理论力学-动能定理
合集下载
理论力学——动能定理

力F在刚体从角j1转到j2所作的功为
W12 M z dj
j1
j2
Mz可视为作用在刚体上的力偶
例1 如图所示滑块重P=9.8 N,弹 簧刚度系数k=0.5 N/cm,滑块在A 位置时弹簧对滑块的拉力为2.5 N, 滑块在20 N的绳子拉力作用下沿光 滑水平槽从位置A运动到位置B,求 作用于滑块上所有力的功的和。
第十三章 动能定理
• • • • •
力的功 质点和质点系的动能 动能定理 普遍定理的综合应用举例 功率· 功率方程· 机械效率
引言
前两章是以动量和冲量为基础,建立了质点或质 点系运动量的变化与外力及外力作用时间之间的关系。 本章以功和动能为基础,建立质点或质点系动能的改 变和力的功之间的关系,即动能定理。不同于动量定 理和动量矩定理,动能定理是从能量的角度来分析质 点和质点系的动力学问题,有时是更为方便和有效的。 同时,它还可以建立机械运动与其它形式运动之间的 联系。
13.1 力的功
13.1.2 变力的功 设质点M在变力F的作用下沿曲线运动,如图。 力 F 在微小弧段上所作的功称为力的元功 , 记为 dW, 于是有
δW F cos d s
力在全路程上作 的功等于元功之和 M M1
ds dr
M'
F
M2
W F cos ds
0
s
上式称为自然法表示的功的计算公式。
I 为AB杆的瞬心
v IA
系统分析
v l sin
v
C
T总 TA TAB
3 TA Mv 2 4
TAB
T总
2
A
1 2 I I AB 2
1 9 M 4m v 2 12
W12 M z dj
j1
j2
Mz可视为作用在刚体上的力偶
例1 如图所示滑块重P=9.8 N,弹 簧刚度系数k=0.5 N/cm,滑块在A 位置时弹簧对滑块的拉力为2.5 N, 滑块在20 N的绳子拉力作用下沿光 滑水平槽从位置A运动到位置B,求 作用于滑块上所有力的功的和。
第十三章 动能定理
• • • • •
力的功 质点和质点系的动能 动能定理 普遍定理的综合应用举例 功率· 功率方程· 机械效率
引言
前两章是以动量和冲量为基础,建立了质点或质 点系运动量的变化与外力及外力作用时间之间的关系。 本章以功和动能为基础,建立质点或质点系动能的改 变和力的功之间的关系,即动能定理。不同于动量定 理和动量矩定理,动能定理是从能量的角度来分析质 点和质点系的动力学问题,有时是更为方便和有效的。 同时,它还可以建立机械运动与其它形式运动之间的 联系。
13.1 力的功
13.1.2 变力的功 设质点M在变力F的作用下沿曲线运动,如图。 力 F 在微小弧段上所作的功称为力的元功 , 记为 dW, 于是有
δW F cos d s
力在全路程上作 的功等于元功之和 M M1
ds dr
M'
F
M2
W F cos ds
0
s
上式称为自然法表示的功的计算公式。
I 为AB杆的瞬心
v IA
系统分析
v l sin
v
C
T总 TA TAB
3 TA Mv 2 4
TAB
T总
2
A
1 2 I I AB 2
1 9 M 4m v 2 12
理论力学-动能定理

vr2
质点系的动能与刚体的动能
质点系的动能——例 题 1
通过本例可以看出,确定系统动能时,注意以下几 点是很重要的:
系统动能中所用的速度必须是绝对速度。 正确应用运动学知识,确定各部分的速度。 需要综合应用动量定理、动量矩定理与动能定理。
质点系的动能与刚体的动能
刚体的动能
v0
r
C1
C2
d
坦克或拖拉机履带单位 长度质量为ρ ,轮的半径 为 r ,轮轴之间的距离为d, 履带前进的速度为v0 。
求:全部履带的总动能。
质点系的动能与刚体的动能——例 题 2
y´
v0 C1
d
r C2
解:把履带看成一质点系
在 C1 C2 上建立平动坐标系
C1x´y´,则牵连运动为水平平
移,牵连速度为 v0。
● 平移刚体的动能
刚体平移时,其上各点在同一瞬时具有相同的速度, 并且都等于质心速度。因此,平移刚体的动能
T
i
12mivi2
1 2
(
mi )vC2
1 2
mvC2
上述结果表明,刚体平移时的动能,相当于将 刚体的质量集中于质心时的动能。
质点系的动能与刚体的动能
刚体的动能
● 定轴转动刚体的动能
* 机器中有相对滑动的两个零件之间的摩擦力是内力,作负功。
* 有势力的内力作功,如系统内的弹簧力作功。
力的功
不作功的力
* 刚体的内力不作功
刚体内任何两点间的距离始终保持不变,所以刚体的内力所作 功之和恒等于零。
* 理想约束约束反力不做功
光滑的固定支承面、轴承、光滑的活动铰链、销钉和活动支座 都是理想约束。理由是它们的约束力不作功或作功之和等于零。
理论力学第12章动能定理

合力之功定理
合力所作的元功等于各分力的元功的代数和;合力在质点
任一段路程中所作的功,等于各分力在同一路段中所作的功的 代数和。
W
M2 M1
FR
dr
M2 M1
Fi
dr
Wi
5
四、几种常见力的功
1、重力的功
Fx Fy 0
W12
z2 z1
mgdz
mg(z1
z2 )
Fz mg
W 12 mgh
即: dT Wi 质点系动能定理的微分形式
T2 T1
W 12
质点系动能定理的积分形式
质点系动能的改变量,等于作用于质点系上的所有力在同一运 动过程中所作的功的代数和。——质点系积分形式动能定理
16
关于功的讨论
1.质点系内力的功
W
F drA F'drB
F drA F drB
vi vC vir
于是有:
T
1 2
mvC2
12mivi2r
质点系的动能等于质点系随同质心C的平动的动能与质点系相对于 质心C运动的动能之和。——柯尼希定理。
13
三.刚体的动能
1.平动刚体
T
1 2
mi
vi
2
1M 2
vC 2
2.定轴转动刚体
T
1 2
mi vi 2
1 2
(
miri2 ) 2
V k 2 δ 为质点在位置M时的弹簧的变形量。
2
三. 机械能守恒定律
T1 V1 T2 V2 机械能守恒.T+V称为机械能
质点系在仅有势力作用下运动时,其机械能保持不变。
质点系在非有势力作用下运动,机械能不守恒。在质点系的 运动过程中,机械能和其他形式的能量之和仍保持不变,这 就是能量守恒定律。
理论力学动能定理

12
2
mi ri 2
即
T
1 2
J z 2
(3)平面运动刚体的动能
速度瞬心为P
T
1 2
J
p 2
1 2
(JC
md 2 ) 2
得
T
1 2
mvC2
1 2
JC
2
即:平面运动刚体的动能等于随质心平移的动能
与绕质心转动的动能之和。
§14-3 动能定理
1、质点的动能定理
将 m d F 两端点乘 dt dr ,
1.势力场
力场 F F x, y, z 如:重力场、弹性力场、万有引力场
势力场: 物体在力场内运动,作用于物体的力的功只 与力作用点的始、末位置有关,与路径无关。
2.势能:在势力场中,质点从点M运动到任选的点M0,
有势力所作的功。
V M0 F dr M
M 0 称零势能点
4.摩擦力的功
(1) 动滑动摩擦力的功
W
M1M2F
ds
M1M
2
f
'Nds
N=常量时, W= –f´N S, 与质点的路径有关。
(2) 圆轮沿固定面作纯滚动时,滑动摩擦力的功 正压力 N ,摩擦力 F 作用于速度瞬心C,瞬心的元位移
dr vCdt0 W Fdr FvCdt0
dt
得 m d F dr
由于 m d d(1 m2 ), F dr w,
2 因此 d(1 m 2 ) w
2
上式称为质点动能定理的微分形式,即质点
动能的微分等于作用在质点上力的元功。
理论力学第13章动能定理

详细描述
在理论力学中,动能被定义为物体运动时的能量,其大小与物体的质量和速度有关。根据牛顿第二定律,物体的动量改变量等于作用在物体上的外力的冲量。因此,如果一个力在一段时间内作用在一个物体上,那么这个力就会使物体的动量发生改变,从而产生动能的变化。
动能的定义
外力的功
外力的功等于力的大小与物体在力的方向上发生的位移的乘积。
总结词
外力的功是指力对物体运动所产生的效应,其大小等于力的大小与物体在力的方向上发生的位移的乘积。这是物理学中功的定义,也是计算外力对物体所做功的基本方法。
详细描述
VS
系统动能的增量等于合外力对系统所做的功。
详细描述
系统动能的增量是指在一个过程中,系统动能的增加量。这个增量可以通过计算合外力对系统所做的功来得到。如果合外力对系统做正功,则系统动能增加;如果合外力对系统做负功,则系统动能减少。因此,系统动能的增量与合外力对系统所做的功有直接的关系。
总结词
系统动能的增量
03
CHAPTER
动能定理的应用
适用于单个质点在力的作用下运动的情况,计算质点的动能变化。
单个质点的动能定理指出,质点在力的作用下运动时,外力对质点所做的功等于质点动能的增量。这个定理是理论力学中研究质点运动的基本定理之一,可以用来解决各种实际问题。
总结词
详细描述
单个质点的动能定理
动能定理是能量守恒定律在动力学中的具体表现,是解决动力学问题的有力工具。
动能定理适用于一切宏观低速的物体,对于微观、高速适用于狭义相对论。
动能定理适用于直线运动,对于曲线运动需要积分形式进行处理。
动能定理的适用范围
02
CHAPTER
动能定理的基本内容
总结词
在理论力学中,动能被定义为物体运动时的能量,其大小与物体的质量和速度有关。根据牛顿第二定律,物体的动量改变量等于作用在物体上的外力的冲量。因此,如果一个力在一段时间内作用在一个物体上,那么这个力就会使物体的动量发生改变,从而产生动能的变化。
动能的定义
外力的功
外力的功等于力的大小与物体在力的方向上发生的位移的乘积。
总结词
外力的功是指力对物体运动所产生的效应,其大小等于力的大小与物体在力的方向上发生的位移的乘积。这是物理学中功的定义,也是计算外力对物体所做功的基本方法。
详细描述
VS
系统动能的增量等于合外力对系统所做的功。
详细描述
系统动能的增量是指在一个过程中,系统动能的增加量。这个增量可以通过计算合外力对系统所做的功来得到。如果合外力对系统做正功,则系统动能增加;如果合外力对系统做负功,则系统动能减少。因此,系统动能的增量与合外力对系统所做的功有直接的关系。
总结词
系统动能的增量
03
CHAPTER
动能定理的应用
适用于单个质点在力的作用下运动的情况,计算质点的动能变化。
单个质点的动能定理指出,质点在力的作用下运动时,外力对质点所做的功等于质点动能的增量。这个定理是理论力学中研究质点运动的基本定理之一,可以用来解决各种实际问题。
总结词
详细描述
单个质点的动能定理
动能定理是能量守恒定律在动力学中的具体表现,是解决动力学问题的有力工具。
动能定理适用于一切宏观低速的物体,对于微观、高速适用于狭义相对论。
动能定理适用于直线运动,对于曲线运动需要积分形式进行处理。
动能定理的适用范围
02
CHAPTER
动能定理的基本内容
总结词
理论力学-11-动能定理及其应用ppt课件

M k
其中k为扭簧的刚度系数。当杆从角度θ1转到角度θ 2时所 作的功为 12 12 2 W k dk k 1 2 1 2 1 2 2
11.1 力的功 3、内力的功
内力作功的情形 日常生活中,人的行走和奔跑是腿的肌肉内力作功; 弹簧力作功等等;摩擦力做功损耗能量。 刚体的内力不作功 刚体内任何两点间的距离始终保持不变,所以刚体 的内力所作功之和恒等于零。
11.1 力的功
W F d r F dx + F dy + F dz 12 i i x y z W
M 2 M 2 M 2 M 1 M 1 M 1
由此得到了两个常用的功的表达式: 重力的功 对于质点:
z
M1 z1
F F 0 x y
重力的元功为
F P mg z=
r = k ( r l ) d r 0 r
r0——沿位矢方向的单位矢量 A k 2 2 2 W W r l r l 12 1 0 2 0 A 1 2
1 、 2 ——弹簧在初始位置和最终位置的变形量 。
k 2 2 W ( ) 12 1 2 2
vO O
C*
FN
W F d r F v d t 0 F C C
约束力为无功力的约束称为理想约束
11.1 力的功
总结: 内力不能改变质点系的动量和动量矩,但 它可能改变质点系的能量; 外力能改变质点系的动量和动量矩,但不 一定能改变其能量。
第11章 动能定理及其应用
11.2 质点与质点系的动能
弹性力作的功只与弹簧在初始和终止位置的变形量有关。
理论力学动能定理解析

度,则弹簧在此位置的变形量 l l0
对于线性弹簧,在此位置的弹簧力 F k
因此,弹簧力的功为
W12
1 2
k (12
2 2
)
B B1
FB1
FB
1
2
FA1
A1
FA
FA2
A
A2
B2 FB2
(3) 质点系的外力(主动力)的功
① 质点系的重力的功
设质点系内任一质点的质量为mi,当它由初位置点Ai
(xi1, yi1, zi1) 运动到末位置点Bi (xi2 , yi2 , zi2 )
在势力场中,质点从点M运动到任选的点M0,有势 力所作的功称为质点在点M相对于点M0的势能。以V表 示为
M0
M0
V F dr (Fxdx Fydy Fzdz)
M
M
点M0的势能等于零,称为零势能点。在势力场中, 势能的大小是相对于零势能点而言的。零势能点可以 任意选取,对于不同的零势能点,在势力场中同一位 置的势能可有不同的数值。
1 2
mvC2
Te
是质点系随质心平移的动能,亦 可称为牵连运动动能;
1 2
mi
vr2i
Tr
是质点系相对质心转动的动能,亦可 称为相对运动动能;
T
1 2
mvC2
1 2
mi
vr2i
或 Ta Te Tr
(2) 刚体的动能
(a)平移刚体的动能
T
1 m
2i
vi2
1 2
vC2
mi
即
T
1 2
mvC2
(1) 重力场中的势能
重力场中,以铅垂轴为z轴,z0处为零势能点。质点于 z坐标处的势能V等于重力mg由z到z0处所作的功,即
对于线性弹簧,在此位置的弹簧力 F k
因此,弹簧力的功为
W12
1 2
k (12
2 2
)
B B1
FB1
FB
1
2
FA1
A1
FA
FA2
A
A2
B2 FB2
(3) 质点系的外力(主动力)的功
① 质点系的重力的功
设质点系内任一质点的质量为mi,当它由初位置点Ai
(xi1, yi1, zi1) 运动到末位置点Bi (xi2 , yi2 , zi2 )
在势力场中,质点从点M运动到任选的点M0,有势 力所作的功称为质点在点M相对于点M0的势能。以V表 示为
M0
M0
V F dr (Fxdx Fydy Fzdz)
M
M
点M0的势能等于零,称为零势能点。在势力场中, 势能的大小是相对于零势能点而言的。零势能点可以 任意选取,对于不同的零势能点,在势力场中同一位 置的势能可有不同的数值。
1 2
mvC2
Te
是质点系随质心平移的动能,亦 可称为牵连运动动能;
1 2
mi
vr2i
Tr
是质点系相对质心转动的动能,亦可 称为相对运动动能;
T
1 2
mvC2
1 2
mi
vr2i
或 Ta Te Tr
(2) 刚体的动能
(a)平移刚体的动能
T
1 m
2i
vi2
1 2
vC2
mi
即
T
1 2
mvC2
(1) 重力场中的势能
重力场中,以铅垂轴为z轴,z0处为零势能点。质点于 z坐标处的势能V等于重力mg由z到z0处所作的功,即
理论力学--第十二章 动能定理

由
M z Ft R
W M z d
从角 1 转动到角 2 过程中力
F 的功为
W12 M z d
1
2
若
Mz
常量
则 W12
M z ( 2 1 )
4. 平面运动刚体上力系的功 力系全部力的元功之和为
W Wi
当质心由 C1 ~ C2 ,转角由 1
2、弹性力的功 弹簧刚度系数k(N/m)
弹性力
F k (r l0 )er
A2
弹性力的功为
W12
A1
A2
F dr
k (r l0 )er dr
A1
因
1 r 1 er dr dr d(r r ) d(r 2 ) dr r 2r 2r
例3 均质细杆长为l,质量为m,上端B靠在光滑的墙上, 下端A用铰与质量为M半径为R且放在粗糙地面上的圆 柱中心相连,在图示位置圆柱作纯滚动,中心速度为 v,
杆与水平线的夹角=45o,求该瞬时系统的动能。
B C
v
A
T总 TA TAB
3 TA Mv 2 4
I为AB杆的瞬心
P
B
C
v PA
S
W=0
N
dW F1 dr1 F dr2
' 2
F1 φ 1 dr1 dr2
F2
F1( dr1cos1 dr2cos2 )
0
约束力做功之和等于零。
φ2
(3)光滑铰链支座
(4)固定端约束
}
约束力不作功
F
dr
F’
(5)光滑铰链(中间铰链)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
l0
)2
(r2
l0 )2 ]
其中, 1 、 2 是弹簧初始位置 和最终位置的变形量。
弹性力的功与路径无关。
力的功
作用在刚体上力与力偶的功
定轴转动刚体上作用力的功
刚体以角速度ω绕定轴 z 转动,其上 A 点作用
有力 F ,则
F F cos
ds Rd
则力F 的元功为
W F d r F R d Mz ( F )d
i
mi (ri )2
12(
2
i
miri2 )
1 2
J z
2
柔性约束也是理想约束。因为它们只有在拉紧时才受力,这时 与刚性杆一样,内力作功之和等于零。
力的 功 不作功的力
* 纯滚动时,滑动摩擦力(约束力)不作功
vO O
C* F
FN
C* 为瞬时速度中心,在这一 瞬时C*点的速度为零。作用在 C*点的摩擦力F 所作元功为
dWF F drC
F vC dt 0 约束力不做功的约束称为理想约束
对于质点: W12 mg z1 z2
其中:z1 、z2分别是质点在初位置和末位置的z 坐标
对于质点系: W12 mg zC1 zC2
其中:zC1、 zC2分别是质点系质心在初位置和末位置的z 坐
标 重力的功与路径无关。
力的功
几种常见力的功
弹性力的功
W12
k(
2
2 1
2)
2
k 2 [(r1
T
i
1 2mi
vi2
1 2
(
mi )vC2
1 2
mvC2
上述结果表明,刚体平移时的动能,相当于将 刚体的质量集中于质心时的动能。
质点系的动能与刚体的动能
刚体的动能
● 定轴转动刚体的动能
刚体以角速度 绕定轴 z 转动时,其上-点的速度
为:
vi ri
因此,定轴转动刚体的动能为
T 1 2
理论力学
第三篇 动力学
第12章 动能定理
第12章 动能定理
动能是物体因为运动而具有的机械能,它是作功 的一种能力。动能定理描述质点系动能的变化与力 作功之间的关系。
动力学普遍定理
动量定理 动量矩定理 动能定理
矢量形式
标量形式
求解实际问题时,往往需要综合应用动量定理、 动量矩定理和动能定理。
力的功
vD
mvrcos 2m m0
T
1 2
m(vD2
vr2 )
1 2
m(vD2
vr2
2vDvrcos )
1 2
m0vD2
2m(2m m0 ) m2cos2 2(2m m0 )
vr2
质点系的动能与刚体的动能
刚体的动能
● 平移刚体的动能
刚体平移时,其上各点在同一瞬时具有相同的速度, 并且都等于质心速度。因此,平移刚体的动能
力的功
内力作功的情形
质点系的内力总是成对出现的,且等值、反向、共线。因此, 质点系的内力对质点系的动量和动量矩没有影响。
? 那么,质点系的内力对质点系作不作功呢
事实上,在许多情形下,物体的运动是由内力作功而引起的。 当然也有的内力确实不作功。
* 人的行走和奔跑是腿的肌肉内力作功。
* 所有的发动机从整体考虑,其内力都作功。
M z (F ) F R ——力 F 对轴 z 的矩
于是,力在刚体上由 1 转到 2 时所作的功为
W12
2 1
M
z
(
F
)
d
力的功
作用在刚体上力的功、力偶的功 定轴转动刚体上外力偶的功
若力偶矩矢量为 M ,则力偶所作之功为
W M zd
W12
2 1
M
zd
其中Mz 为力偶矩矢 M 在 z 轴上的投影,即力偶对转轴 z 的矩。
方向无关。质点系的动能与刚体源自动能质点系的动能——例 题 1
设重物A、B的质量为mA= mB= m, 三角块D 的质量为 m0 ,置于光滑地 面上。圆轮C 和绳的质量忽略不计。
系统初始静止。
v 求:当物块A以相对速度
系统的动能。
r 下落时
解:重物A、B的运动可以看成质点的运动,
三角块D做平动,也可以看成质点的运动。
* 机器中有相对滑动的两个零件之间的摩擦力是内力,作负功。
* 有势力的内力作功,如系统内的弹簧力作功。
力的 功 不作功的力
* 刚体的内力不作功
刚体内任何两点间的距离始终保持不变,所以刚体的内力所作 功之和恒等于零。
* 理想约束约束反力不做功
光滑的固定支承面、轴承、光滑的活动铰链、销钉和活动支座 都是理想约束。理由是它们的约束力不作功或作功之和等于零。
开始运动后,系统的动能为
T
1 2
mAvA2
1 2
mBvB2
1 2
m0vD2
其中 vA vD vAr ; vB vD vBr
质点系的动能与刚体的动能
质点系的动能——例 题 1
v A vD v Ar vB vD vBr
或者写成
v
2 A
vD2
vr2
?
vB2 vD2 vr2 2vDvr cos (vD vr cos)2 (vr sin )2
理想约束的约束反力不做功
第12章 动能定理
质点系的动能与刚体的动能 质点系的动能 刚体的动能
质点系的动能与刚体的动能
质点系的动能
物理学中对质点的动能的定义为
T 1 mv2 2
质点系的动能为质点系内各质点动能之和。
T
i
1 2mi
vi2
动能是度量质点系整体运动的另一物理量。动能
是正标量,其数值与速度的大小有关,但与速度的
力的功
力的功定义
M1
变力 Fi 的元功
δW Fi dri Fi ds cosFi,dri
M2
Fxdx Fydy Fzdz
力 Fi 在其作用点的轨迹上从 M1 点到 M2 点所作的功:
W12
M2 M1
Fi
d
ri
M2 M1
(
Fxdx
Fydy
Fzdz)
力的功
几种常见力的功
重力的功
质点系的动能与刚体的动能
质点系的动能——例 题 1
T
1 2
mAvA2
1 2
mBvB2
1 2
m0vD2
v
2 A
vD2
vr2
vB2 vD2 vr2 2vDvr cos (vD vr cos)2 (vr sin )2
注意到,系统水平方向上动量守恒,故有
mAvAx mBvBx mDvDx 0 mvD m(vD vrcos) m0vD 0
力的功定义
常力对直线运动质点所作的功: W F s F s cos
变力 Fi 的元功
M1
δW Fi dri Fi ds cosFi,dri
M2
Fxdx Fydy Fzdz
需要注意的是,一般情形下,元功并不是功函数的全微 分,所以,一般不用dW表示元功,而是用W表示。 W仅仅 是Fi•dri 的一种记号。