3-5正交试验设计及结果分析
3.5具有交互作用的正交试验设计

6
7 8
2
2 2
1
2 2
2
1 1
2
1 2
1
2 1
2
2 1
1
1 2
124
79 61
K1 K2 k1 k2 极差R 主次顺序 优水平 优组合
279 386 69.75 96.50 26.75
339 326 84.75 81.50 3.25
233 432 58.25 108.00 49.75
二元表 353
例1 有4块试验田,土质情况基本一样,种植同样的作物。
现将氮肥、磷肥采用不同的方式分别加在4块地里,收获后算 出平均亩产,如下表所记。
氮肥、磷肥交互作用的效果=氮肥、磷肥的总效果- (只加氮肥的效果+只加磷肥的效果)
相关概念
因素间的联合搭配对试验指标产生的影响作用称为交 互作用,通常将A因素与B因素的交互作用记作: A×B,称为1级交互,通常的称在一次试验中同时与 A因素发生交互作用的因素的个数为交互级数。
具有交互作用的正交试验验设计
1 、交互作用
通过前面的学习我们已经知道采用正交试验设计方法可以 明显减少多因素试验的试验次数,同时也能在一定程度上得到
能够满足工程应用的试验结果。
但是,在前面的讨论中我们都是基于一个假设展开的,即在所 有被考虑的对试验结果有影响的各因素之间对试验结果的影响是相 互独立的,但是工程实践告诉我们这种情况很少出现,因此正交试 验设计过程中考虑各因素的相互作用将显得十分必要,首先让我们 来看个有关交互作用的例子:
① 选用正交表,作表头设计 由于本试验有3个两水 平的因素和两个交互作用需要考察,各项自由度之和 为: 3×(2-1)+2×(2-1)×(2-1)=5 , 因 此可 选 用 L8(27) 来安排试验方案。 正交表L8(27)中有基本列和交互列之分,基本列就 是各因素所占的列,交互列则为两因素交互作用所占 的列。可利用L8(27)二列间交互作用列表来安排各因素 和交互作用。
第三章 正交试验设计(2)-正交试验数据方差分析和贡献率分析

试验优化设计
主讲:刘建永
材 料 工 程 系 Department of Materials Engineering
第三章 正交试验设计
正交试验数据 方差分析与贡献率分析
正交试验结果的方差分析
1.离差平方和的计算
总离差平方和:
项目 因素A 因素B 因素C 误差 总和
平方和SS SSA SSB SSC SSE SST
自由度DF a- 1 a- 1 a- 1 a- 1 n-1
纯平方和 SSA- fA×MSE SSB- fB×MSE SSC- fC×MSE fT×MSE SST
贡献率 ρA ρB ρC ρE
其中: 纯平方和= SS因- f因×MSE 贡献率ρ因等于纯平方和与SST的比值 贡献率最大的几个因素是重要因素,与误差贡献率差不多的认为不 重要。
μ 3.2 的 1 − α 置信区间为: μ 3.2± t1−α / 2 ( f e′)σ / ne ˆ ˆ
′ ˆ 这里 σ = S e / f e′ , ′ S e = S e + 不显著因子的平方和, f e′ = f e + 不显著因子的自由度,
ne = 试验次数 1 + 显著因子自由度之和
n e = 9 /( 1 + f A + f C ) = 9 / 5 = 1 . 8 , ′ S e = S e + S B=132 , f ′ = f + f =4 ,
y 31 54 38 53 49 42 57 62 64 T=450 yi2 =23484 ST=984
∑
方差分析表 把上述计算表中得到的平方和与自由度移至一张方差分 析表中继续进行计算。 例 3.3 的方差分析表 来源 平方和 S 自由度 f 均方和 MS 因子 A 因子 B 因子 C 误差 e T 618 114 234 18 984 2 2 2 2 8 309 57 117 9 F比 34.33 6.33 13.00
正交试验设计和分析

所以一般地,有 N dfi dfi j 1
i
i, j
如三原因四水平 43 旳正交试验至少应安排
34 1 1 10 次以上旳试验。
如三原因四水平 43 并涉及第一、二个原因旳交互 作用旳正交试验至少应安排旳试验次数为
34 1 4 14 1 1 19
又如安排 43 23 旳混合水平旳正交试验至少应安排
试验次数N旳拟定原则
N 由 dfT N 1 拟定。
其中: dfT dfi dfi j dfE ,
i
i, j
dfi dfi j 是可求出旳,而 dfE 是未知旳,
i
i, j
所以一般地,由 N dfi dfi j 1 拟定 N,
i
i, j
故 N 不是唯一旳。
当不考虑交互作用时:可取 N S q 1 1
所以要选择 LN 2S 型旳表,且不考虑交互作用时, S 4 ,而 L8 27 是满足条件旳最小旳正交表, 所以选用正交表 L8 27
若考虑A与B、A与C旳交互作用,则
S 6 ,L8 27 依然是满足条件旳最小旳正交表, 所以还可选用正交表 L8 27
注:也可由试验次数应满足旳条件来选择正交表。
正交表旳记号及含义
正交表是一种尤其旳表格,是正交设计旳基本工具。
我们只简介它旳记号、特点和使用措施。
记号及含义
L 正交表旳代号
S 正交表旳列数
(最多能安排旳原因个数,
涉及交互作用、误差等)
LN qS
q 各原因旳水平数
N 正交表旳行数
(各原因旳水平数相等)
(需要做旳试验次数)
如 L8 27 表达
7 2 2 1 1 2 2 1 275
8 2 2 1 2 1 1 2 375
正交试验设计

4
上一张 下一张 主 页 退 出
表5-1
5
上一张 下一张 主 页 退 出
注:任意两列旳交互作用列为另外两 列
附:正交表L9(34)
试验号
列号
1
2
3
4
1
1
1
1
1
2
1
2
2
2
3
1
3
3
3
4
2
1
2
3
5
2
2
3
1
6
2
3
1
2
7
3
1ห้องสมุดไป่ตู้
3
2
8
3
2
1
3
9
3
3
2
1
6
3
上一张 下一张 主 页 退 出
1.2 正交设计旳基本特点
❖ 用部分试验来替代全方面试验,经过对部分 试验成果旳分析,了解全方面试验旳情况。
❖ 当交互作用存在时,有可能出现交互作用旳 混杂。即忽视了部分交互作用来降低试验次 数。
如对于上述3原因3水平试验,若不考虑交
互作用,可利用正交表L9(34)安排,试验方
代表正交表;
❖ L右下角旳数字“8”表达有8行,用这张正交 表安排试验包括8个处理(水平组合);
❖ 括号内旳底数“2” 表达原因旳水平数,括 号内2旳指数“7”表达有7列,
❖ 用这张正交表最多能够安排7个2水平原因。 8
上一张 下一张 主 页 退 出
表5-2
9
上一张 下一张 主 页 退 出
L8(27)二列间交互作用列表
第五章 正交试验设计
正交试验法及实例分析

1、试验方案设计
试验目的与要求 试验指标 选因素
确定水平
选择合适正交表
表头设计
列试验方案
试验结果分析
2、试验结果分析
(1)直接比较。从直观上比较所有实验工况下的实验结果,选取最好的 一项实验工况作为优化选择。 (2)优水平组合,提出预测优处理。即把所有的正交实验结果进行简单 计算,得出各个因子对参考量的影响程度,从而进行优化组合,为后 续的研究工作提供参考。 (3)极差分析。求出各个水平的平均值,选取最大值减去最小值,得出 极差。极差大说明此因子在不同水平的作用下产生的差异大,属于重 要因子,极差小说明此因子在不同水平的作用下对实验结果影响不大, 属于次要因子。再根据优水平进行组,提出预测的优化处理。
2、试验指标
采用正交试验设计的方法,研究在各个因素作用下中庭 空间排风量的大小,从而得到对混合通风影响最大的因素。
3、选因素
热源非对称性集中分布时,由于此时中庭内部的风速及温度 分布存在偏移,且相对于热源对称分布时中庭内部的气流分布不 是很理想,因此,在各个热源分布形式的情况下,分别考虑在中 庭顶部出口和热源层加上风机。热源层加上风机的窗口为住户和 中庭空间连接的内窗口,安装于此的风机定义为内窗风机。此外, 在热源层上加入风机时还必须考虑所放风机的位置。 因此共有4个因素,热源分布形式、顶部风机风量、内窗风 机风量以及内窗风机位置。
②任两列之间各种不同水平的所有可能组合都出现,且对出现 的次数相等
2、基本特点
① 整齐可比性:是指每一个因素的各水平间具有可比性。
② 均匀分散:是指用正交表挑选出来的各因素水平组合在全 部水平组合中的分布是均匀的 。
③ 简单易行
3、正交表的分类
三、正交试验设计的基本程序
正交试验设计例题解析

正交试验设计例题解析正交试验设计是一种有效的实验设计,可以用来衡量因素在相互作用下对实验结果的影响。
它可以组织许多实验变量,以提供准确、精确和可重复的结果。
正交试验设计可以用来分析不同变量的相互作用,以推断出实验结果的影响因素。
正交试验设计的基本思想是对每种因素的每种可能状态进行实验,以找出实验结果的有利和不利因素。
这种实验使用正交表(也称为正交试验表)来组织不同的实验因素和变量。
正交表是一种特殊的矩阵,其中每一行代表一种不同的实验因素,每一列代表一种不同的变量值。
从这种角度来看,正交试验设计是一种多元实验设计,可以用来测试多种可能的变量和变量值之间的交互作用。
一般来说,正交试验设计另外分为因变量实验设计和独立变量实验设计两种类型。
在因变量实验设计中,目的是评估单个因变量在不同水平的自变量变化情况下的变化情况。
在独立变量实验设计中,则旨在评估多个自变量之间的交互作用对因变量的影响。
正交试验设计的另一个重要特点是它可以帮助实验者控制和减少变量之间的相互作用。
这一优点使得实验者可以更精确地针对某些变量进行分析,而不必担心其他变量的可能影响。
此外,正交试验设计还可以帮助实验者识别哪些变量对实验结果的影响最大,以及哪些变量对实验结果的影响最小。
这可以帮助实验者更好地了解实验结果,从而更有效地进行实验。
此外,正交试验设计还可以帮助实验者减少实验成本。
实验者可以识别实验中最重要的变量,将其他变量放在一边,从而减少实验费用的支出。
正交试验设计的主要缺点是它有时会产生较小的变量之间的非线性相关性。
此外,它还需要实验者拥有很强的统计学知识,以便正确解释实验结果。
最后,正交试验设计需要大量的时间和财力,以完成变量之间的精确实验。
总而言之,正交试验设计是一种有效的实验设计,其优点使得它能够识别出自变量和因变量之间的交互作用,并减少实验成本。
然而,它也有其缺点,因此实验者需要了解它的优势和劣势,以确定它是否适合指定的实验。
正交试验设计及其结果的直观分析(单指标 双指标)

综合平衡法
综合平衡法是,先对每个指标分别进行单指标的直观分析,得到 每个指标的影响因素主次顺序和最佳水平组合,然后根据理论知 识和实际经验,对各指标的分析结果进行综合比较和分析,得出 较优方案。
例 在用乙醇溶液提取葛根中有效成分的试验中,为了提高葛根 中有效成分的提取率,对提取工艺进行优化试验,需要考察三向 指标:提取物得率(为提取物质量与葛根质量之比)、提取物中 葛根总黄酮含量、总黄酮中葛根素含量,三个指标都是越大越好, 根据前期探索性试验,决定选取3个相对重要的因素:乙醇浓度、 液固比(乙醇溶液与葛根质量之比)和提取剂回流次数进行正交 试验,它们各有3个水平,具体数据如表6-9所示,不考虑因素间 的交互作用,是进行分析,找出较好的提取工艺条件。
综合评分法
综合评分法是根据各个指标的重要程度,对得出的实验结果进行分 析,给每一个实验评出一个分数,作为这个实验的总指标,然后根 据这个总指标(分数),利用单指标试验结果的直观分析法作进一 步的分析,确定较好的实验方案,显然,这个方法的关键是如何评 分,下面介绍几种评分方法:
1.对每好实验结果的各个指标统一权衡,综合评价,直接给出每一号 试验结果的综合分数(依靠试验者或专家的理论知识和实践经验)
度
隶属度
1
1 1 1 1 2.96 65.70
1.00
1
1.00
2
1 2 2 2 2.18 40.36
0
0
0
3
1 3 3 3 2.45 54.31
0.35
0.55 0.47
4
2 1 2 3 2.70 41,09
0.67
0.03 0.29
5
2 2 3 1 2.49 56.29
正交实验设计及结果分析报告

正交实验设计及结果分析报告(二)引言概述:正交实验设计是一种重要的统计方法,用于系统地研究多个因素对实验结果的影响。
本报告旨在继续探讨正交实验设计,并通过对结果的分析来进一步验证实验设计的有效性和可行性。
本报告将分为五个大点进行阐述,包括实验设计的优势、正交设计的基本原理、正交设计中的参数设定、模型建立与分析、以及结果的解释与验证。
正文内容:1.实验设计的优势1.1提高实验效率:正交实验设计可以将多个因素同时考虑,并将因素的组合设计为试验方案,从而减少试验次数,提高实验效率。
1.2确定关键因素:正交实验设计通过系统地考虑多个因素及其组合方式,可以帮助研究人员确定对实验结果最为关键的因素。
1.3提高可靠性:正交实验设计具有统计学严谨的基础,能够提高实验结果的可靠性和可重复性。
2.正交设计的基本原理2.1正交表的构造:正交表是正交实验设计的基础工具,通过构造正交表,可以实现各个因素水平的均衡分布,从而减少误差的影响。
2.2剔除交互作用:正交设计通过设置正交表中的交互作用项为0,将多个因素的相互作用剔除,使得试验结果更加直接和可解释。
2.3方差分析原理:正交设计采用方差分析方法对结果进行分析,通过检验因素的显著性和误差的可接受程度,得出结果是否具有统计学意义。
3.正交设计中的参数设定3.1因素的选择:根据实验目的和已知因素,选择对结果影响较大的因素作为试验因素,并确定其水平个数。
3.2正交表的选择:根据因素的个数和水平个数,选择合适的正交表进行试验设计,确保每个水平均匀分布。
3.3重复次数的确定:根据实验结果的稳定性和误差容忍度,确定试验的重复次数,以提高结果的可靠性。
4.模型建立与分析4.1建立线性模型:根据试验数据,建立线性回归模型,将各个因素的水平值与结果进行关联,用于后续的参数估计和显著性检验。
4.2参数估计与显著性检验:通过最小二乘法估计模型参数,并进行显著性检验,判断因素是否对结果产生显著影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上一张 下一张 主 页
整齐可比是指每一个因素的各水平间具有可比性。因为正 交表中每一因素的任一水平下都均衡地包含着另外因素的各个 水平 ,当比较某因素不同水平时,其它因素的效应都彼此抵 消。如在A、B、C 3个因素中,A因素的3个水平 A1、A2、A3 条件下各有 B 、C 的 3个不同水平,即:
的每条线上也恰有一个试验点。 9个试验点均衡地分布于整个立方体内 ,有很强的代表 性,能够比较全面地反映选优区内的基本情况。
3
上一张 下一张 主 页
退 出
1.3
正交表及其基本性质
1.3.1 正交表 由于正交设计安排试验和分析试验结果都要用正交表, 因此,我们先对正交表作一介绍。 下表是一张正交表,记号为L8(27),其中“L”代表正
正交表的三个基本性质中,正交性是核心, 是基础,代表性和综合可比性是正交性的必然结 果。
3
上一张 下一张 主 页
退 出
1.4
正交表的类别
1、等水平正交表 各列水平数相同的正交表称为等水 平正交表。如L4(23)、L8(27)、L12(211)等各列中的水平为2,
称为2水平正交表;L9(34)、L27(313)等各列水平为3,称为 3水平正交表。
3
上一张 下一张 主 页
退 出
(2)任两列之间各种不同水平的所有可能组合都出现,
且对出现的次数相等
例: L8(27)中(1, 1), (1, 2), (2, 1), (2, 2)
各出现两次;L9(34) 中 (1, 1),
(1, 2),
(1, 3),
(2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)各出 现1次。即每个因素的一个水平与另一因素的各个水平所 有可能组合次数相等,表明任意两列各个数字之间的搭配 是均匀的。
表 头 设 计 列号 因素 1 A 2 B
3
3 C
L12(2×35)
3
上一张 下一张 主 页
退 出
常用的等水平正交表:
2 水 平 正 交 表 : L 8 ( 2 ), L1 2 ( 2 ), L1 6 ( 2 ), ...... 3 水 平 正 交 表 : L 9 (3 ), L1 8 (3 ), L 2 7 (3 ), ...... 4 水 平 正 交 表 : L1 6 ( 4 ), L 3 2 ( 4 ), L 6 4 ( 4 ), ...... 5 水 平 正 交 表 : L 2 5 (5 ), L 5 0 (5 ), L1 2 5 (5 ), ......
3
上一张 下一张 主 页
在这9个水平组合中,A因素各水平下包括了B、C因素 的3个水平,虽然搭配方式不同,但B、C皆处于同等地位, 当比较A因素不同水平时,B因素不同水平的效应相互抵 消,C因素不同水平的效应也相互抵消。所以A因素3个水 平间具有综合可比性。同样,B、C因素3个水平间亦具有 综合可比性。
设 计 时 选 用 。 2 水 平 正 交 表 除 L8(27) 外 , 还 有 L4(23) 、 L16(215)等;3水平正交表有L9(34)、L27(213)„„等。 1.3.2 正交表的基本性质
1.3.2.1 正交性
(1)任一列中,各水平都出现,且出现的次数相等 例:L8(27)中不同数字只有1和2,它们各出现4次; L9(34)中不同数字有1、2和3,它们各出现3次 。
况。
正因为正交试验是用部分试验来代替全面试验的, 它不可能像全面试验那样对各因素效应、交互作用一一 分析;当交互作用存在时,有可能出现交互作用的混杂。 虽然正交试验设计有上述不足,但它能通过部分试验找
到最优水平组合 ,因而很受实际工作者青睐。
3
上一张 下一张 主 页
退 出
如对于上述3因素3水平试验,若不考虑交互作用,可 利用正交表 L9(34)安排,试验方案仅包含9个水平组合,就 能反映试验方案包含27个水平组合的全面试验的情况,找 出最佳的生产条件。
3
上一张 下一张 主 页
等 水 平 正 交 表
La(bc)
因素个数,列数 正交设计
La(bc)
试验总次数,行数
3
因素水平数
上一张 下一张 主 页
例:选择13)
(A)不考察因素间的交互作用,宜选用L9(34)。 (B)考察交互作用,则应选用L27(313)。 课堂练习: 选择一5个3水平因子及一个2水平因子试验的正交表
的27个节点),工作量大,在有些情况下无法完成 。 若试验的主要目的是寻求最优水平组合,则可利用正交 表来设计安排试验。
3
上一张 下一张 主 页
全 面 试 验 法 示 意 图
3
上一张 下一张 主 页
三因素、三水平全面试验方案
3
上一张 下一张 主 页
退 出
正交试验设计的基本特点是:用部分试验来代替全面 试验,通过对部分试验结果的分析,了解全面试验的情
3
上一张 下一张 主 页
试验目的与要求
试 验 方 案 设 计 流 程
试验指标 选因素、定水平 因素、水平确定 选择合适正交表
表头设计
列试验方案
试验结果分析
3
上一张 下一张 主 页
进行试验,记录试验结果
试 验 结 果 分 析:
试验结果极差分析
试验结果方差分析
计 算 K 值
计 算 k 值
计 算 极 差 R
退 出
例如:设计一个三因素、3水平的试验 A因素,设A1、A2、A3 3个水平;B因素,设B1、B2、B3 3 个水平;C因素,设C1、C2、C3 3个水平,各因素的水平之间 全部可能组合有27种 。 全面试验:可以分析各因素的效应,交互作用,也可选
出最优水平组合。但全面试验包含的水平组合数较多(图示
对于多因素试验,正交试验设计是简单常用的一种试
验设计方法,其设计基本程序如图所示。正交试验设计的
基本程序包括试验方案设计及试验结果分析两部分。
2.1 试验方案设计 (1) 明确试验目的,确定试验指标 试验设计前必须明确试验目的,即本次试验要解决什么 问题。试验目的确定后,对试验结果如何衡量,即需要确 定出试验指标。试验指标可为定量指标,也可为定性指标。
3
上一张 下一张 主 页
退 出
1 正交试验设计的概念及原理
1.1 正交试验设计的基本概念 正交试验设计是利用正交表来安排与分析多因素试验
的一种设计方法。它是由试验因素的全部水平组合中,挑
选部分有代表性的水平组合进行试验的,通过对这部分试 验结果的分析了解全面试验的情况,找出最优的水平组合。
3
上一张 下一张 主 页
1.2 正交试验设计的基本原理
3
上一张 下一张
主 页
正交设计就是从选优区全面试验点(水平组合)中 挑选出有代表性的部分试验点(水平组合)来进行试验。 上图中标有试验号的九个 “(·)”,就是利用正交表
L9(34)从27个试验点中挑选出来的9个试验点。即:
(1)A1B1C1 (4)A1B2C2 (7)A1B3C3 (2)A2B1C2 (5)A2B2C3 (8)A2B3C1 (3)A3B1C3 (6)A3B2C1 (9)A3B3C2
2、混合水平正交表 各列水平数不完全相同的正交表 称为混合水平正交表。如L8(4×24)表中有一列的水平数为 4,有4列水平数为2。也就是说该表可以安排一个4水平因 素和4个2水平因素。再如L16(44×23),L16(4×212)等都混 合水平正交表。
3
上一张 下一张 主 页
退 出
2
正交试验设计的基本程序
第一类正交表不仅可以考察因素对实验指标的影响,还可
以考察因素间交互作用的影响;第二类正交表只能考察各因 素的影响,不能考察因素间的交互作用。 上例中应选择 L27(313)
3
(4) 表头设计
表头设计,就是把试验因素和要考察的交互作用分别安 排到正交表的各列中去的过程。 在不考察交互作用时,各因素可随机安排在各列上; 若考察交互作用,就应按所选正交表的交互作用列表安排各 因素与交互作用,以防止设计“混杂” 。 例:不考察交互作用,可将因素(A)、(B)和(C)、(D) 依次安排在L9(34)的第1、2、3、4列上,见下表所示。
绘制 因素 指标 趋势 图
计算各列偏差平方 和、自由度
列方差分析表, 进行F 检验
优水平
因素主次顺序 结
3
分析检验结果, 写出结论
优组合
论
上一张 下一张 主 页
一般为了便于试验结果的分析,定性指标可按相关的标 准打分或模糊数学处理进行数量化,将定性指标定量化。
(2) 选因素、定水平,列因素水平表 根据专业知识、以往的研究结论和经验,从影响试验指 标的诸多因素中,通过因果分析筛选出需要考察的试验因 素。一般确定试验因素时,应以对试验指标影响大的因素、 尚未考察过的因素、尚未完全掌握其规律的因素为先。试 验因素选定后,根据所掌握的信息资料和相关知识,确定 每个因素的水平,一般以2-4个水平为宜。对主要考察的试 验因素,可以多取水平,但不宜过多(≤6),否则试验次 数骤增。因素的水平间距,应根据专业知识和已有的资料, 尽可能把水平值取在理想区域。
正 交 试 验 设 计
对于单因素或两因素试验,因其因素少 ,试验的设 计 、实施与分析都比较简单 。但在实际工作中 ,常常
需要同时考察3个或3个以上的试验因素 ,若进行全面试
验 ,则试验的规模将很大 ,往往因试验条件的限制而 难于实施 。正交试验设计就是安排多因素试验 、寻求 最优水平组合的一种高效率试验设计方法。
3
上一张 下一张 主 页
1.3.2.3 综合可比性 (1)任一列的各水平出现的次数相等; (2)任两列间所有水平组合出现次数相等,使得任一因素 各水平的试验条件相同。这就保证了在每列因素各水平的效 果中,最大限度地排除了其他因素的干扰。从而可以综合比 较该因素不同水平对试验指标的影响情况。 根据以上特性,我们用正交表安排的试验,具有均衡分 散和整齐可比的特点。 所谓均衡分散,是指用正交表挑选出来的各因素水平组 合在全部水平组合中的分布是均匀的 。 。