工程流体力学(3) PPT课件

合集下载

中职教育-《工程流体力学》课件:第3章 流体运动学(5).ppt

中职教育-《工程流体力学》课件:第3章  流体运动学(5).ppt

速度势 d udx vdy U0dx U0x
流函数 d vdx udy U0dy U0 y
y
φ=C
y
U0
o 图图33..2244 均 均流 流
Ψ=C' x
ox
U0 α
图图33..2255 一一般 般形形式式的的均流均流
工程流体力学
以上结果可推广到一般情况。
设均流速度与x轴成 角,如图3.25。
2
求:(1)该渠道的速度分布;
(2)t=0时,r=2m处流体的速度和加速度。
工程流体力学
【解】 (1)该渠道流量壁面交角1弧度时为
Q 1 t 1 2
则当交角为2π弧度时的流量为
m

1 2
t
1
源的速度势
o
1rad
m 2π
ln
r
1 2
t
1 ln
r
r=2m
流场的速度场
3.18 水渠的流动
vr
若以直角坐标表示
图图3.32.72 7汇汇
工程流体力学
(x, y) m ln x2 y2
2π (x, y) m arctg y
2π x
在实际的油田中,对于均匀等厚的地层,在稳 定情况下,油流向生产井可看作是汇。
【例3.13】如图3.28,有一扩大的水渠,两壁面交
角为1弧度,在两壁面相交处有一小缝,通过该缝 流出的体积流量 Q 1 t 1 (m3/s)。
dr
m 2π
ln
r
rθ o
φ=C x
流函数
d
r
dr
d
图3.26 源
3.26 源
v
dr
vr rd
m rd

工程流体力学课件3

工程流体力学课件3

四、过流断面,流量, 断面平均流速
与流束中所有流线垂直的横截面称为过流断面 (过水断面)。 元流的过流断面面积为 dA, 总流的为 A。 单位时间内通过元流或总流过流 断面的流体量称为流量。 QV m3/s ,L/s Qm kg/s
曲 面 平 面
若流体量以体积来度量:体积流量 若流体量以质量来度量:质量流量
重、难点
1.连续性方程、伯努利方程和动量方程。 2.应用三大方程联立求解工程实际问题。
第一节 描述流体运动的两种方法
• 静止流体(不论
p
• 运动理想流体
P= - pn
理想或实际流体) p
P= - pn
p :动压强 p :静压强
定义
流体的动压强
1 p ( p xx p yy p zz ) 3
G cos gdAdh cos gdAdz
对n-n, Fn 0
z
0
0
( p dp)dA pdA gdAdz 0
整理并积分,得
p z C g
z1 z2
p1

C1 C2
p2

z1
p1

z2
p2

• 非均匀流
是 否 接 近 均 匀 流 ?
流场 —— 充满运动流体的空间称为流场
描述流体运动的方法 拉格朗日法:跟踪 着眼于流体质点,跟 踪质点并描述其运动历程 欧拉法:布哨 着眼于空间点,研究质点 流经空间各固定点的运动特性

一、拉格朗日法:研究对象为流场中的各流体质 点,也即研究流场中每个流体质点的运动参数随 时间 t 的变化规律。
z
注:流体质点不能穿越流面两侧或流管 面内外流动。

第三节流体力学优秀课件

第三节流体力学优秀课件

总压 静压 动压
设(待测流体密度) (压强计工作量密度):
U形皮托管
总压与静压之差:
pApB()gh
pA
pB
1 2
v2
v 2gh( )
4. 升力 取两根很薄的流管,分别紧贴机翼的上下两侧。
不计高度差:
12v02p012v22p2, 12v02p012v32p3
p3p2
1
2
v22v32
§1.3.4 实际流体的运动规律 P 21
一、粘滞流体的能量方程 流体流动时相邻两层之间会产生沿切向的阻
碍相对滑动的力,称为内摩擦力(或粘滞力)
当有粘性的流体流过固体 表面时,靠近固体表面的一层 流体附着在固体表面上不动, 而流层之间由于粘滞力而层层 牵制,造成各层流速不同。
气体的粘度随温度升高而增 大,液体的粘度随温度升高而减 小。
各条流线不会相交
流管: 流体内由流线所围成的细管
二、定常流动和不定常流动 不定常流动: 流场中各点的流速是该点的位置和时间的函数:
vv(x,y,z,t) 流线的形状随时间而变
流线与流体单个质元的运动轨迹并不重合
定常流动:
流场不随时间而变化: vv(x,y,z)
流场中任一固定点的流速、压强和密度等都 不随时间变化
§1.3.1 流体运动的描述
一、流场、流线和流管
流体的流动性
各部分质元的运动情况都不同
• 欧拉法: 处理流体的运动问题时,考察流体所在的空
间中各点,研究流体的各质元在流经这些点时 所具有的速度、密度和压强等,以及这些量随 时间的变化关系。
流体速度场(流场): 在流体运动过程的每一瞬时,流体在所占据 的空间每一点都具有一定的流速。- 矢量场 流线(流场中一系列假想的曲线) 每一瞬时流线上任一点的切线方向,和流经该点 的流体质元的速度方向一致。

工程流体力学第三章

工程流体力学第三章

物理量
比起流体质点本身, 比起流体质点本身,工程上我们更关心某一 时刻流体质点上所携带的一些特征参量,比如: 时刻流体质点上所携带的一些特征参量,比如: 速度、压强、温度、电流等。 速度、压强、温度、电流等。 我们把这些流体具有的特征参量统称为物理 我们把这些流体具有的特征参量统称为物理 流体具有的特征参量 流动参数。 也成为流动参数 量,也成为流动参数。 流体的流动是由流体具有的物理量来表征的, 流体的流动是由流体具有的物理量来表征的, 因此,描述流体的运动也就是表达流动参数在不 因此,描述流体的运动也就是表达流动参数在不 同空间位置上随时间的变化规律。 同空间位置上随时间的变化规律。
DV V ( M ', t + ∆t ) − V ( M , t ) = lim Dt ∆t →0 ∆t
L M’ M
V (M , t ) V ( M ' , t + ∆t )
3.1.3随体导数 随体导数
这里用 D 表示这种导数不同于牛顿定律 Dt 对速度的简单导数
L M’ M
DV V ( M ', t + ∆t ) − V ( M , t ) = lim Dt ∆t →0 ∆t
速度的变化有两方面的原因:
一方面的原因, 质点由M 点运动至M 点时,
'
时间过去了∆t,由于场的时间非定常性引 起速度的变化
另一方面, 质点由M 点运动至M '点时, 位置 发生了变化,由于场的空间不均匀性引起 速度的变化
3.1.3随体导数 随体导数
按照时间和空间引起速度变化,把极限分为两部分
DV V ( M ', t + ∆t ) − V ( M , t ) = lim Dt ∆t →0 ∆t

工程流体力学(3)PPT课件

工程流体力学(3)PPT课件

授课:XXX
14
工程上可将问题简化:
2021/3/9
授课:XXX
15
将翼展z方向看成无限长,三维问题简化
成二维处理。
2021/3/9
授课:XXX
16
§2 流线和流管
一、迹线
定义:流体质点运动的轨迹线。
2021/3/9
授课:XXX
17
二、流线
定义:
是表示某一瞬时流体各点流动趋势
的曲线,曲线上任一点的切线方向与该 点的流速方向重合。
1.边界随流团一起运动,其形状、大小随 时间变化。
2.边界上无质量交换, 即无流入也无流出。
系统
V
3.在系统边界上,受到 外界作用在系统边界上 的力。
系统边界
2021/3/9
授课:XXX
4
二、欧拉法 以流体质点流经流场中各空间点的
运动即以流场作为描述对象,研究流动 的方法。
它不直接追究质点的运动过程, 而是以充满运动液体质点的空间——流 场为对象。研究各时刻质点在流场中的 变化规律。
质点
du u u x u y u z dt t x t y t z t
导数:
2021/3/9
u t
u u v x 授课:XXX
u y
wu z
ax
8
同理
axd du t u tu u xv u yw u z
ayd dv t v tu v xv y vw v z
azd dw t w tu w xv w yw w z
dNNuNvNwN dt t x y z
N可是矢量也可是标量。
N ——当地变化率(局部变化率)
t
uNvNwN ——迁移变化率

工程流体力学课件3流体动力学基础

工程流体力学课件3流体动力学基础
总结词
边界层理论是研究流体在固体表面附近流动的理论, 其特征包括流体的粘性和湍流状态。
详细描述
边界层理论主要关注流体与固体表面之间的相互作用 ,特别是流体的粘性和湍流状态对流动的影响。在边 界层内,流体的速度和压力变化梯度较大,湍流状态 较为明显。
边界层分离现象和转捩过程
总结词
边界层分离现象是指流体在经过曲面或突然扩大区域 时,流速减小,压力增加,导致流体离开壁面并形成 回流的现象。转捩过程则是从层流到湍流的过渡过程 。
有旋流动
需要求解偏微分方程组,如纳维-斯托克斯 方程(Navier-Stokes equations),该方 程组较为复杂,需要采用数值方法进行求解

05 流体动力学中的湍流流动
湍流流动的定义和特征
湍流流动的定义
湍流是一种高度复杂的流动状态,其中流体的速度、压 力和其它属性随时间和空间变化。
湍流流动的特征
质量守恒定律在流体中的应用
质量守恒定律
物质的质量不会凭空产生也不会消失,只会从一种形式转化为另一种形式。在流体中,质量守恒定律表现为流体 微元的质量变化率等于进入和离开微元的净质量流量。
质量守恒方程
根据质量守恒定律,流体微元的质量变化率可以表示为流入和流出微元的净质量流量。这个方程是流体动力学基 本方程之一,用于描述流体的运动特性。
流体流动的描述方法
描述流体流动的方法包括拉格朗日法和欧拉法。
拉格朗日法是以流体质点作为描述对象,追踪各个质点的运动轨迹,研究其速度、加速度等参数随时 间的变化。欧拉法是以空间点作为描述对象,研究空间点上流速、压强等参数随时间和空间的变化。
03 流体动力学基本方程的推 导
牛顿第二定律在流体中的应用
能源

流体动力学基础(工程流体力学).ppt课件

流体动力学基础(工程流体力学).ppt课件

dV
II '
t t
dV
II '
t
dt t0
t
lim
dV
III
t t
dV
I
t
t 0
t
δt→0, II’ → II
x
nv
z
III
v II ' n
I
o y
20 20
dV
dV
II
tt II
t
lim t t0
t
dV
dV
lim III
t t
t0
t
v cosdA
质点、质点系和刚体 闭口系统或开口系统
均以确定不变的物质集协作为研讨对象!
7 7
定义:
系统(质量体)
在流膂力学中,系统是指由确定的流体质点所组成的流 体团。如下图。
系统以外的一切统称为外界。 系统和外界分开的真实或假象的外表称为系统的边境。
B C
A
D
Lagrange 方法!
系统
8
8
特点:
(1) 一定质量的流体质点的合集 (2) 系统的边境随流体一同运动,系统的体积、边境面的
31 31
固定的控制体
对固定的CV,积分方式的延续性方程可化为
CS
ρ(
vn
)dA
CV
t
dV
运动的控制体
将控制体随物体一同运动时,延续性方程方式不变,只
需将速度改成相对速度vr
t
dV
CV
CS (vr n)dA 0
32 32
延续方程的简化
★1、对于均质不可压流体: ρ=const
dV 0
令β=1,由系统的质量不变可得延续性方程

工程流体力学3

工程流体力学3
由此得流线的微分表达式: dx dy dz
u( x, y, z, t) v( x, y, z, t ) w( x, y, z, t)
上式可写成两个微分方程的方程组。令t为参数, 对x,y,z积分上式,便可得到两个曲面方程,这两个曲 面的交线就是流线。
四、流线的几个性质
(1)定常流动,流线不随时间变化,即流体质点必沿一确 定的流线运动,流线与迹线重合。 (2)非定常流动,流线随时间变化,即流场内任意一点的 流线在不同时刻将取不同形状,而任意一流体质点的迹 线总是确定的,故流线和迹线就不再始终重合。 (3)在同一点上某一瞬时只能有一个流动方向,因此只能 给出一条流线,所以流线一般不相交,只有在流场内速 度为零或为无穷大的那些点,流线可能相交。速度为零
A
Rh
水力半径与一般圆截面的
半径是完全不同的概念。
Rh r
例:半径为r的圆管内充满流体,Rh
所以:
Rh r
r2 2 r
r 2
6.当量直径 De: 4倍的有效截面积与湿周之比。
4A
De Rh
一般的流动都是三维空间内的流动,
例: v v( x, y, z) ,称为三维流动。 若流动参数是两个坐标的函数,则称为二维流动,若 流动参量是一个坐标的函数,则称为一维流动。 例:在一带锥度的圆管内的粘性流体的流动,流体质 点的速度与圆周角θ无关,流 体质点的速度是半径r和轴线距 离x的函数,即:u=f(r,x)。 这就是一个二维流动的问题.若
(2)流经流管中任意截面的流量为:Q
AV
cos(V
,
n)dA
2.平均流速
流经有效截面的体积流量除以有效截面面积所得的
商就是平均流速,即
V Q A
4.湿周χ : 在流体的有效截面上,流体同固体边界接触 部分的周长称为湿周,用χ表示,见图。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档