上海市宝山区、嘉定区中考数学二模试卷及答案.doc

合集下载

上海市宝山区、嘉定区中考二模数学试题及答案

上海市宝山区、嘉定区中考二模数学试题及答案

嘉定九年级第二次质量调研数学试卷(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】一、选择题:(本大题共6题,每题4分,满分24分) 1.下列说法中,正确的是(▲)(A )23是分数; (B )0是正整数; (C )722是有理数;(D )16是无理数. 2.抛物线2(1)4y x =-+与y 轴的交点坐标是(▲)(A )(0,4); (B )(1,4); (C )(0,5); (D )(4,0). 3.下列说法正确的是(▲)(A )一组数据的平均数和中位数一定相等; (B )一组数据的平均数和众数一定相等; (C )一组数据的方差一定是正数;(D )一组数据的众数一定等于该组数据中的某个数据.4.今年春节期间,小明把2000元压岁钱存入中国邮政储蓄银行,存期三年,年利率是%.254,小明在存款到期后可以拿到的本利和为(▲)(A )20003%)25.41(+元; (B )20002+0003254⨯⨯%.元; (C )20003254⨯⨯%.元; (D )20003%)25.41(⨯+元. 5.如图1,已知向量a 、b 、c ,那么下列结论正确的是(▲)(A )b c a =+; (B )b c a =-; (C )c b a -=+; (D )c b a =+.6.已知⊙1O 的半径长为cm 2,⊙2O 的半径长为cm 4.将⊙1O 、⊙2O 放置在直线l 上(如图2),如果⊙1O 在直线l 上任意滚动,那么圆心距21O O 的长不可能是(▲) (A )cm 1; (B )cm 2; (C )cm 6; (D )cm 8.2Oa bc图1二、填空题(本大题共12题,每题4分,满分48分) 7.化简:21-= ▲ .8. 计算:=23)(a ▲ .9. 计算:=÷3166 ▲ (结果表示为幂的形式). 10.不等式组⎩⎨⎧>+≤-04201x ,x 的解集是 ▲ .11.在一个不透明的布袋中装有2个白球和8个红球,它们除了颜色不同之外,其余均相同.如果从中随机摸出一个球,摸到红球的概率是 ▲ .(将计算结果化成最简分数) 12.如果关于x 的方程1)1(2+=-a x a 无解,那么实数a = ▲ .13.近视眼镜的度数y (度)与镜片焦距x (米)呈反比例,其函数关系式为xy 100=.如果近似眼镜镜片的焦距250.x =米,那么近视眼镜的度数y 为 ▲ . 14.方程x x -=+6的根是 ▲ .15.手机已经普及,家庭座机还有多少?为此,某校中学生从某街道5000户家庭中随机抽取50户家庭进行统计,列表如下: 拥有座机数(部) 01234相应户数10141871该街道拥有多部电话(指1部以上,不含1部)的家庭大约有 ▲ 户.16.如果梯形两底的长分别为3和7,那么联结该梯形两条对角线的中点所得的线段长为 ▲ .17.在平面直角坐标系中,对于平面内任意一点(x ,y ),若规定以下两种变换:①),(y x f =(2+x ,y ).如)1,1(f =)1,3(;②),(y x g =),(y x --,如)2,2(g =)2,2(--.按照以上变换有:))1,1((f g =)1,3(g =)1,3(--,那么))4,3((-g f 等于 ▲ . 18.如图3,在梯形ABCD 中,已知AB ∥CD ,︒=∠90A ,cm AB 5=,cm BC 13=.以点B 为旋转中心,将BC 逆时针旋转︒90至BE ,BE 交CD 于F点.如果点E 恰好落在射线AD 上,那么DF 的长为 ▲ cm . E三、简答题(本大题共7题,满分78分) 19.(本题满分10分)计算:︒+︒︒-︒+-60sin 45tan 30sin 30cos 42730)(.20.(本题满分10分)解方程:12221=++-x x .21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图4,在ABC ΔRt 中,90ACB ∠=︒,点D 在AC 边上,且CA CD BC ⋅=2. (1)求证:CBD A ∠=∠;(2)当α=∠A ,2=BC 时,求AD 的长(用含α的锐角三角比表示).22.(本题满分10分,每个小题各5分)某游泳池内现存水)(m 18903,已知该游泳池的排水速度是灌水速度的2倍.假设在换水时需要经历“排水——清洗——灌水”的过程,其中游泳池 内剩余的水量y (3m )与换水时间....t (h )之间的 函数关系如图5所示.根据图像解答下列问题:(1)根据图中提供的信息,求排水的速度及清洗该游泳池所用的时间;(2)求灌水过程中的y (3m )与换水时间....t (h )之间的函数关系式,写出函数的定义域.23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图6,点E 是正方形ABCD 边BC 上的一点(不与B 、C 重合),点F 在CD 边ACBD图4(h)tO1890521 )(m 3yABCD E FMN图6的延长线上,且满足BE DF =.联结EF ,点M 、N 分别是EF 与AC 、AD 的交点. (1)求AFE ∠的度数; (2)求证:FCACCM CE =.24.(本题满分12分,每小题满分4分)已知平面直角坐标系xOy (如图7),抛物线c bx x y ++=221经过点)0,3(-A 、)23,0(-C .(1)求该抛物线顶点P 的坐标; (2)求CAP ∠tan 的值;(3)设Q 是(1)中所求出的抛物线的一个动点,点Q 的横坐标为t ,当点Q 在第四象限时,用含t 的代数式表示△QAC 的面积.25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)已知AP 是半圆O 的直径,点C 是半圆O 上的一个动点(不与点A 、P 重合),联结AC ,以直线AC 为对称轴翻折AO ,将点O 的对称点记为1O ,射线1AO 交半圆O 于点B ,联结OC .(1)如图8,求证:AB ∥OC ;(2)如图9,当点B 与点1O 重合时,求证:CB AB =;图7 O xy1- 1-11(3)过点C 作射线1AO 的垂线,垂足为E ,联结OE 交AC 于F .当5=AO ,11=B O 时,求AFCF的值.参考答案一、选择题:(本大题共6题,每题4分,满分24分) 1.C ;2.C ;3.D ;4.B ;5.C ;6.A.二、填空题(本大题共12题,每题4分,满分48分) 7.12-;8.6a ;9.326;10.12≤<-x ;11.54;12.1=a ;13.400=y ;14.2-=x ;15.2600;16.2;17.(5,4-);18.1235(或写成12112). 三、简答题(本大题共7题,满分78分)19.解:原式=23121234331+-⨯+- ……………………6分=32132331+-+- …………1分=13231-=+--. …………2+1分20.解:方程两边同时乘以)x )x 2(2+-(,得 4)2(222-=-++x x x …1+1+1+1分整理,得 0232=--x x . ……2分AC(O 1)BO 图9AO 备用图A B CO 1O 图8解这个整式方程,得 21731+=x ,21732-=x . ……2+1分 (若记错了求根公式,但出现了17,即根的判别式计算正确,可得1分)经检验知,21731+=x ,21732-=x 都是原方程的根. ……1分 所以,原方程的根是 21731+=x ,21732-=x . 21.解:(1)∵CA CD BC ⋅=2,∴BCCACD BC =. ……1分 ∵90ACB ∠=︒,点D 在AC 边上,∴BCD ACB ∠=∠. ……1分 ∴△ACB ∽△BCD . ∴CBD A ∠=∠. ……1+1分 说明:若没有写出“∵90ACB ∠=︒,点D 在AC 边上,∴BCD ACB ∠=∠”,但只要写出了BCD ACB ∠=∠,可得1分.(2)∵CBD A ∠=∠,α=∠A ,∴α=∠CBD .……………………………1分 在Rt △ACB 中,90ACB ∠=︒,2=BC ,α=∠A . ∵BCACA =∠cot , ∴ααcot 2cot =⋅=BC AC . …………………………………………2分 在Rt △BCD 中,︒=∠90BCD ,α=∠CBD ,2=BC , ∵BCCDCBD =∠tan , ∴ααtan 2tan =⋅=BC CD . …………………………………………2分 ∴ ααtan 2cot 2-=-=CD AC AD . ……………………………1分 本题解题方法较多,请参照评分.如写成 ααtan 2tan 2-=AD ;4cos 4tan 22--=ααAD ; 4cos 44sin 422---=ααAD ;ααtan 24sin 42--=AD 等等,均正确.22.解(1)由图像可知,该游泳池5个小时排水)(m 18903, ……1分所以该游泳池排水的速度是37851890=÷(/h m 3). ……1分由题意得该游泳池灌水的速度是18921378=⨯(/h m 3),……1分 由此得灌水)(m 18903需要的时间是101891890=÷(h ) ……1分 所以清洗该游泳池所用的时间是610521=--(h ) ……1分(2)设灌水过程中的y (3m )与换水时间t (h )之间的函数关系式是b kt y +=(0≠k ).将(11,0),(21,1890)代入b kt y ++=,得⎩⎨⎧=+=+.b k ,b k 189021011 解得⎩⎨⎧-==.b ,k 2079189 ……1+2分所以灌水过程中的y (3m )与时间t (h )之间的函数关系式是2079189-=t y (2111≤<t ). ……1+1分备注:学生若将定义域写成2111≤≤t ,亦视为正确,此处不是问题的本质.23.解:(1)在正方形ABCD 中, ︒=∠=∠=∠90BAD ADC B ,AD AB =.……1分 ∵BE DF =,︒=∠=∠90ADF B ,AD AB =,∴△ABE ≌△ADF .……1分 ∴AF AE =,DAF BAE ∠=∠. ……………1+1分∴︒=∠=∠+∠=∠+∠=∠90BAD BAE EAD DAF EAD EAF . ……1分 ∵AF AE =,∴AEF AFE ∠=∠. ∴︒=︒⨯=∠=∠459021AEF AFE . ……………1分 (2) 方法1:∵四边形ABCD 是正方形,∴︒=∠45ACD . ……………1分∵︒=∠45AEF ,∴ACF AEF ∠=∠. ……………1分 又∵FMC AME ∠=∠, ……………1分 ∴△ABE ∽△ADF , ……………2分∴FCACCM CE =. ……………1分 方法2:∵四边形ABCD 是正方形,∴︒=∠=∠45ACD ACB . …………1分 ∵△ABE ≌△ADF ,∴AFD AEB ∠=∠. ……………1分∵CAE CAE ACB AEB ∠+︒=∠+∠=∠45, CFM CFM AFE AFD ∠+︒=∠+∠=∠45,∴CFM CAE ∠=∠. ……………2分又∵ACD ACB ∠=∠,△ACE ∽△FCM . ……………1分∴FCACCM CE =. ……………1分 其他方法,请参照评分.24.解:(1)将)0,3(-A 、)23,0(-C 代入c bx x y ++=221,得 ⎪⎪⎩⎪⎪⎨⎧-==+--.23,032)3(2c c b 解得 ⎪⎩⎪⎨⎧-==.c ,b 231 ………………2分所以抛物线的表达式为23212-+=x x y . ………………1分 其顶点P 的坐标为(1-,2-). ………………1分 (2)方法1:延长AP 交y 轴于G ,过 C 作AG CH ⊥,垂足是H . 设直线AP 的表达式为b kx y +=, 将),(A 03-、),(P 21--代入,得⎩⎨⎧-=+-=+-203b k b k ,解得⎩⎨⎧-=-=31b k . ∴3--=x y . 进而可得G (30-,). ………1分 ∴OA OG =,︒=∠=∠45OAG G . 在Rt △CHG 中,42345sin =︒⋅==CG CH HG . ………1分 在Rt △AOG 中,2345cos =︒=OGAG ,∴429=-=HG AG AH .∴31tan ==∠AH CH CAP .……1+1分 方法2:设a CH =,易得a CG 2=,a OG 22=,a AG 4=,a AH 3=, 31tan ==∠AH CH CAP . 方法3:联结OP ,利用两种不同的方式分别表示四边形APCO 的面积:49+=+=∆∆∆APC AOC APC APCO S S S S 四边形; 415433=+=+=∆∆POC APO APCO S S S 四边形;∴23=∆APC S ,然后求523=AC 、22=AP ,利用面积求AC 边上的高552=h ,求1010sin =∠CAP ,进而求31tan =∠CAP . (3)设)2321,(2-+t t t Q , …………1分由Q 在第四象限,得t t =,2321232122+--=-+t t t t . 联结OQ ,易得 AOQ QOC AOC QAC S S S S ∆∆∆∆-+=. ∵4923321=-⨯-⨯=∆AOC S ,t t S QOC 432321=⨯-⨯=∆, ………1分 492343232132122+--=-+⨯-⨯=∆t t t t S QOA …………1分 ∴t t t t t S QAC 4943)492343(434922+=+---+=∆. …………1分 25.解:(1)∵点1O 与点O 关于直线AC 对称,∴AC O OAC 1∠=∠. ………1分 在⊙O 中,∵OC OA =,∴C OAC ∠=∠. …………1分 ∴C AC O ∠=∠1. ∴1AO ∥OC ,即AB ∥OC . …………1+1分 (2)方法1:联结OB . ………1分 ∵点1O 与点O 关于直线AC 对称,AC 1OO ⊥, ………1分 由点1O 与点B 重合,易得AC OB ⊥. ………1分 ∵点O 是圆心,AC OB ⊥,∴CB AB = ………2分方法2:∵点1O 与点O 关于直线AC 对称,∴1AO AO =,1CO CO = ………1+1分由点1O 与点B 重合,易得 AB AO =,CO CB = …………1分 ∵OC OA =,∴CB AB =. ∴ CB AB = ………1+1分 方法3:证平行四边形1AOCO 是菱形.(3) 过点O 作AB OH ⊥,垂足为H .∵AB OH ⊥,AB CE ⊥,∴OH ∥CE ,又∵AB ∥OC ,∴5==OC HE .……1分 当点1O 在线段AB上(如图),6111=+=+=B O AO B O AO AB ,又∵ AB OH ⊥,∴321==AB AH . ∴835=+=+=AH EH AE ……1分∵AB ∥OC , ∴85==AE OC AF CF ……1分当点1O 在线段AB 的延长线上,类似可求75==AE OC AF CF . …2分。

2023年上海市宝山区中考数学二模试卷(含解析)

2023年上海市宝山区中考数学二模试卷(含解析)

2023年上海市宝山区中考数学二模试卷一、选择题(共6题,每题4分,满分24分)1.(4分)下列运算正确的是A.B.C.D.2.(4分)无理数在A.1和2之间B.2和3之间C.3和4之间D.4和5之间3.(4分)如果一个三角形的两边长分别为、,那么这个三角形的第三边的长可以是A.B.C.D.4.(4分)已知点、分别在的边、的延长线上,,,设,那么用向量表示为A.B.C.D.5.(4分)在研究反比例函数的图象时,小明想通过列表、描点的方法画出反比例函数的图象,但是在作图时,小明发现计算有错误,四个点中有一个不在该函数图象上,那么这个点是124A.B.,C.D.6.(4分)已知点、、在圆上,那么下列命题为真命题的是A.如果半径平分弦,那么四边形是平行四边形B.如果弦平分半径,那么四边形是平行四边形C.如果四边形是平行四边形,那么D.如果,那么四边形是平行四边形二、填空题(本大题共12题,每题4分,满分48分)7.(4分)计算:.8.(4分)分解因式:.9.(4分)分式中字母的取值范围是.10.(4分)如果关于的方程有两个相等的实数根,那么.11.(4分)在平面直角坐标系中,若点在第二象限,则的取值范围为.12.(4分)一个不透明的袋子里装有3个白球和1个红球,这些小球除颜色外无其他差别,如果从袋子中随机摸出一个小球,那么摸出的小球是红球的概率是.13.(4分)已知一次函数的图象经过点,那么.14.(4分)某长途汽车客运公司规定旅客可免费随身携带一定质量的行李,如果超过规定的质量,则需购买行李票.行李费用(元是行李质量(千克)的一次函数,其图象如图所示.旅客最多可免费携带行李的质量是千克.15.(4分)如图,在正五边形中,是边延长线上一点,联结,那么的度数为.16.(4分)如图,已知点在矩形的边上,且,,那么的长等于.17.(4分)如图,已知中,,,如果将绕点顺时针旋转到△,使点的对应点落在边上,那么的度数是.18.(4分)如果一个三角形的两个内角与满足,那么我们称这样的三角形为“倍角互余三角形”.已知在中,,,,点在边上,且是“倍角互余三角形”,那么的长等于.三、解答题(本大题共7题,满分78分)19.(10分)计算:.20.(10分)解方程组:.21.(10分)某校开设了、、、、五类兴趣课,为了解学生对这五类兴趣课的喜爱情况,从全校500名学生中随机抽取了若干名学生进行“你最喜爱的兴趣课”问卷调查(每个学生从、、、、中选择一类).根据调查结果绘制出条形统计图(图和扇形统计图(图,两个统计图都尚未完成.(1)求本次问卷调查中最喜欢类课程的学生人数,并在图1中补全相应的条形图;(2)根据本次调查的结果,试估计该校全体学生中最喜欢类兴趣课的人数是多少?22.(10分)“小房子”是一种常见的牛奶包装盒(如图,图2是其一个侧面的示意图,由“盒身”矩形和“房顶”等腰三角形组成.已知厘米,厘米,厘米.(1)求“房顶”点到盒底边的距离;(2)现设计了牛奶盒的一个新造型,和原来相比较,折线段的长度(即线段与的和)及矩形的面积均不改变,且,,求新造型“盒身”的高度(即线段的长).23.(12分)如图,四边形中,,、交于点,.(1)求证:;(2)是边上一点,联结交于点,如果,求证:四边形是平行四边形.24.(12分)在平面直角坐标系xOy中,已知抛物线y=﹣x2+bx+c经过点A(﹣3,0)、B(1,0),与y轴交于点C,抛物线的顶点为D.(1)求二次函数的解析式和顶点D的坐标;(2)联结AC,试判断△ACD与△BOC是否相似,并说明理由;(3)将抛物线平移,使新抛物线的顶点E落在线段OC上,新抛物线与原抛物线的对称轴交于点F,联结EF,如果四边形CEFD的面积为3,求新抛物线的表达式.25.(14分)如图,已知半圆的直径,是圆外一点,的平分线交半圆于点,且,联结交于点.(1)当时,求的长;(2)当时,求的值;(3)当为直角三角形时,求的值.参考答案一、选择题(本大题共6题,每题4分,满分24分)1.(4分)下列运算正确的是A.B.C.D.【分析】利用合并同类项的法则,同底数幂的乘法的法则,幂的乘方的法则对各项进行运算即可.解:、与不属于同类项,不能合并,故不符合题意;、与不属于同类项,不能合并,故不符合题意;、,故不符合题意;、,故符合题意;故选:.【点评】本题主要考查合并同类项,幂的乘方,同底数幂的乘法,解答的关键是对相应的运算法则的掌握.2.(4分)无理数在A.1和2之间B.2和3之间C.3和4之间D.4和5之间【分析】先估计7的范围,再估算的范围.解:,,故选:.【点评】本题考查了无理数的估算,常用夹逼法,用相邻的两个整数夹逼无理数是解题的关键.3.(4分)如果一个三角形的两边长分别为、,那么这个三角形的第三边的长可以是A.B.C.D.【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边长的范围,再选出答案即可.解:设第三边的长度为,由题意得:,即:,只有适合,故选:.【点评】此题主要考查了三角形的三边关系,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.4.(4分)已知点、分别在的边、的延长线上,,,设,那么用向量表示为A.B.C.D.【分析】由题意可得,则,可得,进而可得,根据可得答案.解:,,,,,,,,.故选:.【点评】本题考查平面向量、相似三角形的判定与性质,熟练掌握平面向量的运算法则、相似三角形的判定与性质是解答本题的关键.5.(4分)在研究反比例函数的图象时,小明想通过列表、描点的方法画出反比例函数的图象,但是在作图时,小明发现计算有错误,四个点中有一个不在该函数图象上,那么这个点是124A .B .,C .D .【分析】根据反比例函数中的特点进行解答即可.解:,这个点是.故选:.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.6.(4分)已知点、、在圆上,那么下列命题为真命题的是A .如果半径平分弦,那么四边形是平行四边形B .如果弦平分半径,那么四边形是平行四边形C .如果四边形是平行四边形,那么D .如果,那么四边形是平行四边形【分析】根据垂径定理、圆周角定理、平行四边形的判定和性质判断即可.解:、当半径平分弦,但弦不平分时,四边形不是平行四边形,故本选项说法是假命题;、当弦平分半径,但弦不垂直半径时,四边形不是平行四边形,故本选项说法是假命题;、如图,在优弧上取点,连接、,四边形是平行四边形,,由圆周角定理得:,,四边形为圆的内接四边形,,,,故本选项说法是真命题,符合题意;、当,四边形不一定是平行四边形,故本选项说法是假命题;故选:.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.二、填空题(本大题共12题,每题4分,满分48分)7.(4分)计算:2.【分析】根据二次根式乘方的意义与二次根式乘法的运算法则,即可求得答案.解:.故答案为:2.【点评】此题考查了二次根式乘法与乘方运算.此题比较简单,注意运算符号的确定.8.(4分)分解因式:.【分析】先提取公因式,再对余下的多项式利用平方差公式继续分解.解:.【点评】考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.9.(4分)分式中字母的取值范围是.【分析】根据题意得,然后解不等式即可.解:根据题意得,解得,即的取值范围为.故答案为:.故答案为:.【点评】本题考查了分式有意义的条件:分式有意义的条件是分母不等于零.10.(4分)如果关于的方程有两个相等的实数根,那么.【分析】根据方程的系数结合根的判别式△,即可得出关于的一元一次方程,解之即可得出的值.解:关于的方程有两个相等的实数根,△,解得:,的值为.故答案为:.【点评】本题考查了根的判别式,牢记“当△时,方程有两个相等的实数根”是解题的关键.11.(4分)在平面直角坐标系中,若点在第二象限,则的取值范围为.【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可.解:点在第二象限,,解不等式①得,,所以不等式组的解集是.故答案为:.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限.12.(4分)一个不透明的袋子里装有3个白球和1个红球,这些小球除颜色外无其他差别,如果从袋子中随机摸出一个小球,那么摸出的小球是红球的概率是.【分析】用红球的个数除以球的总个数即可.解:从袋子中随机摸出一个小球共有种等可能结果,其中摸出的小球是红球的有1种结果,摸出的小球是红球的概率为,故答案为:.【点评】本题主要考查概率公式,随机事件的概率(A)事件可能出现的结果数所有可能出现的结果数.13.(4分)已知一次函数的图象经过点,那么4.【分析】利用一次函数图象上点的坐标特征,可得出关于的一元一次方程,解之即可得出的值.解:一次函数的图象经过点,,解得:.故答案为:4.【点评】本题考查了一次函数图象上点的坐标特征,牢记“直线上任意一点的坐标都满足函数关系式”是解题的关键.14.(4分)某长途汽车客运公司规定旅客可免费随身携带一定质量的行李,如果超过规定的质量,则需购买行李票.行李费用(元是行李质量(千克)的一次函数,其图象如图所示.旅客最多可免费携带行李的质量是25千克.【分析】由图,已知直线上两坐标,可根据待定系数法列方程,求函数关系式,旅客可免费携带行李,即,代入所求得的函数关系式,即可知质量为多少.解:设一次函数,当时,,当时,,,解得:,所求函数关系式为;当时,,所以,故旅客最多可免费携带25千克行李.故答案为:25.【点评】本题主要考查了函数的图象和用待定系数法求一次函数关系式,并会用一次函数研究实际问题,具备在直角坐标系中的读图能力.注意自变量的取值范围不能遗漏.15.(4分)如图,在正五边形中,是边延长线上一点,联结,那么的度数为.【分析】根据正多边形的外角和是,求出这个正多边形的每个内角,再根据,得出,最后根据,即可得出答案.解:是正五边形,,,,.故答案为:.【点评】本题考查了多边形的内角与外角.根据正多边形的外角和求多边形的外角和内角的度数是常用的一种方法.16.(4分)如图,已知点在矩形的边上,且,,那么的长等于4.【分析】作于点,由,得,由矩形的性质得,则,所以,则,由,,得,则,所以,于是得到问题的答案.解:作于点,则,,,四边形是矩形,,,,,,,,,,,,,故答案为:4.【点评】此题重点考查矩形的性质、等腰三角形的性质、平行线的性质、角平分线的性质、三角形内角和定理、直角三角形中角所对的直角边等于斜边的一半等知识,正确地作出所需要的辅助线是解题的关键.17.(4分)如图,已知中,,,如果将绕点顺时针旋转到△,使点的对应点落在边上,那么的度数是.【分析】分别求出,可得结论.解:在中,,,,由旋转变换的性质可知,,,,.故答案为:.【点评】本题考查旋转变换,三角形内角和定理,等腰三角形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.18.(4分)如果一个三角形的两个内角与满足,那么我们称这样的三角形为“倍角互余三角形”.已知在中,,,,点在边上,且是“倍角互余三角形”,那么的长等于或.【分析】作于,根据定义规定分别得出或这两种情况,再分别根据全等和相似计算即可.解:如图1,,,,作于,设,,①当时,,,,,,,,设,,,,即.②当时,,,,即,,.故答案为为:或.【点评】本题考查了直角三角形的性质,熟练运用全等、相似、勾股定理是解题关键.三、解答题(本大题共7题,满分78分)19.(10分)计算:.【分析】先算分数指数幂、绝对值、三角函数,再算加减.解:原式.【点评】本题考查分数指数幂、实数运算、三角函数,掌握幂的运算是解题关键.20.(10分)解方程组:.【分析】由②得出③,把③代入①得出,求出,再把代入③求出即可.解:,由②得:③,把③代入①,得,解得:,把代入③,得,所以方程组的解是.【点评】本题考查了解高次方程组,能把方程组转化成是解此题的关键.21.(10分)某校开设了、、、、五类兴趣课,为了解学生对这五类兴趣课的喜爱情况,从全校500名学生中随机抽取了若干名学生进行“你最喜爱的兴趣课”问卷调查(每个学生从、、、、中选择一类).根据调查结果绘制出条形统计图(图和扇形统计图(图,两个统计图都尚未完成.(1)求本次问卷调查中最喜欢类课程的学生人数,并在图1中补全相应的条形图;(2)根据本次调查的结果,试估计该校全体学生中最喜欢类兴趣课的人数是多少?【分析】(1)用的人数除以比求出样本容量,再用样本容量乘可得的人数,用样本容量乘可得的人数,进而得出的人数,再补全相应的条形图即可;(2)用该校全体学生人数乘样本中最喜欢类兴趣课的人数所占百分比即可.解:(1)调查的总人数(名,(名,(名,(名,最喜欢类课程的人数为:(名,补全的条形统计图如下:(2)(名,答:估计该校全体学生中最喜欢类兴趣课的人数大约是140名.【点评】本题考查条形统计图、扇形统计图的意义和制作方法,从两个统计图中获取数量和数量关系是正确解答的关键.22.(10分)“小房子”是一种常见的牛奶包装盒(如图,图2是其一个侧面的示意图,由“盒身”矩形和“房顶”等腰三角形组成.已知厘米,厘米,厘米.(1)求“房顶”点到盒底边的距离;(2)现设计了牛奶盒的一个新造型,和原来相比较,折线段的长度(即线段与的和)及矩形的面积均不改变,且,,求新造型“盒身”的高度(即线段的长).【分析】(1)作,垂足为,交于点,根据矩形的性质得到厘米,,根据勾股定理即可得到结论;(2)设厘米,厘米,根据勾股定理得到(厘米),求得厘米,根据矩形的面积公式列方程即可得到结论.解:(1)作,垂足为,交于点,四边形是矩形,厘米,,.厘米,厘米,厘米,(厘米),(厘米)答:房顶”点到盒底边的距离为7.5厘米;(2)在中,,设厘米,厘米,(厘米),厘米,(厘米),厘米,矩形的面积不改变,,解得或,,或,,,.答:新造型“盒身”的高度为6.5厘米.【点评】本题考查的是直角三角形的应用,解此题的关键是把实际问题转化为数学问题,要把实际问题抽象到直角三角形中,利用三角函数求解.23.(12分)如图,四边形中,,、交于点,.(1)求证:;(2)是边上一点,联结交于点,如果,求证:四边形是平行四边形.【分析】(1)由等腰三角形的性质和判定及平行线的性质,说明和全等,利用全等三角形的性质得结论;(2)先说明,再说明,结合已知由平行四边形的判定可得结论.【解答】证明:(1),.,,...在和中,,..(2),,,,即.,...又,四边形是平行四边形.【点评】本题主要考查了三角形全等和相似,掌握全等三角形的性质和判定、相似三角形的判定和性质、平行线的性质、等腰三角形的判定和性质及平行四边形的判定是解决本题的关键.24.(12分)在平面直角坐标系xOy中,已知抛物线y=﹣x2+bx+c经过点A(﹣3,0)、B(1,0),与y轴交于点C,抛物线的顶点为D.(1)求二次函数的解析式和顶点D的坐标;(2)联结AC,试判断△ACD与△BOC是否相似,并说明理由;(3)将抛物线平移,使新抛物线的顶点E落在线段OC上,新抛物线与原抛物线的对称轴交于点F,联结EF,如果四边形CEFD的面积为3,求新抛物线的表达式.【分析】(1)用待定系数法可得二次函数的解析式为y=﹣x2﹣2x+3;化为顶点式即知顶点D的坐标为(﹣1,4);(2)在y=﹣x2﹣2x+3中,求出C(0,3),即可得AC=3,AD=2,CD=,OB=1,OC=3,BC=,由三边对应成比例的三角形相似可得答案;(3)由新抛物线的顶点E落在线段OC,设新抛物线表达式为y=﹣x2+m,即可得CE=3﹣m,DF=4﹣(﹣1+m)=5﹣m,根据四边形CEFD的面积为3,有×1×(3﹣m+5﹣m)=3,解出m的值即可得新抛物线解析式为y=﹣x2+1.解:(1)把A(﹣3,0)、B(1,0)代入y=﹣x2+bx+c得:,解得,∴二次函数的解析式为y=﹣x2﹣2x+3;∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点D的坐标为(﹣1,4);(2)△ACD∽△COB,理由如下:在y=﹣x2﹣2x+3中,令x=0得y=3,∴C(0,3),∵A(﹣3,0)、B(1,0),D(﹣1,4),O(0,0),∴AC=3,AD=2,CD=,OB=1,OC=3,BC=,∴==,==,==,∴==,∴△ACD∽△COB;(3)如图:由新抛物线的顶点E落在线段OC,设新抛物线表达式为y=﹣x2+m,则顶点E(0,m),∵原抛物线对称轴为直线x=﹣1,∴F(﹣1,﹣1+m),∴CE=3﹣m,DF=4﹣(﹣1+m)=5﹣m,∵四边形CEFD的面积为3,∴×1×(3﹣m+5﹣m)=3,解得m=1,∴新抛物线解析式为y=﹣x2+1.【点评】本题考查二次函数的综合应用,涉及待定系数法,三角形相似的判定,平移变换等知识,解题的关键是掌握相似三角形的判定定理和利用梯形面积公式列方程.25.(14分)如图,已知半圆的直径,是圆外一点,的平分线交半圆于点,且,联结交于点.(1)当时,求的长;(2)当时,求的值;(3)当为直角三角形时,求的值.【分析】(1)过点作于点,连接,由可得,证明四边形是矩形,则,根据勾股定理即可求解;(2)过点作于点,连接,由含的直角三角形的性质可得,证明四边形是矩形,则,,再证,根据相似三角形的性质即可得;(3)过点作于点,连接,分两种情况:①当时,②当时,分别求解即可.解:(1)过点作于点,连接,,,,,,,在中,,,(负值已舍去),是的平分线,,,,,,,,,,四边形是矩形,,;(2)过点作于点,连接,,,,,是的平分线,,,,,,,,,,四边形是矩形,,,,,,;(3)①当时,过点作于点,连接,,,,,,,,,,(负值舍去),;②当时,连接,,,,,,,,,;综上,的值为或.【点评】本题是相似综合题,考查了矩形的判定和性质,勾股定理,含的直角三角形的性质,相似三角形的判定和性质,锐角三角函数,解题的关键是正确寻找相似三角形解决问题,需要利用参数解决问题,属于中考压轴题.。

上海市嘉定区、宝山区中考数学二模试卷及答案.doc

上海市嘉定区、宝山区中考数学二模试卷及答案.doc

2016年上海市嘉定区、宝山区中考数学二模试卷一、选择题(本大题共6题,每题4分,满分24分)1.﹣2的倒数是()A.﹣2 B.2 C.﹣D.2.下列计算正确的是()A.2a﹣a=1 B.a2+a2=2a4 C.a2•a3=a5D.(a﹣b)2=a2﹣b23.某地气象局预报称:明天A地区降水概率为80%,这句话指的是()A.明天A地区80%的时间都下雨B.明天A地区的降雨量是同期的80%C.明天A地区80%的地方都下雨D.明天A地区下雨的可能性是80%4.某老师在试卷分析中说:参加这次考试的82位同学中,考91的人数最多,有11人之众,但是十分遗憾最低的同学仍然只得了56了.这说明本次考试分数的众数是()A.82 B.91 C.11 D.565.如果点K、L、M、N分别是四边形ABCD的四条边AB、BC、CD、DA的中点,且四边形KLMN是菱形,那么下列选项正确的是()A.AB⊥BC B.AC⊥BD C.AB=BC D.AC=BD6.如图,梯形ABCD中,AD∥BC,AB=DC,∠DBC=45°,点E在BC上,点F在AB上,将梯形ABCD沿直线EF翻折,使得点B与点D重合.如果,那么的值是()A.B.C.D.二、填空题(本大题共12题,每题4分,满分48分)7.据统计,今年上海“樱花节”活动期间顾村公园入园赏樱人数约312万人次,用科学记数法可表示为______人次.8.因式分解:2a2﹣8=______.9.不等式组的解集是______.10.如果在组成反比例函数图象的每条曲线上,y都随x的增大而增大,那么k的取值范围是______.11.如果函数y=f(x)的图象沿x轴的正方向平移1个单位后与抛物线y=x2﹣2x+3重合,那么函数y=f(x)的解析式是______.12.甲、乙、丙、丁四位同学五次数学测验成绩统计如下表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加上海市初中数学竞赛,那么应选______同学.甲乙丙丁平均数70 85 85 70标准差 6.5 6.5 7.6 7.613.方程的解是______.14.已知在平行四边形ABCD中,点M、N分别是边AB、BC的中点,如果、,那么向量=______(结果用、表示).15.以点A、B、C为圆心的圆分别记作⊙A、⊙B、⊙C,其中⊙A的半径长为1,⊙B的半径长为2,⊙C的半径长为3,如果这三个圆两两外切,那么cosB的值是______.16.如图,如果在大厦AB所在的平地上选择一点C,测得大厦顶端A的仰角为30°,然后向大厦方向前进40米,到达点D处(C、D、B三点在同一直线上),此时测得大厦顶端A 的仰角为45°,那么大厦AB的高度为______米(保留根号).17.对于实数m、n,定义一种运算“*”为:m*n=mn+n.如果关于x的方程x*(a*x)=有两个相等的实数根,那么满足条件的实数a的值是______.18.如图,点D在边长为6的等边△ABC的边AC上,且AD=2,将△ABC绕点C顺时针方向旋转60°,若此时点A和点D的对应点分别记作点E和点F,联结BF交边AC与点G,那么tan∠AEG=______.三、解答题(本大题共7题,满分78分)19.化简求值:()÷,其中x=.20.解方程:.21.如图,在△ABC中,按以下步骤作图:①分别以A、B为圆心,大于的长为半径画弧,相交于两点M、N;②联结MN,直线MN交△ABC的边AC与点D,联结BD.如果此时测得∠A=34°,BC=CD.求∠ABC与∠C的度数.22.如图,在平面直角坐标系xOy中,过点A(﹣4,2)向x轴作垂线,垂足为B,联结AO得到△AOB,过边AO中点C的反比例函数的图象与边AB交于点D.求:(1)反比例函数的解析式;(2)求直线CD与x轴的交点坐标.23.如图,BD是平行四边形ABCD的对角线,若∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE与BF相交于H,BF与AD的延长线相交于G.求证:(1)CD=BH;(2)AB是AG和HE的比例中项.24.在平面直角坐标系xOy(如图)中,经过点A(﹣1,0)的抛物线y=﹣x2+bx+3与y轴交于点C,点B与点A、点D与点C分别关于该抛物线的对称轴对称.(1)求b的值以及直线AD与x轴正方向的夹角;(2)如果点E是抛物线上一动点,过E作EF平行于x轴交直线AD于点F,且F在E的右边,过点E作EG⊥AD与点G,设E的横坐标为m,△EFG的周长为l,试用m表示l;(3)点M是该抛物线的顶点,点P是y轴上一点,Q是坐标平面内一点,如果以点A、M、P、Q为顶点的四边形是矩形,求该矩形的顶点Q的坐标.25.如图,⊙O与过点O的⊙P交于AB,D是⊙P的劣弧OB上一点,射线OD交⊙O于点E,交AB延长线于点C.如果AB=24,tan∠AOP=.(1)求⊙P的半径长;(2)当△AOC为直角三角形时,求线段OD的长;(3)设线段OD的长度为x,线段CE的长度为y,求y与x之间的函数关系式及其定义域.2016年上海市嘉定区、宝山区中考数学二模试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)1.﹣2的倒数是()A.﹣2 B.2 C.﹣D.【考点】倒数.【分析】根据倒数的定义:乘积是1的两数互为倒数.一般地,a•=1 (a≠0),就说a (a≠0)的倒数是.【解答】解:﹣2的倒数是﹣,故选C.2.下列计算正确的是()A.2a﹣a=1 B.a2+a2=2a4 C.a2•a3=a5D.(a﹣b)2=a2﹣b2【考点】完全平方公式;合并同类项;同底数幂的乘法.【分析】根据合并同类项,积的乘方,完全平方公式,即可解答.【解答】解:A.2a﹣a=a,故错误;B.a2+a2=2a2,故错误;C.a2•a3=a5,正确;D.(a﹣b)2=a2﹣2ab+b2,故错误;故选:C.3.某地气象局预报称:明天A地区降水概率为80%,这句话指的是()A.明天A地区80%的时间都下雨B.明天A地区的降雨量是同期的80%C.明天A地区80%的地方都下雨D.明天A地区下雨的可能性是80%【考点】概率的意义.【分析】降水概率就是降水的可能性,根据概率的意义即可作出判断.【解答】解:“明天A地区降水概率为80%”是指明天A地区下雨的可能性是80%.且明天下雨的可能性较大,故A、B、C都错误,只有D正确;故选:D.4.某老师在试卷分析中说:参加这次考试的82位同学中,考91的人数最多,有11人之众,但是十分遗憾最低的同学仍然只得了56了.这说明本次考试分数的众数是()A.82 B.91 C.11 D.56【考点】众数.【分析】利用众数的定义直接回答即可.【解答】解:∵考91的人数最多,∴众数为91分,故选:B.5.如果点K、L、M、N分别是四边形ABCD的四条边AB、BC、CD、DA的中点,且四边形KLMN是菱形,那么下列选项正确的是()A.AB⊥BC B.AC⊥BD C.AB=BC D.AC=BD【考点】中点四边形.【分析】由E、F、G、H分别为AB、BC、CD、DA的中点,得出KL,MN是中位线,再得出四条边相等,根据四条边都相等的四边形是菱形.【解答】解:∵点K、L、M、N分别是四边形ABCD的四条边AB、BC、CD、DA,∴KL∥AC,KL=AC,MN∥BD,MN=BD,∵四边形EFGH为菱形,∴AC=BD,故选:D.6.如图,梯形ABCD中,AD∥BC,AB=DC,∠DBC=45°,点E在BC上,点F在AB上,将梯形ABCD沿直线EF翻折,使得点B与点D重合.如果,那么的值是()A.B.C.D.【考点】翻折变换(折叠问题).【分析】根据对称的性质得到△BFE≌△DFE,得到DE=BE.根据已知条件得到∠DEB=90°,设AD=1,BC=4,过A作AG⊥BC于G,根据矩形的性质得到GE=AD=1,根据全等三角形的性质得到BG=EC=1.5,根据勾股定理得到AB=CD==5,通过△BDC∽△DEF,得到,求出BF=,于是得到结论.【解答】解:∵EF是点B、D的对称轴,∴△BFE≌△DFE,∴DE=BE.∵在△BDE中,DE=BE,∠DBE=45°,∴∠BDE=∠DBE=45°.∴∠DEB=90°,∴DE⊥BC.在等腰梯形ABCD中,∵,∴设AD=1,BC=4,过A作AG⊥BC于G,∴四边形AGED是矩形.∴GE=AD=1,∵Rt△ABG≌Rt△DCE,∴BG=EC=1.5,∴AG=DE=BE=2.5∴AB=CD==5,∵∠ABC=∠C=∠FDE,∵∠CDE+∠C=90°,∴∠FDE+∠CDE=90°∴∠FDB+∠BDC+∠FDB=∠FDB+∠DFE=90°,∴∠BDC=∠DFE,∵∠DEF=∠DBC=45°,∴△BDC∽△DEF,∴,∴DF=,∴BF=,∴AF=AB﹣BF=,∴=.故选B.二、填空题(本大题共12题,每题4分,满分48分)7.据统计,今年上海“樱花节”活动期间顾村公园入园赏樱人数约312万人次,用科学记数法可表示为 3.12×106人次.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将908万用科学记数法表示为3.12×106,故答案为:3.12×106.8.因式分解:2a2﹣8=2(a+2)(a﹣2).【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式2,进而利用平方差公式分解因式即可.【解答】解:2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).9.不等式组的解集是1<x<2.【考点】解一元一次不等式组.【分析】分别求出两个不等式的解集,然后再求出两个解集的公共部分.【解答】解:解不等式x+1<3得,x<2;解不等式2x﹣1>1得,x>1;则不等式组的解集为1<x<2.故答案为1<x<2.10.如果在组成反比例函数图象的每条曲线上,y都随x的增大而增大,那么k的取值范围是k>1.【考点】反比例函数的性质.【分析】根据反比例函数的增减性列出关于k的不等式,求出k的取值范围即可.【解答】解:∵反比例函数图象的每条曲线上,y都随x的增大而增大,∴1﹣k<0,解得k>1.故答案为:k>1.11.如果函数y=f(x)的图象沿x轴的正方向平移1个单位后与抛物线y=x2﹣2x+3重合,那么函数y=f(x)的解析式是y=x2+2.【考点】二次函数图象与几何变换.【分析】把y=x2﹣2x+3沿x轴负方向平移1个单位后得到要求的抛物线.【解答】解:根据题意,y=x2﹣2x+3=(x﹣1)2+2,沿x轴负方向平移1个单位,得到y=x2+2.故答案为y=x2+2.12.甲、乙、丙、丁四位同学五次数学测验成绩统计如下表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加上海市初中数学竞赛,那么应选乙同学.甲乙丙丁平均数70 85 85 70标准差 6.5 6.5 7.6 7.6【考点】标准差.【分析】此题有两个要求:①成绩较好,②状态稳定.于是应选平均数大、方差小的同学参赛.【解答】解:由于乙的方差较小、平均数较大,故选乙.故答案为:乙.13.方程的解是x=﹣1.【考点】无理方程.【分析】根据方程可知等号左边的x+1≤0,等号右边根号里面的x+1≥0,联立不等式组,即可解答本题.【解答】解:∵,∴,解得,x=﹣1,故答案为:x=﹣1.14.已知在平行四边形ABCD中,点M、N分别是边AB、BC的中点,如果、,那么向量=+(结果用、表示).【考点】*平面向量.【分析】首先根据题意画出图形,然后连接AC,由三角形法则,即可求得,然后由点M、N分别是边AB、BC的中点,根据三角形中位线的性质,求得答案.【解答】解:如图,连接AC,∵四边形ABCD是平行四边形,∴==,∵,∴=+=+,∵点M、N分别是边AB、BC的中点,∴==+.故答案为:+.15.以点A、B、C为圆心的圆分别记作⊙A、⊙B、⊙C,其中⊙A的半径长为1,⊙B的半径长为2,⊙C的半径长为3,如果这三个圆两两外切,那么cosB的值是.【考点】相切两圆的性质.【分析】由已知条件得出△ABC的三边长,由勾股定理的逆定理证明△ABC是直角三角形,∠A=90°,再由三角函数的定义即可得出结果.【解答】解:如图所示:∵⊙A的半径长为1,⊙B的半径长为2,⊙C的半径长为3,且这三个圆两两外切,∴AB=1+2=3,AC=3+1=4,BC=3+2=5,∵AB2+AC2=BC2,∴△ABC是直角三角形,∠A=90°,∴cosB==.故答案为:.16.如图,如果在大厦AB所在的平地上选择一点C,测得大厦顶端A的仰角为30°,然后向大厦方向前进40米,到达点D处(C、D、B三点在同一直线上),此时测得大厦顶端A 的仰角为45°,那么大厦AB的高度为20+20米(保留根号).【考点】解直角三角形的应用-仰角俯角问题.【分析】先设AB=x;根据题意分析图形:本题涉及到两个直角三角形Rt△ACB和Rt△ADB,应利用其公共边BA构造等量关系,解三角形可求得DB、CB的数值,再根据CD=BC﹣BD=40,进而可求出答案.【解答】解:设AB=x,在Rt△ACB和Rt△ADB中,∵∠C=30°,∠ADB=45°,CD=40,∴DB=x,AC=2x,∴BC==x,∴∵CD=BC﹣BD=40,x﹣x=40,∴x=20(+1),故答案为:20+20.17.对于实数m、n,定义一种运算“*”为:m*n=mn+n.如果关于x的方程x*(a*x)=有两个相等的实数根,那么满足条件的实数a的值是0.【考点】根的判别式.【分析】由于定义一种运算“*”为:m*n=mn+n,所以关于x的方程x*(a*x)=变为(a+1)x2+(a+1)x+=0,而此方程有两个相等的实数根,所以根据判别式和一元二次方程的一般形式的定义可以得到关于a的关系式,即可解决问题.【解答】解:由x*(a*x)=﹣,得(a+1)x2+(a+1)x+=0,依题意有a+1≠0,△=(a+1)2﹣(a+1)=0,解得,a=0,或a=﹣1(舍去).故答案为:0.18.如图,点D在边长为6的等边△ABC的边AC上,且AD=2,将△ABC绕点C顺时针方向旋转60°,若此时点A和点D的对应点分别记作点E和点F,联结BF交边AC与点G,那么tan∠AEG=.【考点】旋转的性质;等边三角形的性质.【分析】作GM⊥AE于M,则∠AMG=90°,由等边三角形的性质得出AB=BC=AC=6,∠BAC=∠ABC=60°,由旋转的性质得出△AEC≌△ABC,EF=AD=2,因此AE=CE=AB=6,∠EAC=∠ACE=60°,CF=CE﹣EF=4,得出AB∥CF,证出△ABG∽△CFG,得出对应边成比例=,求出AG,再求出AM,得出GM、ME,即可得出结果.【解答】解:如图所示:作GM⊥AE于M,则∠AMG=90°,∵△ABC是边长为6的等边三角形,∴AB=BC=AC=6,∠BAC=∠ABC=60°,由旋转的性质得:△AEC≌△ABC,EF=AD=2,∴AE=CE=AB=6,∠EAC=∠ACE=60°,CF=CE﹣EF=4,∴AB∥CF,∴△ABG∽△CFG,∴==,∴AG=AC=3.6,∵∠AGM=90°﹣60°=30°,∴AM=AG=1,∴GM=AM=,ME=AE﹣AM=,∴tan∠AEG===;故答案为:.三、解答题(本大题共7题,满分78分)19.化简求值:()÷,其中x=.【考点】二次根式的化简求值.【分析】括号内通分,化除法为乘法进行化简,然后代入求值.【解答】解:原式=×=.将x=代入,得原式==.20.解方程:.【考点】解分式方程.【分析】方程两边乘以x(2x﹣1)去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程两边同时乘以x(2x﹣1),得(2x﹣1)2﹣3x2+2x(2x﹣1)=0,整理后,得5x2﹣6x+1=0,解得:x1=1,x2=,经检验:x1=1,x2=是原方程的根,则原方程的根是x1=1,x2=.21.如图,在△ABC中,按以下步骤作图:①分别以A、B为圆心,大于的长为半径画弧,相交于两点M、N;②联结MN,直线MN交△ABC的边AC与点D,联结BD.如果此时测得∠A=34°,BC=CD.求∠ABC与∠C的度数.【考点】作图—基本作图;线段垂直平分线的性质.【分析】利用基本作图可判断MN垂直平分AB,则DA=DB,根据等腰三角形的性质和三角形外角性质得∠CDB=68°,再由CB=CD得到∠CBD=∠CDB=68°,所以∠ABC=∠DBA+∠CBD=102°,然后利用三角形内角和定理计算∠C的度数.【解答】解:由作法得MN垂直平分AB,则DA=DB,∴∠DBA=∠A=34°,∴∠CDB=∠DBA+∠A=68°,∵CB=CD,∴∠CBD=∠CDB=68°,∴∠ABC=∠DBA+∠CBD=34°+68°=102°,∠C=180°﹣68°﹣68°=44°.22.如图,在平面直角坐标系xOy中,过点A(﹣4,2)向x轴作垂线,垂足为B,联结AO得到△AOB,过边AO中点C的反比例函数的图象与边AB交于点D.求:(1)反比例函数的解析式;(2)求直线CD与x轴的交点坐标.【考点】待定系数法求反比例函数解析式.【分析】(1)由A点的坐标结合中点的坐标公式可得出点C的坐标,将点C的坐标代入到反比例函数解析式即可求出k值,从而得出反比例函数的解析式;(2)令x=﹣4,找出D点的坐标,由待定系数法求出直线CD的函数解析式,再令y=0,解关于x的一元一次方程即可得出直线CD与x轴的交点坐标.【解答】解:(1)∵点C为线段AO的中点,∴C点的坐标为(﹣2,1),将点C(﹣2,1)代入到反比例函数中得:1=,解得:k=﹣2.∴反比例函数的解析式为y=﹣.(2)令x=﹣4,则y=﹣=.即点D的坐标为(﹣4,).设直线CD的解析式为y=ax+b,由点C、D在直线CD的图象上可知:,解得:.∴直线CD的解析式为y=x+.令y=0,则有x+=0,解得:x=﹣6.∴直线CD与x轴的交点坐标为(﹣6,0).23.如图,BD是平行四边形ABCD的对角线,若∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE与BF相交于H,BF与AD的延长线相交于G.求证:(1)CD=BH;(2)AB是AG和HE的比例中项.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】(1)根据已知利用AAS判定△BEH≌△DEC,从而得到BH=DC;(2)根据两组角对应相等的两个三角形相似得到△BEH∽△GBA,相似三角形的对应边成比例所以BH•AB=EH•AG,由于BH=DC=AB所以推出了AB2=GA•HE.【解答】证明:(1)∵在▱ABCD中,DE⊥BC,∠DBC=45°,∴∠DEC=∠BEH=90°,DE=BE,∵∠EBH+∠BHE=90°,∠DHF+∠CDE=90°,∴∠EBH=∠EDC,在△BEH与△DEC中,,∴△BEH≌△DEC.∴BH=DC;(2)∵四边形ABCD是平行四边形,∴AG∥BC,∠A=∠C=∠BHE,AB=CD,∴∠G=∠HBE,∴△BEH∽△GBA,∴BH•AB=EH•AG,∵BH=DC=AB,∴AB2=GA•HE.24.在平面直角坐标系xOy(如图)中,经过点A(﹣1,0)的抛物线y=﹣x2+bx+3与y轴交于点C,点B与点A、点D与点C分别关于该抛物线的对称轴对称.(1)求b的值以及直线AD与x轴正方向的夹角;(2)如果点E是抛物线上一动点,过E作EF平行于x轴交直线AD于点F,且F在E的右边,过点E作EG⊥AD与点G,设E的横坐标为m,△EFG的周长为l,试用m表示l;(3)点M是该抛物线的顶点,点P是y轴上一点,Q是坐标平面内一点,如果以点A、M、P、Q为顶点的四边形是矩形,求该矩形的顶点Q的坐标.【考点】二次函数综合题.【分析】(1)将点A(﹣1,0)代入抛物线的解析式可求得b的值,然后可得到抛物线的解析式,从而可求得抛物线的对称轴,再依据对称性可求得D(2,3),B(3,0),最后依据待定系数法求得AD的解析式可求得直线AD与x轴正方向的夹角;(2)设E(m,﹣m2+2m+3),则F(﹣m2+2m+2,﹣m2+2m+3),EF=﹣m2+m+2.然后证明△EFG为等腰直角三角形,从而得到EF=(1+)EF,于是可求得l与m的关系式;(3)先利用配方法求得点M的坐标,然后根据①AM为矩形的对角线时,②当AM为矩形的一边时两种情况求解即可.【解答】解:(1)∵将点A(﹣1,0)代入抛物线的解析式得:﹣1﹣b+3=0,解得:b=2,∴y=﹣x2+2x+3.∴抛物线的对称轴为直线x=1.令x=0得:y=3,则C(0,3).∵点B与点A、点D与点C分别关于该抛物线的对称轴对称,∴D(2,3),B(3,0).设直线AD的解析式为y=kx+b.∵将A(﹣1,0)、D(2,3)代入得:,解得:k=1,b=1,∴直线AD的解析式为y=x+1.∴直线AD与x轴正方向的夹角为45°.(2)如图1所示:设E(m,﹣m2+2m+3),则F(﹣m2+2m+2,﹣m2+2m+3),EF=﹣m2+2m+2﹣m=﹣m2+m+2.∵∠EGF=90°,∠EFG=45°,∴△EFG为等腰直角三角形.∴l=EF+FG+EG=EF+EF+EF=(1+)EF=(1+)(﹣m2+m+2)=﹣()m2+(+1)m+2+2.(3)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴M(1,4).①AM为矩形的对角线时,如图2所示:∵由矩形的性质可知:N为AM的中点,A(﹣1,0),M(1,4),∴N(0,2).∵由两点间的距离公式可知:MN==.∴NQ1=NQ2=,∴Q1(0,2+),Q2(0,2﹣).②当AM为矩形的一边时,如图3所示:过Q3作Q3E⊥y轴,垂直为E,过Q4作Q4F⊥y 轴,垂足为F.∵在△ANO中,AO=1,ON=2,∴tan∠ANO=,∴tan∠MNP4=,∴P4M MN=,NP4=MN=.∴P4Q3=.∴P4E=P4Q3=1,EQ3=P4Q3=2.∵OE=OP4﹣P4E=4.5﹣1=3.5,∴Q3的坐标为(2,3.5).∵点Q3与Q4关于点N对称,∴Q4(﹣2,).综上所述,点Q的坐标为(0,2+),或(0,2﹣)或(2,3.5)或(﹣2,).25.如图,⊙O与过点O的⊙P交于AB,D是⊙P的劣弧OB上一点,射线OD交⊙O于点E,交AB延长线于点C.如果AB=24,tan∠AOP=.(1)求⊙P的半径长;(2)当△AOC为直角三角形时,求线段OD的长;(3)设线段OD的长度为x,线段CE的长度为y,求y与x之间的函数关系式及其定义域.【考点】圆的综合题.【分析】(1)首先设OP的延长线交AB于点H,连接AP,由垂径定理可求得AH的长,然后由三角函数,求得OH的长,再设⊙P的半径为r,由在Rt△AHP中,AH2+PH2=AP2,即可求得答案;(2)首先过点P作PG⊥OD于点G,求得OA的长,易证得△PGO∽△OHA,然后由相似三角形的对应边成比例,求得答案;(3)首先过点H作HI⊥OC于点I,可得PG∥HI,然后由平行线分线段成比例定理,求得OI,再由△OHI∽△OCH,求得答案.【解答】解:(1)设OP的延长线交AB于点H,连接AP,∵AH=AB=×24=12,tan∠AOP=,∴OH==18,设⊙P的半径为r,在Rt△AHP中,AH2+PH2=AP2,∴(18﹣r)2+122=r2,解得:r=13,答:⊙P的半径长为13;(2)过点P作PG⊥OD于点G,则OA===6,∵∠AOC=90°,∴∠POG+∠AOH=90°,∵∠AOH+∠OAH=90°,∴∠POG=∠OAH,∴△PGO∽△OHA,∴,即=,解得:OD=4;(3)如图2,过点H作HI⊥OC于点I,则OE=OA=6,∴PG∥HI,∴,即,∴OI=x,∵∠O是公共角,∠OUH=∠OHC=90°,∴△OHI∽△OCH,∴,∴,∴y=﹣6(0<x<6).像平时有价值的升学文章,像自招、校园开放日消息、历年中考分数线,那些文章我都放在公众号菜单栏那个按钮上的专题那里了,还有什么细化的升学问题,你们可以关注公众号给我留言,我看到会第一时间回复你们的——小编编。

2019年上海市宝山区、嘉定区中考二模数学试题及答案

2019年上海市宝山区、嘉定区中考二模数学试题及答案

2019学年嘉定九年级第二次质量调研数学试卷(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】一、选择题:(本大题共6题,每题4分,满分24分) 1.下列说法中,正确的是(▲)(A )23是分数; (B )0是正整数; (C )722是有理数;(D )16是无理数. 2.抛物线2(1)4y x =-+与y 轴的交点坐标是(▲)(A )(0,4); (B )(1,4); (C )(0,5); (D )(4,0). 3.下列说法正确的是(▲)(A )一组数据的平均数和中位数一定相等; (B )一组数据的平均数和众数一定相等; (C )一组数据的方差一定是正数;(D )一组数据的众数一定等于该组数据中的某个数据.4.今年春节期间,小明把2000元压岁钱存入中国邮政储蓄银行,存期三年,年利率是%.254,小明在存款到期后可以拿到的本利和为(▲)(A )20003%)25.41(+元; (B )20002+0003254⨯⨯%.元; (C )20003254⨯⨯%.元; (D )20003%)25.41(⨯+元. 5.如图1,已知向量a 、b 、c ,那么下列结论正确的是(▲)(A )b c a =+; (B )b c a =-; (C )c b a -=+; (D )c b a =+.6.已知⊙1O 的半径长为cm 2,⊙2O 的半径长为cm 4.将⊙1O 、⊙2O 放置在直线l 上(如图2),如果⊙1O 在直线l 上任意滚动,那么圆心距21O O 的长不可能是(▲) (A )cm 1; (B )cm 2; (C )cm 6; (D )cm 8.l图21O2Oa bc图1二、填空题(本大题共12题,每题4分,满分48分) 7.化简:21-= ▲ .8. 计算:=23)(a ▲ .9. 计算:=÷3166 ▲ (结果表示为幂的形式). 10.不等式组⎩⎨⎧>+≤-04201x ,x 的解集是 ▲ .11.在一个不透明的布袋中装有2个白球和8个红球,它们除了颜色不同之外,其余均相同.如果从中随机摸出一个球,摸到红球的概率是 ▲ .(将计算结果化成最简分数) 12.如果关于x 的方程1)1(2+=-a x a 无解,那么实数a = ▲ .13.近视眼镜的度数y (度)与镜片焦距x (米)呈反比例,其函数关系式为xy 100=.如果近似眼镜镜片的焦距250.x =米,那么近视眼镜的度数y 为 ▲ . 14.方程x x -=+6的根是 ▲ .15.手机已经普及,家庭座机还有多少?为此,某校中学生从某街道5000户家庭中随机抽取50户家庭进行统计,列表如下: 拥有座机数(部) 0 1 2 3 4 相应户数10141871该街道拥有多部电话(指1部以上,不含1部)的家庭大约有 ▲ 户.16.如果梯形两底的长分别为3和7,那么联结该梯形两条对角线的中点所得的线段长为 ▲ .17.在平面直角坐标系中,对于平面内任意一点(x ,y ),若规定以下两种变换:①),(y x f =(2+x ,y ).如)1,1(f =)1,3(;②),(y x g =),(y x --,如)2,2(g =)2,2(--. 按照以上变换有:))1,1((f g =)1,3(g =)1,3(--,那么))4,3((-g f 等于 ▲ . 18.如图3,在梯形ABCD 中,已知AB ∥CD ,︒=∠90A ,cm AB 5=,cm BC 13=.以点B 为旋转中心,将BC 逆时针旋转︒90至BE ,BE 交CD 于F 点.如果点E 恰好落在射线AD 上,那么DF 的长为 ▲ cm .三、简答题(本大题共7题,满分78分) 19.(本题满分10分)ACB D E图3FABC DE FMN图6计算:︒+︒︒-︒+-60sin 45tan 30sin 30cos 42730)(.20.(本题满分10分)解方程:12221=++-x x .21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图4,在ABC ΔRt 中,90ACB ∠=︒,点D 在AC 边上,且CA CD BC ⋅=2. (1)求证:CBD A ∠=∠;(2)当α=∠A ,2=BC 时,求AD 的长(用含α的锐角三角比表示).22.(本题满分10分,每个小题各5分)某游泳池内现存水)(m 18903,已知该游泳池的排水速度是灌水速度的2倍.假设在换水时需要经历“排水——清洗——灌水”的过程,其中游泳池 内剩余的水量y (3m )与换水时间....t (h )之间的 函数关系如图5所示.根据图像解答下列问题:(1)根据图中提供的信息,求排水的速度及清洗该游泳池所用的时间;(2)求灌水过程中的y (3m )与换水时间....t (h )之间的函数关系式,写出函数的定义域.23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图6,点E 是正方形ABCD 边BC 上的一点(不与B 、C 重合),点F 在CD 边的延长线上,且满足BE DF =.联结EF ,点M 、N 分别是EF 与AC 、AD 的交点.(1)求AFE ∠的度数;ACBD图4(h)tO1890521 图5)(m 3y(2)求证:FCACCM CE =.24.(本题满分12分,每小题满分4分) 已知平面直角坐标系xOy (如图7),抛物线c bx x y ++=221经过点)0,3(-A 、)23,0(-C . (1)求该抛物线顶点P 的坐标; (2)求CAP ∠tan 的值;(3)设Q 是(1)中所求出的抛物线的一个动点,点Q 的横坐标为t ,当点Q 在第四象限时,用含t 的代数式表示△QAC 的面积.25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)已知AP 是半圆O 的直径,点C 是半圆O 上的一个动点(不与点A 、P 重合),联结AC ,以直线AC 为对称轴翻折AO ,将点O 的对称点记为1O ,射线1AO 交半圆O 于点B ,联结OC .(1)如图8,求证:AB ∥OC ;(2)如图9,当点B 与点1O 重合时,求证:CB AB =;(3)过点C 作射线1AO 的垂线,垂足为E ,联结OE 交AC 于F .当5=AO ,11=B O 时,求AFCF的值.AC(O 1)BOP AOPAB CO 1OP 图7 O xy1- 1-11参考答案一、选择题:(本大题共6题,每题4分,满分24分) 1.C ;2.C ;3.D ;4.B ;5.C ;6.A.二、填空题(本大题共12题,每题4分,满分48分) 7.12-;8.6a ;9.326;10.12≤<-x ;11.54;12.1=a ;13.400=y ;14.2-=x ;15.2600;16.2;17.(5,4-);18.1235(或写成12112). 三、简答题(本大题共7题,满分78分)19.解:原式=23121234331+-⨯+- ……………………6分=32132331+-+- …………1分=13231-=+--. …………2+1分20.解:方程两边同时乘以)x )x 2(2+-(,得 4)2(222-=-++x x x …1+1+1+1分整理,得 0232=--x x . ……2分解这个整式方程,得 21731+=x ,21732-=x . ……2+1分 (若记错了求根公式,但出现了17,即根的判别式计算正确,可得1分)经检验知,21731+=x ,21732-=x 都是原方程的根. ……1分 所以,原方程的根是 21731+=x ,21732-=x . 21.解:(1)∵CA CD BC ⋅=2,∴BCCACD BC =. ……1分 ∵90ACB ∠=︒,点D 在AC 边上,∴BCD ACB ∠=∠. ……1分 ∴△ACB ∽△BCD . ∴CBD A ∠=∠. ……1+1分 说明:若没有写出“∵90ACB ∠=︒,点D 在AC 边上,∴BCD ACB ∠=∠”,但只要写出了BCD ACB ∠=∠,可得1分.(2)∵CBD A ∠=∠,α=∠A ,∴α=∠CBD .……………………………1分 在Rt △ACB 中,90ACB ∠=︒,2=BC ,α=∠A . ∵BCACA =∠cot , ∴ααcot 2cot =⋅=BC AC . …………………………………………2分 在Rt △BCD 中,︒=∠90BCD ,α=∠CBD ,2=BC , ∵BCCDCBD =∠tan , ∴ααtan 2tan =⋅=BC CD . …………………………………………2分 ∴ ααtan 2cot 2-=-=CD AC AD . ……………………………1分 本题解题方法较多,请参照评分.如写成 ααtan 2tan 2-=AD ;4cos 4tan 22--=ααAD ; 4cos 44sin 422---=ααAD ;ααtan 24sin 42--=AD 等等,均正确.22.解(1)由图像可知,该游泳池5个小时排水)(m 18903, ……1分所以该游泳池排水的速度是37851890=÷(/h m 3). ……1分由题意得该游泳池灌水的速度是18921378=⨯(/h m 3),……1分由此得灌水)(m 18903需要的时间是101891890=÷(h ) ……1分 所以清洗该游泳池所用的时间是610521=--(h ) ……1分(2)设灌水过程中的y (3m )与换水时间t (h )之间的函数关系式是b kt y +=(0≠k ). 将(11,0),(21,1890)代入b kt y ++=,得⎩⎨⎧=+=+.b k ,b k 189021011 解得⎩⎨⎧-==.b ,k 2079189 ……1+2分所以灌水过程中的y (3m )与时间t (h )之间的函数关系式是2079189-=t y (2111≤<t ). ……1+1分备注:学生若将定义域写成2111≤≤t ,亦视为正确,此处不是问题的本质. 23.解:(1)在正方形ABCD 中, ︒=∠=∠=∠90BAD ADC B ,AD AB =.……1分 ∵BE DF =,︒=∠=∠90ADF B ,AD AB =,∴△ABE ≌△ADF .……1分 ∴AF AE =,DAF BAE ∠=∠. ……………1+1分 ∴︒=∠=∠+∠=∠+∠=∠90BAD BAE EAD DAF EAD EAF . ……1分 ∵AF AE =,∴AEF AFE ∠=∠. ∴︒=︒⨯=∠=∠459021AEF AFE . ……………1分 (2) 方法1:∵四边形ABCD 是正方形,∴︒=∠45ACD . ……………1分∵︒=∠45AEF ,∴ACF AEF ∠=∠. ……………1分 又∵FMC AME ∠=∠, ……………1分 ∴△ABE ∽△ADF , ……………2分 ∴FCACCM CE =. ……………1分 方法2:∵四边形ABCD 是正方形,∴︒=∠=∠45ACD ACB . …………1分 ∵△ABE ≌△ADF ,∴AFD AEB ∠=∠. ……………1分∵CAE CAE ACB AEB ∠+︒=∠+∠=∠45, C F MC F M A F E A FD ∠+︒=∠+∠=∠45, ∴CFM CAE ∠=∠. ……………2分又∵ACD ACB ∠=∠,△ACE ∽△FCM . ……………1分∴FCACCM CE =. ……………1分 其他方法,请参照评分.24.解:(1)将)0,3(-A 、)23,0(-C 代入c bx x y ++=221,得 ⎪⎪⎩⎪⎪⎨⎧-==+--.23,032)3(2c c b 解得⎪⎩⎪⎨⎧-==.c ,b 231 ………………2分 所以抛物线的表达式为23212-+=x x y . ………………1分 其顶点P 的坐标为(1-,2-). ………………1分 (2)方法1:延长AP 交y 轴于G ,过 C 作AG CH ⊥,垂足是H . 设直线AP 的表达式为b kx y +=, 将),(A 03-、),(P 21--代入,得⎩⎨⎧-=+-=+-23b k b k ,解得⎩⎨⎧-=-=31b k . ∴3--=x y . 进而可得G (30-,). ………1分 ∴OA OG =,︒=∠=∠45OAG G . 在Rt △CHG 中,42345sin =︒⋅==CG CH HG . ………1分 在Rt △AOG 中,2345cos =︒=OGAG ,∴429=-=HG AG AH . ∴31tan ==∠AH CH CAP .……1+1分 方法2:设a CH =,易得a CG 2=,a OG 22=,a AG 4=,a AH 3=, 31tan ==∠AH CH CAP . 方法3:联结OP ,利用两种不同的方式分别表示四边形APCO 的面积:49+=+=∆∆∆APC AOC APC APCO S S S S 四边形;415433=+=+=∆∆POC APO APCO S S S 四边形; ∴23=∆APC S ,然后求523=AC 、22=AP , 利用面积求AC 边上的高552=h ,求1010sin =∠CAP ,进而求31tan =∠CAP .(3)设)2321,(2-+t t t Q , …………1分由Q 在第四象限,得t t =,2321232122+--=-+t t t t . 联结OQ ,易得 AOQ QOC AOC QAC S S S S ∆∆∆∆-+=. ∵4923321=-⨯-⨯=∆AOC S ,t t S QOC 432321=⨯-⨯=∆, ………1分 492343232132122+--=-+⨯-⨯=∆t t t t S QOA …………1分 ∴t t t t t S QAC 4943)492343(434922+=+---+=∆. …………1分 25.解:(1)∵点1O 与点O 关于直线AC 对称,∴AC O OAC 1∠=∠. ………1分 在⊙O 中,∵OC OA =,∴C OAC ∠=∠. …………1分 ∴C AC O ∠=∠1. ∴1AO ∥OC ,即AB ∥OC . …………1+1分 (2)方法1:联结OB . ………1分 ∵点1O 与点O 关于直线AC 对称,AC 1OO ⊥, ………1分 由点1O 与点B 重合,易得AC OB ⊥. ………1分 ∵点O 是圆心,AC OB ⊥,∴CB AB = ………2分方法2:∵点1O 与点O 关于直线AC 对称,∴1AO AO =,1CO CO = ………1+1分由点1O 与点B 重合,易得 AB AO =,CO CB = …………1分 ∵OC OA =,∴CB AB =. ∴ CB AB = ………1+1分 方法3:证平行四边形1AOCO 是菱形. (3) 过点O 作AB OH ⊥,垂足为H .∵AB OH ⊥,AB CE ⊥,∴OH ∥CE ,又∵AB ∥OC ,∴5==OC HE .……1分当点1O 在线段AB 上(如图),6111=+=+=B O AO B O AO AB ,又∵ AB OH ⊥,∴321==AB AH . ∴835=+=+=AH EH AE ……1分∵AB ∥OC , ∴85==AE OC AF CF ……1分当点1O 在线段AB 的延长线上,类似可求75==AE OC AF CF . …2分。

2022年上海市嘉定区中考数学二模试题(含答案)

2022年上海市嘉定区中考数学二模试题(含答案)

2022年上海市嘉定区中考数学二模试题注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.考 生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、 姓名是否一致.2.选择题每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改 动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用 0.5 毫米黑色墨水签字 笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.作图可先使用 2B 铅笔画出,确定后必须用 0.5 毫米黑色墨水签字笔描黑.一、单选题1.下列实数中.是无理数的为( )A .0B .227C .3.14D 2.下列运算错误的是( )A .x+2x =3xB .326()x x =C .235x x xD .842x x x ÷= 3.下列对二次函数y=x 2﹣x 的图象的描述,正确的是( )A .开口向下B .对称轴是y 轴C .经过原点D .在对称轴右侧部分是下降的 4.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数(单位:户)依次是:28,30,27,29,28,29,29,那么这组数据的中位数和众数分别是( )A .28和29B .29和28C .29和29D .27和28 5.下列命题中,真命题的是( )A .如果一个四边形两条对角线相等,那么这个四边形是矩形B .如果一个四边形两条对角线互相垂直,那么这个四边形是菱形C .如果一个四边形两条对角线平分所在的角,那么这个四边形是菱形D .如果一个四边形两条对角线互相垂直平分,那么这个四边形是矩形 6.下列命题中假命题是( )A .平分弦的半径垂直于弦B .垂直平分弦的直线必经过圆心C .垂直于弦的直径平分这条弦所对的弧D .平分弧的直径垂直平分这条弧所对的二、填空题7.化简:|=_____.8.函数y11x-=的定义域是______.9.计算:(a+1)2﹣a2=_____.101的解是______.11.如果正比例函数y=(k﹣1)x的图象经过第一、三象限,那么k_____.12.不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是_____.13.正八边形的中心角等于______度14.为了解某中学九年级学生的上学方式,从该校九年级全体300名学生中,随机抽查了60名学生,结果显示有5名学生“骑共享单车上学”.由此,估计该校九年级全体学生中约有_______名学生“骑共享单车上学”.15.如图,点D,E,F分别是△ABC边AB,BC,CA上的中点,AB a=,BC b=,用a与b的线性组合表示DE=_____.16.如图,已知⊙O中,直径AB平分弦CD,且交CD于点E,如果OE=BE,那么弦CD所对的圆心角是_________度.17.定义:如图,点P、Q把线段AB分割成线段AP、PQ和BQ,若以AP、PQ、BQ 为边的三角形是一个直角三角形,则称点P、Q是线段AB的勾股分割点.已知点P、Q是线段AB的勾股分割点,如果AP=4,PQ=6(PQ>BQ),那么BQ=________ .18.如图,平面直角坐标系中,矩形OABC的顶点A(﹣0),C(0,2)将矩形OABC绕点O顺时针方向旋转,使点A恰好落在直线OB上的点A B应点B 1的坐标为______.三、解答题19.计算:1022202241)+- 20.解方程:231133x x x -=--. 21.如图,已知平行四边形ABCD 中,E 是边CD 的中点,连接AE 并延长交BC 的延长线于点F ,连接AC .(1)求证:AD =CF ;(2)若AB ⊥AF ,且AB =8,BC =5,求sin ∠ACE 的值.22.某校科技小组进行野外考察,途中遇到一片烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺了若干块木块,构筑成一条临时近道.木板对地面的压强P (Pa )是木板面积S (m 2)的反比例函数,其图象如图所示.(1)求出P 与S 之间的函数表达式;(2)如果要求压强不超过3000Pa ,木板的面积至少要多大?GF⊥CD于点F,∠1=∠2.(1)若DF=3,求AD的长;(2)求证:BG=GF+CE.24.如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.(1)求经过A,B,C三点的抛物线的函数表达式;(2)点P是线段BD上一点,当PE=PC时,求点P的坐标;(3)在(2)的条件下,过点P作PF⊥x轴于点F,G为抛物线上一动点,M为x轴上一动点,N为直线PF上一动点,当以F、M、N、G为顶点的四边形是正方形时,请求出点M的坐标.25.在半圆O中,AB为直径,AC,AD为两条弦,且∠CAD+∠DAB=90°.(1)如图1,求证:AD等于CD;(2)如图2,点F在直径AB上,DF交AC于点E,若AE=DE,求证:AC=2DF;(3)如图3,在(2)的条件下,连接BC,若AF=2,BC=6,求弦AD的长.参考答案:1.D2.D3.C4.C5.C6.A78.x≠19.2a+110.311.>112.3 1013.45 14.2515.1() 2a b+16.120.17.18.(2,-19.920.x=﹣1 21.(1)见解析;(2)3 522.(1)600ps =;(2)0.2 m2 23.(1)6 (2)见解析24.(1)y=﹣x2+2x+3;(2)点P的坐标为(2,2);(3)点M,000,0).25.(1)见解析(2)见解析(3)。

2023年上海市嘉定区中考数学二模试卷(含答案)

2023年上海市嘉定区中考数学二模试卷(含答案)

2023年上海市嘉定区中考数学二模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.)A. B. C. D. 2.下列关于x 的方程一定有实数解的是( )A . 210x +=B . 210x x −+=C . 210x bx −+=(b 为常数)D . 210x bx −−=(b 为常数)该投篮进球次数的中位数是( )A . 2B . 3C . 4D . 54.从1,2,3,4四个数中任意取出2个数做加法,其和为奇数的概率是( )A. 12B . 13C . 23D . 345.下列图形中既是轴对称图形,又是中心对称图形的是( )A . 等边三角形B . 等腰梯形C . 矩形D . 正五边形6.如图1,已知点D 、E 分别在ABC 的边AB 、AC 上,DE //BC ,AD :DB =1:3,那么:DEC DBC S S 等于()A . 1:2B . 1:3C . 2:3D . 1:4二、填空题:(本大题共12题,每题4分,满分48分)7.计算:42x x ÷=____________8.如果分式123x −有意义,那么实数x 的取值范围是____________9.已知1纳米=0.000000001米,那么2.5纳米用科学记数法表示为____________米10.1x −=,那么x =____________11.如果反比例函数1a y x −=的图像经过点()1,2−,那么这个反比例函数的解析式为____________(时间100分钟,满分150分)12.如果函数2y x k =+的图像向左平移2个单位后经过原点,那么k =____________13.某区有1200名学生参加了“垃圾分类”知识竞赛,为了解本次竞赛成绩分布情况,竞赛组委员会从中随机抽取部分学生的成绩(得分都是整数)作为样本,绘制成频率分布直方图(如图2),请根据提供的信息估计该取本次竞赛成绩在89.5分~99.5分的学生有____________名14.如果一个正多边形的中心角是36°,那么这个正多边形的边数是____________15.如图3,在ABC 中,点D 是AC 边上一点,且AD :DC =2:1,设,BA a BC b ==,那么BD =____________(用,a b 表示)16.如图4,在Rt ABC 中,∠C =90°,AB =13,5sin 13A =,以点C 为圆心,R 为半径作圆,使A 、B 两点一点在圆内,一点在圆外,那么R 的取值范围是____________17.新定义:函数图像上任意一点(),,P x y y x −称为该点的“坐标差”,函数图像上所有点的“坐标差”的最大值称为该函数的“特征值”,一次函数()2321y x x =+−≤≤的“特征值”是____________18.如图5,在Rt ABC 中,∠C =90°,AC =4,BC =2,点D 、E 分别是边BC 、BA 的中点,联结DE ,将BDE 绕点B 顺时针方向旋转,点D 、E 的对应点分别是点11,D E ,如果点1E 落在线段AC 上,那么线段1CD =____________三、解答题:(本大题共7题,满分78分)19.(本题满分10分)计算:()102sin 4521π−−︒+−−20.(本题满分10分)解方程组:223524x y x xy y −=⎧⎨−+=⎩①②21.(本题满分10分,其中第(1)小题5分,第(2)小题5分)如图6,在ABC 中,AC =AB ,3sin 5A =,圆O 经过A 、B 两点,圆心O 在线段AC 上,点C 在圆O 内,且OC =3.(1)求圆O 的半径长;(2)求BC 的长. 22.(本题满分10分,其中第(1)小题3分,第(2)小题7分)A 、B 两城间的铁路路程为1800千米,为了缩短从A 城到B 城的行驶时间,列车实施提速,提速后速度比提速前速度每小时增加20千米.(1)如果列车提速前速度是每小时80千米,提速后从A 城到B 城的行驶时间减少t 小时,求t 的值;(2)如果提速后从A 城到B 城的行驶时间减少3小时,又这条铁路规定:列车安全行驶速度不超过每小时140千米,问列车提速后速度是否符合规定? 请说明理由.23.如图7,已知CE 、CF 分别是∠ACB 和它的邻补角∠ACD 的角平分线,AE CE ⊥,垂足为点E ,AF //EC ,联结EF ,分别交AB 、AC 于点G 、H .(1)求证:四边形AECF 是矩形;(2)试猜想GH 与BC 之间的数量关系,并证明你的结论.24.(本题满分12分,其中第(1)小题4分,第(2)①小题4分,第(2)②小题4分)如图8,在直角坐标平面xOy 中,点A 在y 轴的负半轴上,点C 在x 轴的正半轴上,AB //OC ,抛物线()2240y ax ax a =−−≠经过A 、B 、C 三点.(1)求点A 、B 的坐标;(2)联结AC 、OB 、BC ,当AC OB ⊥时,①求抛物线表达式;②在抛物线的对称轴上是否存在点P ,使得PAC ABC SS =? 如果存在,求出所有符合条件的点P 坐标;如果不存在,请说明理由.25.在Rt ABC 中,∠BAC =90°,点P 在线段BC 上,12BPD ACB ∠=∠,PD 交BA 于点D ,过点B 作BE PD ⊥,垂足为E ,交CA 的延长线于点F .(1)如果∠ACB =45°,①如图9,当点P 与点C 重合时,求证:12BE PD =; ②如图10,当点P 在线段BC 上,且不与点B 、点C 重合时,问:①中的“12BE PD =”仍成立吗? 请说明你的理由;(2)如果45ACB ∠≠︒,如图11,已知AB n AC =⋅(n 为常数),当点P 在线段BC 上,且不与点B 、点C 重合时,请探究BE PD的值(用含n 的式子表示),并写出你的探究过程.参考答案一、选择题 (本大题共6题,每题4分,满分24分)1.A2. D3. B4. C5. C6. D二、填空题(本大题共12题,每题4分,满分48分) 7. 2x 8. 32x ≠ 9. 92.510−⨯10.2 11.2y x =−12.4− 13. 180 14. 1015. 1233a b + 16. 5<R <12 17. 418. 5三、解答题 (本大题共7题,满分78分) 19.120. 12121722,31122x x y y ⎧⎧==−⎪⎪⎪⎪⎨⎨⎪⎪=−=−⎪⎪⎩⎩21.(1)5(222.(1)4.5(2)符合规定,说明略23.(1)证明略(2)12GH BC =,证明略24.(1)()()0,4,2,4A B −− (2)①2114126y x x =−− ②存在,121151,,1,22P P ⎛⎫⎛⎫− ⎪ ⎪⎝⎭⎝⎭25.(1)①证明略②成立,说明略(2)2BEnPD =,探究略。

2022年上海市嘉定区中考数学二模试题及答案解析

2022年上海市嘉定区中考数学二模试题及答案解析

2022年上海市嘉定区中考数学二模试卷一、选择题(本大题共6小题,共24.0分。

在每小题列出的选项中,选出符合题目的一项)1. 下列实数中,属于无理数的是( )A. √4B. 2.020020002C. √11D. 2272. 下列关于x的一元二次方程中有两个不相等的实数根的是( )A. x2+4=0B. x2+2x=0C. x2−4x+4=0D. x2−x+2=03. 如果将抛物线y=(x+1)2−1向上平移2个单位,那么平移后抛物线的顶点坐标是( )A. (0,2)B. (2,0)C. (1,1)D. (−1,1)4. 数据1,1,1,2,4,2,2,4的众数是( )A. 1B. 2C. 1或2D. 1或2或45. 如图,在等腰梯形ABCD中,AD//BC,AB=DC,对角线AC、BD相交于点O,那么下列结论一定成立的是( )A. ∠CAB=∠CBAB. ∠DAB=∠ABCC. ∠AOD=∠DABD. ∠OAD=∠ODA6. 在Rt△ABC中,∠C=90°,BC=8,tanA=2,以点A为圆心,半径为8的圆记作圆A,那么下列说法正确的是( )A. 点C在圆A内,点B在圆A外B. 点C在圆A上,点B在圆A外C. 点C、B都在圆A内D. 点C、B都在圆A外二、填空题(本大题共12小题,共48.0分)7. 计算:2(1−2x)=______.8. 分解因式:a2−9a=______.9. 不等式1x−2>1的解集是______.210. 计算:2x x−1−x+1x−1=______.11. 用换元法解方程2xx+2+x+2x=3时,如果设xx+2=y ,那么原方程可化为关于y 的整式方程是______.12. 如果正比例函数y =(1−k)x 的图像经过点A(2,−4),那么k 的值是______.13. 数据−2、−1、0、1、2的方差是______.14. 在不透明的袋中装有5个红球、2个白球和1个黑球,它们除颜色外其它都相同,如果从这不透明的袋里随机摸出一个球,那么所摸到的球恰好为白球的概率是______.15. 如图,在△ABC 中,点D 在边BC 上,BD =2DC ,设向量AB ⃗⃗⃗⃗⃗ =a ⃗ ,BC ⃗⃗⃗⃗⃗ =b ⃗ ,那么向量DA ⃗⃗⃗⃗⃗ =______(结果用a ⃗ 、b ⃗ 表示).16. 已知圆O 1与圆O 2外切,其中圆O 2的半径是4cm ,圆心距O 1O 2=6cm ,那么圆O 1的半径是______cm .17. 我们把两个三角形的重心之间的距离叫做重心距.如图,在△ABC 中,∠A =45°,∠B =30°,CD 是△ABC 中边AB 上的高,如果BC =6,那么△ADC 和△BCD 的重心距是______. 18. 在正方形ABCD 中,AB =5,点E 在边BC 上,△ABE 沿直线AE 翻折后点B 落到正方形ABCD 的内部点F ,联结BF 、CF 、DF ,如图,如果∠BFC =90°,那么DF =______.三、解答题(本大题共7小题,共78.0分。

宝山、嘉定区中考数学二模试卷及答案精编版

宝山、嘉定区中考数学二模试卷及答案精编版

2015年宝山嘉定联合模拟考试数学试卷(满分150分,考试时间100分钟)考生注意:1. 本试卷含三个大题,共25题;2. 答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.下列实数中,属无理数的是(▲)(A)722; (B) 010010001.1; (C) 27; (D)︒60cos .2.如果b a >,那么下列不等式一定成立的是(▲)(A) 0<-b a ; (B) b a ->-; (C)b a 2121<; (D) b a 22>. 3.数据6,7,5,7,6,13,5,6,8的众数是(▲)(A)5; (B)6; (C)7; (D)5或6或7. 4.抛物线3)2(2-+-=x y 向右平移了3个单位,那么平移后抛物线的顶点坐标是(▲) (A) ),35(--; (B) )31(-,; (C) )31(--,; (D) )02(,-. 5.下列命题中,真命题是(▲)(A)菱形的对角线互相平分且相等; (B)矩形的对角线互相垂直平分;(C)对角线相等且垂直的四边形是正方形; (D) 对角线互相平分的四边形是平行四边形. 6.Rt △ABC 中,已知︒=∠90C ,4==BC AC ,以点A 、B 、C 为圆心的圆分别记作圆A 、圆B 、圆C ,这三个圆的半径长都等于2,那么下列结论正确的是(▲) (A) 圆A 与圆B 外离; (B) 圆B 与圆C 外离; (C) 圆A 与圆C 外离; (D) 圆A 与圆B 相交.二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置】7.计算:=-2)21( ▲ . 8.计算:=--)2(2x x ▲ .9.方程31=-x 的解是 ▲ .10.函数xx y 241-+=的定义域是 ▲ .11.如果正比例函数k kx y (=是常数,)0≠k 的图像经过点)2,1(-,那么这个函数的解析式是 ▲ .12.抛物线222-++-=m x x y 与y 轴的交点为)4,0(-,那么=m ▲ .13.某班40名全体学生参加了一次“献爱心一日捐”活动,捐款人数与捐款额如图1所示,根据图中所提供的信息,你认为这次捐款活动中40个捐款额的中位数是 ▲ 元.14.在不透明的袋中装有2个红球、5个白球和3个黑球,它们除颜色外其它都相同,如果从这不透明的袋里随机摸出一个球,那么所摸到的球恰好为黑球的概率是 ▲ . 15.如图2,在△ABC 中,点M 在边BC 上,BM MC 2=,设向量=,AM =, 那么向量= ▲ (结果用、表示).16.如图3,在平行四边形ADBO 中,圆O 经过点A 、D 、B ,如果圆O 的半径4=OA ,那么弦=AB ▲ .17. 我们把两个三角形的外心之间的距离叫做外心距.如图4,在Rt △ABC 和Rt △ACD中,︒=∠=∠90ACD ACB ,点D 在边BC 的延长线上,如果3==DC BC ,那么△ABC 和△ACD 的外心距是 ▲ .18.在矩形ABCD 中,15=AD ,点E 在边DC 上,联结AE ,△ADE 沿直线AE 翻折后点D 落到点F ,过点F 作AD FG ⊥,垂足为点G ,如图5,如果GD AD 3=, 那么=DE ▲ . 三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)先化简,再求值:xx x x x x x x 124122222++---+- ,其中13-=x .20.(本题满分10分)解方程组:⎩⎨⎧=--=+.,0658222y xy x y x②①图1 AB C M图2 图3 A BC 图4AD C GEF 图521.(本题满分10分,每小题满分各5分)某住宅小区将现有一块三角形的绿化地改造为一块圆形的绿化地如图6.已知原来三角形绿化地中道路AB 长为216米,在点B 的拐弯处道路AB 与BC 所夹的B ∠为︒45,在点C 的拐弯处道路AC 与BC 所夹的C ∠的正切值为2(即2tan =∠C ),如图7. (1)求拐弯点B 与C 之间的距离; (2)在改造好的圆形(圆O )绿化地中,这个圆O 过点A 、C ,并与原道路BC 交于点D ,如果点A 是圆弧(优弧)道路DC 的中点,求圆O 的半径长.22.(本题满分10分,每小题满分各5分)已知一水池的容积V (公升)与注入水的时间t (分钟)之间开始是一次函数关系,表中记录的是这段时间注入水的时间与水池容积部分对应值.(1)求这段时间时关于的函数关系式(不需要写出函数的定义域);(2)从t 为25分钟开始,每分钟注入的水量发生变化了,到t 为27分钟时,水池的容积为726公升,如果这两分钟中的每分钟注入的水量增长的百分率相同,求这个百分率. 23.(本题满分12分,每小题满分各6分)如图8,已知△ABC 和△ADE 都是等边三角形,点D 在边BC 上,点E 在边AD 的右侧,联结CE .(1)求证:︒=∠60ACE ;(2)在边AB 上取一点F ,使BD BF =,联结DF 、EF .求证:四边形CDFE 是等腰梯形.图8A .OB C D 图7 图624.(本题满分12分,每小题满分各4分)已知平面直角坐标系xOy (图9),双曲线)0(≠=k xky 与直线2+=x y 都经过点),2(m A .(1)求k 与m 的值;(2)此双曲线又经过点)2,(n B ,过点B 的直线BC 与直线2+=x y 平行交y 轴于点C ,联结AB 、AC ,求△ABC 的面积;(3)在(2)的条件下,设直线2+=x y 与y 轴交于点D ,在射线CB 上有一点E ,如果以点A 、C 、E 所组成的三角形与△ACD 相似,且相似比不为1,求点E 的坐标.25.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分) 在Rt △ABC 中,︒=∠90C ,2=BC ,Rt △ABC 绕着点B 按顺时针方向旋转,使点C 落在斜边AB 上的点D ,设点A 旋转后与点E 重合,联结AE ,过点E 作直线EM 与射线CB 垂直,交点为M .(1)若点M 与点B 重合如图10,求BAE ∠cot 的值;(2)若点M 在边BC 上如图11,设边长x AC =,y BM =,点M 与点B 不重合,求y 与x 的函数关系式,并写出自变量x 的取值范围; (3)若EBM BAE ∠=∠,求斜边AB 的长.2015年宝山嘉定联合模拟考试数学试卷参考答案与评分标准图9M ) 图10 图11一、1.C ;2.D ;3.B ;4.B ;5.D ;6.A .二、7.41;8.x x 422+-;9.8-=x ;10.2≠x 的一切实数;11.x y 2-=;12.2-;13.15; 14.103;15.33-;16.34;17.3;18.53. 三、19.解:原式x x x x x x x x 1)2()2)(2()1()1(2++-+---=…………4分 x x x x x 121+---=………………………2分x2=…………………………………………2分把13-=x 代入x2得:原式132-=………………………………1分13+=………………………………1分20. ⎩⎨⎧=--=+.,0658222y xy x y x ②① 解:由②得:0))(6(=+-y x y x ……………………2分 即:06=-y x 或0=+y x …………………2分所以原方程组可化为两个二元一次方程组:⎩⎨⎧=+=-;82,06y x y x⎩⎨⎧=+=+;82,0y x y x ………………2分 分别解这两个方程组,得原方程组的解是⎩⎨⎧=-=8821x x ,⎩⎨⎧==1612x x …………4分.21.解:(1)过点A 作BC AH ⊥,垂足为点H在Rt △AHB 中,∵︒=∠45B∴︒=∠45BAH …………………………1分∴BH AH =………………………………1分∵222AB BH AH =+ ,216=AB∴16==BH AH …………………………1分 在Rt △AHC 中,HCAH C =∠tan ,∵2tan =∠C ∴8=HC ………………1分∴24=BC ………………1分 答:拐弯点B 与C 之间的距离为24米; (2)联结OC …………………………………1分 ∵BC AH ⊥,点A 是优弧CD 的中点∴AH 必经过圆心O …………………………1分 设圆O 的半径为r 米,则r OH -=16……1分在Rt △OHC 中,222OC HC OH =+∴222)16(8r r -+= ………………………1分∴10=r ………………………………………1分 答:圆O 的半径长为10米.22.解:(1)设V 关于t 的函数解析式为:b kt V +=………………1分A .O B C DH由题意得:⎩⎨⎧=+=30010100b k b …………………………………1分解此方程组得:⎩⎨⎧==10020b k ……………………………………2分所以V 关于t 的函数解析式为:10020+=t V ……………1分 (2)设这个百分率为x …………………………………………1分 由题意得:726)1(6002=+x ………………………………2分解此方程得:%101.01==x ,1.22-=x (不符合题意舍去)……1分答这个百分率为%10.……………………………………………………1分23.证明:(1)∵△ABC 是等边三角形∴AC AB =,︒=∠=∠=∠60ACB BAC B ……1分 ∵△ADE 是等边三角形∴AE AD =,︒=∠60DAE ……………………1分 ∴DAE BAC ∠=∠∵=∠BAD DAC BAC ∠-∠ DAC DAE CAE ∠-∠=∠∴CAE BAD ∠=∠…………………………1分∴△ABD ≌△ACE ………………………1分 ∴ACE B ∠=∠ ……………………………1分∴︒=∠60ACE ……………………………1分 (2)∵BD BF =,︒=∠60B∴△BDF 是等边三角形∴FD BF BD ==…………………………1分 ∵△ABD ≌△ACE∴CE BD =∴CE FD BF ==…………………………1分 ∵︒=∠=∠=∠60ACE ACB B ∴︒=∠+∠180ECB B∴BF ∥CE ………………………………1分 ∴四边形ECBF 是平行四边形 …………1分 ∴DC ∥EF又DF 与CE 不平行∴四边形CDFE 是梯形……………………1分 又CE FD =∴四边形CDFE 是等腰梯形………………1分24.解:(1) ∵直线2+=x y 经过点),2(m A∴422=+=m ………………………………1分 ∴点A 的坐标为)4,2(A ……………………1分 ∵双曲线)0(≠=k xky 经过点)4,2(A ∴24k=…………………………………………1分 ∴8=k …………………………………………1分(2)由(1)得:双曲线的表达式为xy 8=∵双曲线xy 8=经过点)2,(n B ,∴n 82=,∴2=n∴点B 的坐标为)2,4(……………………………………1分 ∵直线BC 与直线2+=x y 平行∴可设直线BC 的表达式为:b x y +=∴b +=42,∴2-=b ,∴直线BC 的表达式为:2-=x y ∴点C 的坐标为)2,0(-……………………………………1分∴22=AB ,24=BC ,102=AC ,∴222AC BC AB =+ ∴︒=∠90ABC …………………………………………1分∴△ABC 的面积为821=⨯⨯BC AB ……………………1分 (3)根据题意设点E 的坐标为)2,(-x x ,这里的0>x∵直线2+=x y 与y 轴交于点D ∴点D 的坐标为)2,0(∴22=AD ,x CE 2= ∵AD ∥BC∴ACE DAC ∠=∠…………………………………………1分 当CAE ADC ∠=∠时,△ADC ∽△CAE∴CE ACAC AD =∴x 210210222= ∴10=x∴点E 的坐标为)8,10( ……………………………………2分 当CEA ADC ∠=∠时,△ADC ∽△CEA ∴AC AC EC AD = ∴EC AD =又ACE DAC ∠=∠,CA AC = ∴△ADC ≌△CEA又已知△ADC 与△CEA 的相似比不为1∴这种情况不存在 …………………………………………1分 综上所述点E 的坐标为)8,10(25.解:(1)当点M 与点B 重合,由旋转得:2==BD BC ,ED AC =,EBD CBA ∠=∠,︒=∠=∠90C EDB ∵CB EM ⊥∴︒=∠90EBC ∴︒=∠=∠45EBD CBA …………1分 ∴︒=∠=∠45CBA CAB ∴2==CB AC∴22=AB …………………………………1分 ∴2==DB DE∴222-=AD ……………………………1分∴12cot -==∠DEADBAE ………………1分(2)设EM 与边AB 交点为G由题意可知:︒=∠+∠9021,︒=∠+∠903CBA 又32∠=∠,∴CBA ∠=∠1∵CBA EBD ∠=∠,∴EBD ∠=∠1,∵BDE EDG ∠=∠,∴△EDG ∽△BDE ∴EDDG BD ED =…………………………………………1分 ∵2==BD BC ,x ED AC ==∴xDGx =2,∴22x DG =…………………………1分由题意可知:ABBCBG MB ABC ==∠cos42+=x AB ,242xGB -=∴422422+=-x x y ……………………1分 ∴444222++-=x x x y ……………………1分 定义域为20<<x …………………………1分(3)当点M 在边BC 上时,由旋转可知:EB AB =,∴BAE AEB ∠=∠设︒=∠x CBA ,则︒=∠x ABE ,∵EBM BAE ∠=∠,分别延长EA 、BC 交于点H ∴︒=∠=∠=∠x EMB BAE AEB 2,∵︒=∠+∠+∠180AEB BAE ABE ∴36=x 易得:︒=∠=∠=∠36ABE ABH H ,︒=∠=∠=∠72AEB BAE HBE ∴BE AB AH ==,HE HB =,∵︒=∠90ACB ,∴2==BC HC∴4==HE HB ,∴△BAE ∽△HBE ,∴BEAEHB AB =,又AB BE = AB HA HE AE -=-=4,∴ABABAB -=44,∴522±-=AB (负值舍去) ∴522+-=AB …………………………2分当点M 在边CB 的延长线上时,∵BAE AEB ∠=∠,EBM BAE ∠=∠∴EBM AEB ∠=∠∴AE ∥MC ∴CBA BAE ∠=∠ ∵EBA CBA ∠=∠∴EBA CBA EBM ∠=∠=∠∴︒=∠60CBA ,∵AB BCCBA =∠cos ,2=BC∴4=AB …………………………2分 综上所述:522+-=AB 或4.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年宝山、嘉定数学二模试卷(满分150分,考试时间100分钟)考生注意:1. 本试卷含三个大题,共25题;2. 答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.下列实数中,属无理数的是( )(A)722; (B) 010010001.1; (C) 27; (D)︒60cos .2.如果b a >,那么下列不等式一定成立的是( )(A) 0<-b a ; (B) b a ->-; (C)b a 2121<; (D) b a 22>. 3.数据6,7,5,7,6,13,5,6,8的众数是( )(A)5; (B)6; (C)7; (D)5或6或7. 4.抛物线3)2(2-+-=x y 向右平移了3个单位,那么平移后抛物线的顶点坐标是( ) (A) ),35(--; (B) )31(-,; (C) )31(--,; (D) )02(,-. 5.下列命题中,真命题是( )(A)菱形的对角线互相平分且相等; (B)矩形的对角线互相垂直平分;(C)对角线相等且垂直的四边形是正方形; (D) 对角线互相平分的四边形是平行四边形. 6.Rt △ABC 中,已知︒=∠90C ,4==BC AC ,以点A 、B 、C 为圆心的圆分别记作圆A 、圆B 、圆C ,这三个圆的半径长都等于2,那么下列结论正确的是( ) (A) 圆A 与圆B 外离; (B) 圆B 与圆C 外离; (C) 圆A 与圆C 外离; (D) 圆A 与圆B 相交.二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置】7.计算:=-2)21( . 8.计算:=--)2(2x x .9.方程31=-x 的解是 .10.函数xx y 241-+=的定义域是 .11.如果正比例函数k kx y (=是常数,)0≠k 的图像经过点)2,1(-,那么这个函数的解析式是 .12.抛物线222-++-=m x x y 与y 轴的交点为)4,0(-,那么=m .13.某班40名全体学生参加了一次“献爱心一日捐”活动,捐款人数与捐款额如图1所示,根据图中所提供的信息,你认为这次捐款活动中40个捐款额的中位数是 元.14.在不透明的袋中装有2个红球、5个白球和3个黑球,它们除颜色外其它都相同,如果从这不透明的袋里随机摸出一个球,那么所摸到的球恰好为黑球的概率是 . 15.如图2,在△ABC 中,点M 在边BC 上,BM MC 2=,设向量=,AM =, 那么向量= (结果用a 、b 表示).16.如图3,在平行四边形ADBO 中,圆O 经过点A 、D 、B ,如果圆O 的半径4=OA ,那么弦=AB .17. 我们把两个三角形的外心之间的距离叫做外心距.如图4,在Rt △ABC 和Rt △ACD中,︒=∠=∠90ACD ACB ,点D 在边BC 的延长线上,如果3==DC BC ,那么△ABC 和△ACD 的外心距是 .18.在矩形ABCD 中,15=AD ,点E 在边DC 上,联结AE ,△ADE 沿直线AE 翻折后点D 落到点F ,过点F 作AD FG ⊥,垂足为点G ,如图5,如果GD AD 3=, 那么=DE . 三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)先化简,再求值:xx x x x x x x 124122222++---+- ,其中13-=x .20.(本题满分10分)解方程组:⎩⎨⎧=--=+.,0658222y xy x y x②①图1 A B C M图2 图3 A BC 图4AD B C GEF 图521.(本题满分10分,每小题满分各5分)某住宅小区将现有一块三角形的绿化地改造为一块圆形的绿化地如图6.已知原来三角形绿化地中道路AB 长为216米,在点B 的拐弯处道路AB 与BC 所夹的B ∠为︒45,在点C 的拐弯处道路AC 与BC 所夹的C ∠的正切值为2(即2tan =∠C ),如图7. (1)求拐弯点B 与C 之间的距离; (2)在改造好的圆形(圆O )绿化地中,这个圆O 过点A 、C ,并与原道路BC 交于点D ,如果点A 是圆弧(优弧)道路DC 的中点,求圆O 的半径长.22.(本题满分10分,每小题满分各5分)已知一水池的容积V (公升)与注入水的时间t (分钟)之间开始是一次函数关系,表中记录的是这段时间注入水的时间与水池容积部分对应值.注入水的时间t (分钟) 0 10 … 25 水池的容积V (公升)100300…600(1)求这段时间时V 关于t 的函数关系式(不需要写出函数的定义域);(2)从t 为25分钟开始,每分钟注入的水量发生变化了,到t 为27分钟时,水池的容积为726公升,如果这两分钟中的每分钟注入的水量增长的百分率相同,求这个百分率. 23.(本题满分12分,每小题满分各6分)如图8,已知△ABC 和△ADE 都是等边三角形,点D 在边BC 上,点E 在边AD 的右侧,联结CE .(1)求证:︒=∠60ACE ;(2)在边AB 上取一点F ,使BD BF =,联结DF 、EF .求证:四边形CDFE 是等腰梯形.A B C E DF 图8 A .OB C D 图7 图624.(本题满分12分,每小题满分各4分)已知平面直角坐标系xOy (图9),双曲线)0(≠=k xky 与直线2+=x y 都经过点),2(m A .(1)求k 与m 的值;(2)此双曲线又经过点)2,(n B ,过点B 的直线BC 与直线2+=x y 平行交y 轴于点C ,联结AB 、AC ,求△ABC 的面积;(3)在(2)的条件下,设直线2+=x y 与y 轴交于点D ,在射线CB 上有一点E ,如果以点A 、C 、E 所组成的三角形与△ACD 相似,且相似比不为1,求点E 的坐标.25.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分) 在Rt △ABC 中,︒=∠90C ,2=BC ,Rt △ABC 绕着点B 按顺时针方向旋转,使点C 落在斜边AB 上的点D ,设点A 旋转后与点E 重合,联结AE ,过点E 作直线EM 与射线CB 垂直,交点为M .(1)若点M 与点B 重合如图10,求BAE ∠cot 的值;(2)若点M 在边BC 上如图11,设边长x AC =,y BM =,点M 与点B 不重合,求y 与x 的函数关系式,并写出自变量x 的取值范围; (3)若EBM BAE ∠=∠,求斜边AB 的长.图9M ) 图10 图112015年宝山嘉定二模数学试卷参考答案与评分标准一、1.C ;2.D ;3.B ;4.B ;5.D ;6.A .二、7.41;8.x x 422+-;9.8-=x ;10.2≠x 的一切实数;11.x y 2-=;12.2-;13.15; 14.103;15.33-;16.34;17.3;18.53. 三、19.解:原式x x x x x x x x 1)2()2)(2()1()1(2++-+---=…………4分 x x x x x 121+---=………………………2分x2=…………………………………………2分把13-=x 代入x2得:原式132-=………………………………1分13+=………………………………1分20. ⎩⎨⎧=--=+.,0658222y xy x y x ②① 解:由②得:0))(6(=+-y x y x ……………………2分 即:06=-y x 或0=+y x …………………2分所以原方程组可化为两个二元一次方程组:⎩⎨⎧=+=-;82,06y x y x⎩⎨⎧=+=+;82,0y x y x ………………2分 分别解这两个方程组,得原方程组的解是⎩⎨⎧=-=8821x x ,⎩⎨⎧==1612x x …………4分.21.解:(1)过点A 作BC AH ⊥,垂足为点H在Rt △AHB 中,∵︒=∠45B∴︒=∠45BAH …………………………1分∴BH AH =………………………………1分∵222AB BH AH =+ ,216=AB∴16==BH AH …………………………1分 在Rt △AHC 中,HCAH C =∠tan ,∵2tan =∠C ∴8=HC ………………1分∴24=BC ………………1分 答:拐弯点B 与C 之间的距离为24米; (2)联结OC …………………………………1分 ∵BC AH ⊥,点A 是优弧CD 的中点∴AH 必经过圆心O …………………………1分 设圆O 的半径为r 米,则r OH -=16……1分在Rt △OHC 中,222OC HC OH =+∴222)16(8r r -+= ………………………1分∴10=r ………………………………………1分 答:圆O 的半径长为10米.A .O B C DH22.解:(1)设V 关于t 的函数解析式为:b kt V +=………………1分 由题意得:⎩⎨⎧=+=30010100b k b …………………………………1分解此方程组得:⎩⎨⎧==10020b k ……………………………………2分所以V 关于t 的函数解析式为:10020+=t V ……………1分 (2)设这个百分率为x …………………………………………1分 由题意得:726)1(6002=+x ………………………………2分解此方程得:%101.01==x ,1.22-=x (不符合题意舍去)……1分答这个百分率为%10.……………………………………………………1分23.证明:(1)∵△ABC 是等边三角形∴AC AB =,︒=∠=∠=∠60ACB BAC B ……1分 ∵△ADE 是等边三角形∴AE AD =,︒=∠60DAE ……………………1分 ∴DAE BAC ∠=∠∵=∠BAD DAC BAC ∠-∠ DAC DAE CAE ∠-∠=∠∴CAE BAD ∠=∠…………………………1分∴△ABD ≌△ACE ………………………1分 ∴ACE B ∠=∠ ……………………………1分∴︒=∠60ACE ……………………………1分 (2)∵BD BF =,︒=∠60B∴△BDF 是等边三角形∴FD BF BD ==…………………………1分 ∵△ABD ≌△ACE∴CE BD =∴CE FD BF ==…………………………1分 ∵︒=∠=∠=∠60ACE ACB B ∴︒=∠+∠180ECB B∴BF ∥CE ………………………………1分 ∴四边形ECBF 是平行四边形 …………1分 ∴DC ∥EF又DF 与CE 不平行∴四边形CDFE 是梯形……………………1分 又CE FD =∴四边形CDFE 是等腰梯形………………1分24.解:(1) ∵直线2+=x y 经过点),2(m A∴422=+=m ………………………………1分∴点A 的坐标为)4,2(A ……………………1分 ∵双曲线)0(≠=k xky 经过点)4,2(A ∴24k=…………………………………………1分 ∴8=k …………………………………………1分(2)由(1)得:双曲线的表达式为xy 8=∵双曲线xy 8=经过点)2,(n B ,∴n 82=,∴2=n∴点B 的坐标为)2,4(……………………………………1分 ∵直线BC 与直线2+=x y 平行∴可设直线BC 的表达式为:b x y +=∴b +=42,∴2-=b ,∴直线BC 的表达式为:2-=x y ∴点C 的坐标为)2,0(-……………………………………1分∴22=AB ,24=BC ,102=AC ,∴222AC BC AB =+ ∴︒=∠90ABC …………………………………………1分∴△ABC 的面积为821=⨯⨯BC AB ……………………1分 (3)根据题意设点E 的坐标为)2,(-x x ,这里的0>x∵直线2+=x y 与y 轴交于点D ∴点D 的坐标为)2,0(∴22=AD ,x CE 2= ∵AD ∥BC∴ACE DAC ∠=∠…………………………………………1分 当CAE ADC ∠=∠时,△ADC ∽△CAE∴CE ACAC AD =∴x 210210222= ∴10=x∴点E 的坐标为)8,10( ……………………………………2分 当CEA ADC ∠=∠时,△ADC ∽△CEA ∴AC ACEC AD = ∴EC AD =又ACE DAC ∠=∠,CA AC = ∴△ADC ≌△CEA又已知△ADC 与△CEA 的相似比不为1∴这种情况不存在 …………………………………………1分 综上所述点E 的坐标为)8,10(25.解:(1)当点M 与点B 重合,由旋转得:2==BD BC ,ED AC =, EBD CBA ∠=∠,︒=∠=∠90C EDB ∵CB EM ⊥∴∠EBC ∴︒=∠=∠45EBD CBA …………1分∴︒=∠=∠45CBA CAB∴2==CB AC∴22=AB …………………………………1分 ∴2==DB DE∴222-=AD ……………………………1分 ∴12cot -==∠DEADBAE ………………1分 (2)设EM 与边AB 交点为G 由题意可知:︒=∠+∠9021,︒=∠+∠903CBA 又32∠=∠,∴CBA ∠=∠1∵CBA EBD ∠=∠,∴EBD ∠=∠1,∵BDE EDG ∠=∠,∴△EDG ∽△BDE ∴EDDG BD ED =…………………………………………1分 ∵2==BD BC ,x ED AC ==∴xDGx =2,∴22x DG =…………………………1分由题意可知:ABBCBG MB ABC ==∠cos 42+=x AB ,242xGB -=∴422422+=-x x y ……………………1分 ∴444222++-=x x x y ……………………1分 定义域为20<<x …………………………1分(3)当点M 在边BC 上时,由旋转可知:EB AB =,∴BAE AEB ∠=∠设︒=∠x CBA ,则︒=∠x ABE ,∵EBM BAE ∠=∠,分别延长EA 、BC 交于点H ∴︒=∠=∠=∠x EMB BAE AEB 2,∵︒=∠+∠+∠180AEB BAE ABE ∴36=x 易得:︒=∠=∠=∠36ABE ABH H ,︒=∠=∠=∠72AEB BAE HBE ∴BE AB AH ==,HE HB =,∵︒=∠90ACB ,∴2==BC HC∴4==HE HB ,∴△BAE ∽△HBE ,∴BEAEHB AB =,又AB BE = AB HA HE AE -=-=4,∴ABABAB -=44,∴522±-=AB (负值舍去) ∴522+-=AB …………………………2分当点M 在边CB 的延长线上时,∵BAE AEB ∠=∠,EBM BAE ∠=∠∴EBM AEB ∠=∠∴AE ∥MC ∴CBA BAE ∠=∠ ∵EBA CBA ∠=∠∴EBA CBA EBM ∠=∠=∠∴︒=∠60CBA ,∵AB BCCBA =∠cos ,2=BC∴4=AB …………………………2分 综上所述:522+-=AB 或4.(M )像平时有价值的升学文章,像自招、校园开放日消息、历年中考分数线,那些文章我都放在公众号菜单栏那个按钮上的专题那里了,还有什么细化的升学问题,你们可以关注公众号给我留言,我看到会第一时间回复你们的——小编编。

相关文档
最新文档