD 的面积,由大正方形的面积减去两个小正方形的面积即可得出图中阴影部分的面积.【解答】解:如图所示:连接AC;∵正方形ABCD 内两个相邻正方形的面积分别为4 和2,∴EF= ,GH=2,∠EAF=∠GCH=90°,根据题意得:AE=AF,CG=CH,∴AM= EF=,CN= GH=1,∴AC= + +2+1= +3,∴正方形ABCD 的面积=AC2= (+3)2= + ,∴图中阴影部分的面积= + ﹣4﹣2= + ;故答案为:+ .【点评】本题考查了正方形的性质、轴对称图形的性质、等腰直角三角形的性质、正方形面积的计算方法;熟练掌握正方形的性质,通过作辅助线求出对角线AC 是解决问题的关键.三、全面答一答(本题有7 个小题,共66 分.要求写出文字说明、证明过程或推演步骤)17.计算:(1).(3)【考点】二次根式的混合运算.【专题】计算题.【分析】(1)分母有理化即可;根据二次根式的性质化简即可;(3)先提(+),然后合并后利用平方差公式计算.【解答】解:(1)原式= ;原式= ×2 =3 ;(3)原式=(+ )(3﹣2﹣2+)=(+)(﹣)=()2﹣()2=3﹣2=1.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.如图,AC 是▱ABCD 的一条对角线,BE⊥AC,DF⊥AC,垂足分别为E,F.(1)求证:△ADF≌△CBE;求证:四边形DFBE 是平行四边形.【考点】平行四边形的判定与性质;全等三角形的判定与性质.【专题】证明题.【分析】(1)由平行四边形的性质得出AD∥BC,AD=BC,得出内错角相等∠DAF=∠BCE,证出∠AFD=∠CEB=90°,由AAS 证明△ADF≌△CBE 即可;由(1)得:△ADF≌△CBE,由全等三角形的性质得出DF=BE,再由BE∥DF,即可得出四边形D FBE 是平行四边形.【解答】(1)证明:∵四边形ABCD 是平行四边形,∴AD∥BC,AD=BC,∴∠DAF=∠BCE,∵BE⊥AC,DF⊥AC,∴BE∥DF,∠AFD=∠CEB=90°,在△ADF 和△CBE 中,,∴:△ADF≌△CBE(AAS);解:如图所示:由(1)得:△ADF≌△CBE,∴DF=BE,∵BE∥DF,∴四边形DFBE 是平行四边形.【点评】本题考查了平行四边形的判定与性质、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.19.如图,将表面积为550cm2 的包装盒剪开,铺平,纸样如图所示,包装盒的高为15cm,请求出包装盒底面的长与宽.【考点】一元二次方程的应用.【专题】几何图形问题.【分析】设包装盒底面的长为xcm,则包装盒底面的宽为=15﹣x(cm),求得包装盒的表面积,利用表面积为550cm2 列出方程解答即可.【解答】解:设包装盒底面的长为xcm,则包装盒底面的宽为=15﹣x(cm),由题意得2×[(15﹣x)×15+15x+(15﹣x)×x =550整理得:x2﹣15x+50=0,解得:x1=10,x2=5则10﹣x=5 或10.答:包装盒底面的长为10cm,则包装盒底面的宽5cm.【点评】此题考查一元二次方程的实际运用,解题的关键是熟记长方体的表面积公式.20.某初中要调查学校学生(总数1000 人)双休日课外阅读情况,随机调查了一部分学生,调查得到的数据分别制成频数直方图(如图1)和扇形统计图(如图2).(1)请补全上述统计图(直接填在图中);试确定这个样本的中位数和众数;(3)请估计该学校1000 名学生双休日课外阅读时间不少于4 小时的人数.【考点】条形统计图;用样本估计总体;扇形统计图;中位数;众数.【分析】(1)根据阅读5 小时以上频数为6,所占百分比为12%,求出数据总数,再用数据总数减去其余各组频数得到阅读3 小时以上频数,进而补全频数分布直方图,分别求得阅读0 小时和4 小时的人数所占百分比,补全扇形图;利用各组频数和总数之间的关系确定中位数和众数;(3)用1000 乘以每周课外阅读时间不小于4 小时的学生所占百分比即可.【解答】解:(1)总人数:6÷12%=50(人),阅读3 小时以上人数:50﹣4﹣6﹣8﹣14﹣6=12(人),阅读3 小时以上人数的百分比为12÷50=24%,阅读0 小时以上人数的百分比为4÷50=8%.图如下:中位数是3 小时,众数是4 小时;(3)1000×=1000×40%=400(人)答:该学校1000 名学生双休日课外阅读时间不少于4 小时的人数为400 人.【点评】此题主要考查了频数分布直方图、扇形统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了利用样本估计总体.21.已知方程:x2﹣2x﹣8=0,解决一下问题:(1)不解方程判断此方程的根的情况;请按要求分别解这个方程:①配方法;②因式分解法.(3)这些方法都是将解一元二次方程转化为解一元一次方程;(4)尝试解方程:x3+2x2+x=0.【考点】根的判别式;解一元二次方程-配方法;解一元二次方程-因式分解法.【分析】(1)由a=1,b=﹣2,c=﹣8,可得△=b2﹣4ac=36>0,即可判定此方程的根的情况;①直接利用配方法解一元二次方程;②利用十字相等法解一元二次方程;(3)利用消元法,将解一元二次方程转化为解一元一次方程;(4)利用因式分解法求解即可求得答案.【解答】解:(1)∵a=1,b=﹣2,c=﹣8,∴△=b2﹣4ac=(﹣2)2﹣4×1×(﹣8)=36>0,∴此方程有两个不相等的实数根;①配方法:∵x2﹣2x﹣8=0,∴x2﹣2x=8,∴x2﹣2x+1=8+1,∴(x﹣1)2=9,∴x﹣1=±3,解得:x1=4,x2=﹣2;②因式分解法:∵x2﹣2x﹣8=0,∴(x﹣4)(x+2)=0,解得:x1=4,x2=﹣2;(3)答案为:一元二次方程;一元一次方程;(4)∵x3+2x2+x=0,∴x(x2+2x+1)=0,∴x(x+1)2=0,∴x=0,x+1=0,解得:x1=0,x2=x3=﹣1.【点评】此题考查了一元二次方程的解法以及根的判别式.注意△>0⇔方程有两个不相等的实数根.22.在矩形ABCD 中,AB=3,BC=4,E,F 是对角线ACS 行的两个动点,分别从A,C 同时出发相向而行,速度均为1cm/s,运动时间为t 秒,当其中一个动点到达后就停止运动.(1)若G,H 分别是AB,DC 中点,求证:四边形EGFH 始终是平行四边形.在(1)条件下,当t 为何值时,四边形EGFH 为矩形.(3)若G,H 分别是折线A﹣B﹣C,C﹣D﹣A 上的动点,与E,F 相同的速度同时出发,当t 为何值时,四边形EGFH 为菱形.【考点】四边形综合题.【分析】(1)由矩形的性质得出AB=CD,AB∥CD,AD∥BC,∠B=90°,由勾股定理求出AC=5,由SAS 证明△AFG≌△CEH,得出GF=HE,同理得出GE=HF,即可得出结论;先证明四边形BCHG 是平行四边形,得出GH=BC=4,当对角线EF=GH=4 时,平行四边形EGFH 是矩形,分两种情况:①AE=CF=t,得出EF=5﹣2t=4,解方程即可;②AE=CF=t,得出EF=5﹣2 (5﹣t)=4,解方程即可;(3)连接AG、CH,由菱形的性质得出GH⊥EF,OG=OH,OE=OF,得出OA=OC,AG=AH,证出四边形AGCH 是菱形,得出AG=CG,设AG=CG=x,则BG=4﹣x,由勾股定理得出方程,解方程求出BG,得出AB+BG=,即可得出t 的值.【解答】(1)证明:∵四边形ABCD 是矩形,∴AB=CD,AB∥CD,AD∥BC,∠B=90°,∴AC= =5,∠GAF=∠HCE,∵G,H 分别是AB,DC 中点,∴AG=BG,CH=DH,∴AG=CH,∵AE=CF,∴AF=CE,在△AFG 和△CEH 中,,∴△AFG≌△CEH(SAS),∴GF=HE,同理:GE=HF,∴四边形EGFH 是平行四边形.解:由(1)得:BG=CH,BG∥CH,∴四边形BCHG 是平行四边形,∴GH=BC=4,当EF=GH=4 时,平行四边形EGFH 是矩形,分两种情况:①AE=CF=t,EF=5﹣2t=4,解得:t=0.5;②AE=CF=t,EF=5﹣2(5﹣t)=4,解得:t=4.5;综上所述:当t 为0.5s 或4.5s 时,四边形EGFH 为矩形.(3)解:连接AG、CH,如图所示:∵四边形EGFH 为菱形,∴GH⊥EF,OG=O H,OE=OF,∴OA=OC,AG=AH,∴四边形AGCH 是菱形,∴AG=CG,设AG=CG=x,则BG=4﹣x,由勾股定理得:AB2+BG2=AG2,即32+(4﹣x)2=x2,解得:x= ,∴BG=4﹣= ,∴AB+BG=3+ = ,即t 为s 时,四边形EGFH 为菱形.【点评】本题是四边形综合题目,考查了矩形的性质、全等三角形的判定与性质、平行四边形的判定、菱形的判定与性质、勾股定理等知识;本题综合性强,难度较大,特别是(3)中,需要通过作辅助线证明四边形是菱形,运用勾股定理得出方程才能得出结果.23.如图1,正方形ABCD 的边长为4,以AB 所在的直线为x 轴,以AD 所在的直线为y 轴建立平面直角坐标系.反比例函数的图象与CD 交于E 点,与CB 交于F 点.(1)求证:AE=AF;若△AEF 的面积为6,求反比例函数的解析式;(3)在的条件下,将△AEF 以每秒1 个单位的速度沿x 轴的正方向平移,如图2,设它与正方形ABCD 的重叠部分面积为S,请求出S 与运动时间t(秒)的函数关系式(0<t<4).【考点】反比例函数综合题.【分析】(1)根据反比例函数图象上点的坐标特点可得出DE=BF,故可得出结论;设DE=BF=a,则CE=4﹣a,CF=4﹣a,再由S△AEF=S 正方形ABCD﹣S△ADE﹣S△ABF﹣S△ECF 即可得出a 的值,进而可得出反比例函数的解析式;(3)根据中EF 两点的坐标用t 表示出AB,BG,CE=CK 的长,再由S=S 正方形ABCD﹣S△梯形AA′ED﹣S△ABG﹣S△ECK 即可得出结论.【解答】(1)证明:∵点E、F 均在反比例函数y=(k>0)的图象上,∴AD•DE=AB•BF.∵AD=AB,∴DE=BF.在△ADE 与△ABF 中,,∴△ADE≌△ABF,∴AE=AF;解:设DE=BF=a,则CE=4﹣a,CF=4﹣a,∵△AEF 的面积为6,∴S△AEF=S﹣S△ADE﹣S△ABF﹣S△ECF正方形ABCD=4×4﹣×4a﹣×4a﹣(4﹣a)(4﹣a)=16﹣4a﹣(4﹣a)(4﹣a)=6,解得a=2,∴EF=2×4=8,∴反比例函数的解析式为y=;(3)解:∵由知E,F(4,2),∴AB=4﹣t,BG= AB=2﹣t,CE=CK=2﹣t,∴S=S﹣S△梯形AA′ED﹣S△ABG﹣S△ECK正方形ABCD=4×4﹣××4﹣(4﹣t)•﹣=16﹣4﹣4t﹣t2﹣4+2t﹣2﹣t2+2t=﹣t2+6.【点评】本题考查的是反比例函数综合题,涉及到反比例函数图象上点的坐标特点、正方形的性质及梯形的面积公式等知识,在解答此题时要注意整体思想的运用.第21 页(共22 页)第22 页(共22 页)。
(完美版)浙教版八年级下册数学期末测试卷及含答案

浙教版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、下列说法不正确的是()A.方程x 2=x有一根为0B.方程x 2﹣1=0的两根互为相反数C.方程(x﹣1)2﹣1=0的两根互为相反数D.方程x 2﹣x+2=0无实数根2、对于任意的正数m,n定义运算※为:m※n=计算(3※2)×(8※12)的结果为( )A.2-4B.2C.2D.203、等腰梯形ABCD中,E、F、G、H分别是各边的中点,则四边形EFGH的形状是()A.平行四边形B.矩形C.菱形D.正方形4、下列根式.是最简二次根式的是()A. B. C. D. (n是正整数)5、下列图形中,既是轴对称图形又是中心对称图形的是().A. B. C. D.6、已知O是矩形ABCD的对角线的交点,AB=6,BC=8,则点O到AB、BC的距离分别是()A.3、5B.4、5C.3、4D.4、37、下列命题正确是()A.点(1,3)关于x轴的对称点是(﹣1,3)B.函数 y=﹣2x+3中,y随x的增大而增大C.若一组数据3,x,4,5,6的众数是3,则中位数是3 D.同圆中的两条平行弦所夹的弧相等8、下列命题正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直且相等的四边形是正方形C.对角线互相垂直的四边形是菱形D.两组对角分别相等的四边形是平行四边形9、如图,在矩形中无重叠放入面积为16和12的两张正方形纸片,则图中空白部分的面积为()A. B. C. D.10、用配方法解方程x2-6x-8=0时,配方结果正确的是()A.(x-3) 2=17B.(x-3) 2=14C.(x-3) 2=1D.(x-6) 2=4411、下列四幅图片,是中心对称图形的是()A. B. C. D.12、为了某小区居民的用水情况,随机抽查了10户家庭的月用水量,结果如下表:月用水量4 5 6 9(吨)户数 3 4 2 1则关于这10户家庭的约用水量,下列说法错误的是()A.中位数是5吨B.极差是3吨C.平均数是5.3吨D.众数是5吨13、已知关于x的一元二次方程(k﹣1)x2﹣x+ =0有实数根,则k的取值范围是()A.k为任意实数B.k≠1C.k≥0D.k≥0且k≠114、如图是用围棋棋子在6×6的正方形网格中摆出的图案,棋子的位置用有序数对表示,如A点为(5,1),若再摆一黑一白两枚棋子,使这9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是()A.黑(1,5),白(5,5)B.黑(3,2),白(3,3)C.黑(3,3),白(3,1)D.黑(3,1),白(3,3)15、在反比例函数y=图象的每条曲线上,y都随x的增大而增大,则k的取值范围是()A.k>1B.k>0C.k≥1D.﹣l≤k<1二、填空题(共10题,共计30分)16、在平行四边形ABCD中,对角线AC、BD的交点,AC⊥BC且AB=10厘米,AD=6厘米,则OB=________.17、正方形的A1B1P1P2顶点P1、P2在反比例函数y=(x>0)的图象上,顶点A 1、B1分别在x轴、y轴的正半轴上,再在其右侧作正方形P2P3A2B2,顶点P3在反比例函数y=(x>0)的图象上,顶点A2在x轴的正半轴上,则点P3的坐标为________.18、在矩形ABCD中,AB=4,BC=3,取CD中点E,连接BD、BE,将沿BE翻折成为,过点C作CM⊥BF于M,则CM+FC=________.19、“反证法”证明命题“等腰三角形的底角是锐角”时,是先假设________20、如图,在矩形ABCD中,点E、F分别在AB、DC上,BF∥DE,若AD=12cm,AB=7cm,且AE:EB=5:2,则阴影部分的面积为________ cm221、已知,是方程的两根,则________.22、已知平行四边形ABCD中,∠B=4∠A,则∠C=________23、某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x,可列方程为________.24、若方程的两根,则的值为________.25、如图,在正方形ABCD中,M、N是对角线AC上的两个动点,P是正方形四边上的任意一点,且,.关于下列结论:①当△PAN是等腰三角形时,P点有6个;②当△PMN是等边三角形时,P点有4个;③DM+DN的最小值等于6.其中,一定正确的结论的序号是________.三、解答题(共5题,共计25分)26、计算: ÷- .27、已知实数a、b、c在数轴上对应点的位置如图,化简.28、如图,D是△ABC边BC上的点,连接AD,∠BAD=∠CAD,BD=CD.用两种不同方法证明AB=AC.29、如图,在平行四边形ABCD中,AQ、BN、CN、DQ分別是∠DAB、∠ABC、∠BCD、∠CDA的平分线,AQ与BN相交于点P,CN与DQ相交于点M,判断四边形MNPQ的形状,并证明你的结论.30、请判断下列问题中,哪些是反比例函数,并说明你的依据.(1)三角形的底边一定时,它的面积和这个底边上的高;(2)梯形的面积一定时,它的中位线与高;(3)当矩形的周长一定时,该矩形的长与宽.参考答案一、单选题(共15题,共计45分)1、C2、B3、C4、D5、D6、D7、D8、D9、B10、A12、B13、D14、D15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、29、30、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八(下)数学期终复习试卷
姓名: 学号: 得分: 亲爱的同学:祝贺你又完成了一个阶段的学习,现在是展示你的学习成果之时,你可以尽情地发挥,祝你成功!
一、细心选一选(每题3分,共36分)
1、 下列计算正确的是……………………………………………… ( )
A )
(
)
1313
2
-=-
B )12223=-
C )52553-=+-
D )636±=
2、 八年级某班50位同学中,1月份出生的频率是0.20,那么这个班1月份生日
的同学有 ……………………………………………… ( ) A )10位 B )11位 C )12位 D )13位
3、 小明在计算时遇到以下情况,结果正确的是 ………………………( )
A )()()9494-⨯-=
-⨯- B )
4
36
436--=
-- C )
()
a a =2
()0≥a
D )以上都不是
4、 如果等边三角形的边长为3,那么连结各边中点所成的三角形的周长为( ) A )9 B )6 C )3 D )
92
5、 方程()01=-x x 的根是 …………………………………………… ( ) A )0 B )1 C )0或1 D )无解
6、 下列各数中,可以用来说明命题“任何偶数都是4的倍数”是假命题的反例是
( ) A )5 B )2 C )4 D )8 7、 “I am a good student .”这句话中,字母”a “出现的频率是 ( )
A )2
B )
152 C )181 D ) 11
1
8、 若平行四边形的一边长为5,则它的两条对角线长可以是 ( )
A)12和2 B)3和4 C)4和6 D)4和8
9、下列说法正确的是……………………………………………… ( ) A 、对角线相等的四边形是矩形 B 、有一组邻边相等的矩形是正方形
C 、菱形的四条边、四个角都相等
D 、三角形一边上的中线等于这边的一半。
10、一块四周镶有宽度相等的花边的地毯,如图所示,它的长为8m , 宽为5m , 如果地毯中央长方形图案的面积为18m 2。
则花边的宽是 ( )
A )2m
B )1m
C )1.5m
D )0.5m
11.用两个全等的直角三角形拼下列图形:①矩形;②菱形;③正方形;④平行四
边形;⑤等腰三角形;⑥等腰梯形.其中一定能拼成的图形是 ( ). (A )①②③ (B )①④⑤ (C )①②⑤ (D )②⑤⑥
12.一张矩形纸片按如图甲或乙所示对折,然后沿着图丙中的虚线剪下,得到①, •②两部分,将①展开后得到的平面图形是 ( ).
(A )三角形 (B )矩形 (C )菱形 (D )梯形
二、耐心填一填(每题3分,共36分)
1、 二次根式1-a 中的字母a 的取值范围是__________
2、 计算
()23-=__________
3、 某食品店连续两次涨价10%后价格是121元,那么原价是______
4、 如图,两根高分别为4米和7米的竹竿相距6米,一根绳子拉直系在两根竹竿的顶端,则这根绳子长为__________米
5、 如图,A B //CD,∠BAE=120°, ∠DCE=130°,则∠AEC=_____
6.把“直角三角形、等腰三角形、•等腰直角三角形”填入下列相应的空格上: (1)正方形可以由两个能够完全重合的_________拼合而成; (2)菱形可以由两个能够完全重合的_________拼合而成;
4m 7m
6m
A B 120° E 130° C D
(3)矩形可以由两个能够完全重合的________拼合而成. 7.已知正方形的面积为4,则正方形的边长为________,对角线长为________. 8.菱形的两条对角线分别是6cm ,8cm ,则菱形的边长为_____,面积为______. 9.若一个多边形的内角和为1 080°,则这个多边形的边数是_______. 10.平行四边形两邻角的平分线相交所成的角为_________. 11.如图,在平行四边形ABCD 中,∠A 的平分
线交BC 于点E .若AB=10cm ,AD=14cm , 则BE=______,EC=________. 12.仔细观察下列计算过程:
;11121,121112=∴= 同样 ,123211112= ;11112321=∴
由此猜想 =76543211234567898 。
三、解答题(仔细答一答) 1、(4分)如图,正方形网格中的每个小正方形边长都是1,•每个小格的顶点叫
做格点.以格点为顶点分别按下列要求画图:
(1)在图甲中,画出一个平行四边形,使其面积为6;
(2)在图乙中,画出一个梯形,使其两底和为5.
2、(4分)已知:如图,在四边形ABCD 中,AD ∥BC ,AD=BC 求证:△ABD ≌△CDB
3、 (6分)如图,在菱形ABCD 中,∠A 与∠B 的度数比为1:2,周长是48cm .
D C A B
求:(1)两条对角线的长度;(2)菱形的面积.
4、已知23-=
a ,23+=
b ,分别求下列代数式的值(每小题4分,)
(1)ab
(2)2
2
b ab a ++
5、为了解学生的身高情况,抽测了某校17岁的50名男生的身高,将数据分成
7组,列出了相应的频数分布表(部分未列出)如下:
(1)请将上述频数分布表填写完整;(2分)
(2)估计这所学校17岁男生中,身高不低于1.655m且不高于1.715m的学生所占的百分比;(2分)
(3)该校17岁男生中,身高在哪个范围内的频数最多?如果该校17岁男生共有350名,那么在这个身高范围内的人数估计有多少人?(4分)
6、(8分)开太百货大楼服装柜在销售中发现:“COCOTREE”牌童装平均每天可
售出20件,每件盈利40元.为了迎接“五·一”劳动节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1050元,那么每件童装应降价多少元?
7.(8分)已知:如图,在正方形ABCD中,AE⊥BF,垂足为P,AE与CD交于点E,•BF•与AD交于点F,求证:AE=BF.
恭喜你完成的测试,相信你的成果很诱人,都检查了吗?若还有时间你可完成以下的《回顾与小结》
测试后回顾与小结
你认为这份试卷是()(“很深”、“比较深”、“刚好”、“浅”、“很浅”)
参考答案
一、选择题
C A C
D C B B D B B B C
二、填空题
1、a≥1
2、3
3、100
4、5
35、110;
6、等腰直角三角形等腰三角形直角三角形
7、
2 2
28、5 24 9、8 10、90 11、10 4
12、111111111
三、解答题
1、
2、略
3、BD=12 AC=3
72
12面积=3
4、-1 13
5、1)略2)56%3)119
6、5或25
7、略。