并行程序设计基础
《MPI并行程序设计》课件

MPI的应用领域
MPI广泛应用于科学计算、 大规模数据处理和模拟等领 域,提供了高性能和高效率 的并行计算能力。
MPI基础
1
MPI的环境设置
在开始编写MPI程序之前,需要进行环境设置,包括MPI库的安装和配置,以及节点之间的 网络连接。
据的能力。
总结
1 MPI的优点和缺点
MPI具有高性能、可扩展性和灵活性的优点,但也面临数据通信和负载平衡等挑战。
2 MPI的未来发展趋势
MPI在超级计算和并行计算领域仍发展空间,如更高的并行度、更低的通信延迟和更丰富 的功能。
3 怎样提高MPI的性能
优化MPI程序的性能可以从算法、通信模式、负载均衡和并行度等方面入手,提高并行计 算的效率。
宏定义和预处理
MPI提供了丰富的宏定义和预处理功能,可以简化 并行程序的编写和调试过程,提高开发效率。
实战
1
MPI编程实战
通过实际编写MPI程序,学习如何利用
并行排序实战
2
MPI接口进行并行计算,解决实际问题, 如矩阵运算、图算法等。
利用MPI的并行计算能力,实现高效的排 序算法,提高排序性能和处理大规模数
2
MPI的通信模型
MPI采用消息传递的通信模型,通过发送和接收消息来实现不同进程之间的数据交换和同步。
3
点对点通信
MPI支持点对点通信操作,包括发送、接收和非阻塞通信,用于实现进程之间的直接消息传 递。
4
集合通信
MPI提供了集合通信操作,如广播、栅栏、归约等,用于在整个进程组中进行数据的统一和 协同计算。
MPI高级
MPI的拓扑结构
MPI并行程序设计实例教程教学设计

MPI并行程序设计实例教程教学设计1. 简介MPI (Message Passing Interface) 是一种进程间通信的标准,可用于实现并行计算。
MPI 是一个库,通过对 MPI 中的函数调用,可实现在共享内存和分布式内存计算机中实现并行计算的任务分割和进程通信。
在实际应用中,MPI 会被和多线程一样用于实现算法的并行化,从而提高计算效率和运行速度。
2. 教学目标通过这个实例教程,我们会:1.了解 MPI 并行程序设计的基本概念和原理2.学会使用 MPI 的基本函数和指令3.学会通过实例演示的方式,掌握常见的 MPI 算法和技术4.实现一个简单的 MPI 并行程序,对其进行测试和优化,提高程序的执行效率3. 教学计划本教程共计 5 个部分,每个部分涵盖不同的内容。
每个部分的内容和学习目标如下:第一部分:MPI 基础概念和原理本部分的目标是让学生了解 MPI 的概念、原理和应用场景。
通过课堂讲授、案例分析和问题解答等方式,使学生领悟 MPI 的并行计算模型和通信方式。
第二部分:MPI 基本函数和指令本部分的目标是让学生掌握 MPI 中的基本函数和指令,理解其使用方法和调用方式。
通过讲解 MPI_Init、MPI_Comm_size、MPI_Comm_rank 等函数和指令,让学生能够熟练使用 MPI 构建并行程序。
第三部分:MPI 并行算法实例本部分的目标是让学生通过具体实例学习 MPI 并行算法设计的方法和技巧。
通过案例分析的方式,让学生了解 MPI 算法设计的核心思想、主要步骤和注意事项。
同时,本部分还会介绍一些常见的 MPI 库和工具,如 MPIBLAST 和 OpenMPI。
第四部分:MPI 程序设计和优化本部分的目标是让学生实践 MPI 代码的编写、调试和优化过程。
通过一个综合实例,让学生学习 MPI 并行程序的设计、实现和测试。
同时,本部分还会讲授MPI 排序算法和负载平衡算法的具体实现方法。
并行算法设计

并行算法设计一、引言并行算法是指在多核处理器或分布式系统上同时执行多个子任务,以提高计算效率和处理速度的一种计算模式。
随着计算机硬件技术的不断发展,越来越多的问题需要借助并行算法来解决。
本文将介绍并行算法的设计原则和常见的设计模式,以及在实际应用中的一些注意事项。
二、并行算法设计原则1. 任务划分原则:并行算法的基础是将原本串行执行的任务划分成多个独立的子任务,并通过适当的调度算法分配给不同的处理器进行并行执行。
任务划分应尽量保持任务的独立性,避免数据依赖关系过多,以提高并行度和性能。
2. 数据分布原则:在设计并行算法时,应根据不同任务的计算量和数据量合理规划数据分布方式。
对于计算密集型任务,可以将数据均匀划分给多个处理器;对于数据密集型任务,可以采用数据分布策略来平衡负载和减少数据通信的开销。
3. 通信和同步原则:并行算法中,处理器间的通信和同步操作是必不可少的。
在设计并行算法时,应考虑如何减少通信和同步的开销,以提高整体的算法性能。
可以通过减少数据传输量、合理设置同步点等方式来优化并行算法的通信和同步操作。
4. 任务调度原则:任务调度是指将多个子任务合理地分配给不同的处理器进行执行的过程。
合理的任务调度策略可以提高并行算法的负载均衡性和吞吐量,并减少处理器间的竞争情况。
在设计并行算法时,应考虑任务划分和任务调度的关系,选择合适的调度策略来优化算法性能。
三、并行算法设计模式1. 分治法:分治法是指将一个大问题分解成多个相互独立的小问题,并通过递归的方式将小问题的解合并成大问题的解。
在设计并行算法时,可以将原问题划分成多个子问题,分配给不同的处理器并行解决,最后将子问题的解合并得到最终结果。
2. 数据并行:数据并行是指将数据划分成多个子集,分配给不同的处理器并行处理。
对于同一类操作,各处理器可以独立计算自己所负责的数据子集,最后将各处理器计算得到的结果合并得到最终结果。
3. 流水线:流水线是指将一个任务划分成多个子任务,并通过不同的处理器按照一定的顺序依次执行。
请简述并行程序设计的foster方法的基本步骤。

请简述并行程序设计的foster方法的基本步骤。
摘要:一、引言二、Foster方法的基本步骤1.划分2.通信3.聚集4.映射三、划分1.域分解2.功能分解四、通信1.数据通信2.消息传递五、聚集1.数据聚集2.结果汇总六、映射1.计算资源分配2.并行算法实现七、结论正文:一、引言并行程序设计是一种高效利用多处理器计算机系统的方法,它能显著提高计算速度和处理能力。
在并行程序设计中,Foster方法是一种经典的算法设计过程,由Lan和Foster提出。
本文将详细介绍Foster方法的基本步骤,以帮助读者更好地理解和应用这一方法。
二、Foster方法的基本步骤Foster方法是一个由四步构成的并行算法设计过程,分别为划分、通信、聚集和映射。
1.划分划分是发现并行算法更多并行性的关键步骤。
在这一步骤中,需要将计算和数据划分成许多小片。
常见的划分方法有域分解和功能分解。
域分解:考虑程序中最大和最频繁访问的数据,先将数据分解成片,再考虑将计算和数据联系起来。
功能分解:将程序中的计算任务分解成可以独立执行的功能模块,以便在多个处理器上并行执行。
2.通信通信是在并行计算中必不可少的环节。
它包括数据通信和消息传递。
数据通信:指不同处理器之间数据的传输和交换。
消息传递:指处理器之间通过消息进行通信,以实现协同工作和数据同步。
3.聚集聚集是对并行计算过程中产生的数据进行处理和汇总的步骤。
主要包括数据聚集和结果汇总。
数据聚集:将各个处理器上的数据进行整合,以便进行下一步的计算。
结果汇总:对各个处理器上的计算结果进行汇总,得到最终的输出结果。
4.映射映射是将划分好的计算和数据映射到具体的计算资源上,实现并行计算的过程。
主要包括计算资源分配和并行算法实现。
计算资源分配:根据处理器能力和任务需求,合理分配计算资源。
并行算法实现:将划分好的计算任务在多个处理器上执行,实现并行计算。
三、结论Foster方法是一种有效的并行程序设计方法,通过划分、通信、聚集和映射四个步骤,可以充分发挥多处理器系统的性能,提高计算效率。
2024年度-并行程序设计导论课件

并行图算法
02
如并行广度优先搜索、并行最短路径算法等,通过并行处理图
数据结构中的节点和边来加速图算法的执行。
并行矩阵运算
03
如矩阵乘法、矩阵转置等,通过并行处理矩阵中的元素来实现
高性能计算。
10
03
并行编程模型与语言
11
共享内存编程模型
原理
多个线程或进程共享同一块内存空间,通过 读写共享变量实现通信和同步。
8
并行算法设计策略
01
任务并行
将问题分解为多个独立任务,并 行执行。
数据并行
02
03
流水线并行
对数据进行分块,并行处理每个 数据块。
将问题分解为一系列阶段,每个 阶段处理一部分数据,并行执行 不同阶段。
9
经典并行算法案例解析
并行排序算法
01
如归并排序、快速排序等,通过并行比较和交换元素实现排序
加速。
生物信息学与基因测序
GPU加速计算在生物信息学和基因测序领域的应用日益增多,能够加 快基因序列比对和分析的速度,促进生物医学研究的发展。
天体物理模拟与宇宙探索
GPU加速计算在天体物理模拟和宇宙探索领域的应用也越来越广泛, 能够加快模拟速度,提高研究效率。
27
07
并行程序性能优化方法与实践
28
性能评价指标与方法
04
云计算
提供基础设施、平台和软件即服务。
22
MapReduce编程模型简介
MapReduce定义
一种编程模型,用于处理和生成大数据集,由 Map和Reduce两个阶段组成。
Reduce阶段
对中间结果中相同键的数据进行聚合操作,生成 最终结果。
并行算法与并行程序设计

并行算法与并行程序设计并行计算是目前解决实际问题、改善处理效率的有效手段,它的应用涵盖科学、工程、商业等诸多领域。
并行算法与并行程序设计是并行计算的两大核心内容。
本文集中论述并行算法与并行程序设计的基础原理、种类以及应用价值。
并行算法的基本概念与特性并行算法是一种能同时执行多条指令的算法,它分为多个独立的部分,这些部分可以在多个计算机或者同一台计算机的多个处理器上同时执行。
并行算法的研究目标在于优化并行计算,提高计算效率。
并行算法主要有两种典型的计算模型,即数据并行模型和任务并行模型。
数据并行模型中,每个处理器都对输入数据的不同部分进行操作;而任务并行模型则将任务分配到不同的处理器上执行。
并行算法的设计设计并行算法的关键在于选择合适的并行模型,比如数据并行、功能并行、任务并行等,并在此基础上设计出性能优异的算法。
其中,算法的分解性与并行性是设计并行算法的两大考虑因素。
此外,选择合适的同步机制也是至关重要的。
并行程序设计的基本概念与特性并行程序设计是指编写能在多个处理器上同时执行的程序,以改善执行速度和处理效率。
并行程序设计面临的主要挑战是如何有效并正确地同步各个处理器间的操作,以及如何处理数据依赖和任务调度问题。
并行程序设计的工具和方法目前,编程语言如OpenMP、MPI、CUDA等都可用于并行程序设计,它们提供了用于控制并发执行和数据同步的语义。
OpenMP和MPI 主要面向共享内存和分布式内存应用,并提供了一套丰富的API和指示器进行并行访问控制。
而CUDA是一种GPU的并行计算架构,主要用于处理海量数据,以实现强大的计算能力。
并行算法与程序设计的应用价值通过并行计算可以大幅提高处理器的使用效率,进而可以在较短时间内处理大量数据,尤其在科学计算、数据挖掘、图像处理、人工智能等方面表现出了极大的应用价值。
总结并行算法和并行程序设计是并行计算的基础,它们的目标是提供高效、可靠的解决方案,以解决现实世界中的复杂问题。
并行程序设计

并行程序设计并行程序设计并行程序设计是指将一个任务或问题分解成多个子任务,然后同时执行这些子任务,以提高程序的运行效率和响应速度。
本文将介绍并行程序设计的概念、原则和常用的并行编程模型。
概念并行程序设计是一种计算思维方式,通过利用计算机多核心、多处理器或者分布式系统的能力,将一个大的问题分解成多个小的子问题,并且让这些子问题可以同时被处理。
通过同时处理多个子问题,可以大大提高程序的处理速度。
并行程序设计原则并行程序设计有一些基本原则,下面是其中几个重要的原则:1. 任务划分:将一个大的任务划分成多个小的子任务。
划分任务时需要注意任务之间的依赖关系,以保证划分后的任务可以并行执行。
2. 任务分配:将划分后的子任务分配给可用的计算资源,如多核心、多处理器或分布式系统中的节点。
任务分配需要考虑计算资源的负载均衡,以充分利用计算资源的能力。
3. 任务通信:并行程序中的任务之间通常需要进行数据交换或同步操作。
任务通信需要合理选择通信方式,并通过合适的同步机制来确保数据的一致性和正确性。
4. 任务合并:在一些情况下,多个子任务的处理结果需要进行合并。
任务合并需要保证合并操作的正确性和效率,同时还要考虑合并操作可能引入的额外开销。
并行编程模型为了简化并行程序的设计与开发,人们提出了一系列并行编程模型。
下面介绍几种常用的并行编程模型:1. 共享内存模型:多个线程共享同一块内存地质空间,线程之间通过读写共享内存来进行通信和同步。
常见的共享内存模型有OpenMP和Cilk等。
2. 消息传递模型:多个进程或线程通过消息的方式进行通信。
每个进程或线程有独立的内存空间,通过发送和接收消息来实现进程间的通信和同步。
常见的消息传递模型有MPI和PVM等。
3. 数据流模型:任务之间通过数据流进行通信。
任务根据数据的可用性来进行执行,并将处理结果传递给下游任务。
数据流模型可以以图形化的方式表示任务之间的依赖关系。
常见的数据流模型有GPGPU和FPGA等。
计算机编程并行程序设计基础知识了解并行程序设计的模型和工具

计算机编程并行程序设计基础知识了解并行程序设计的模型和工具计算机编程并行程序设计基础知识:了解并行程序设计的模型和工具计算机编程中的并行程序设计是一种重要的技术,通过同时执行多个任务来提高程序的性能和效率。
在现代计算机系统中,利用多核处理器和分布式计算等并行计算技术,可以更好地利用计算资源,实现更高效的程序运行。
本文将介绍并行程序设计的基础知识,包括并行计算模型和常用的并行程序设计工具。
通过了解这些知识,读者可以更好地理解并行计算的概念和原理,为编写高效的并行程序打下基础。
1. 并行计算模型在并行程序设计中,有几种常用的并行计算模型,包括共享内存模型、分布式内存模型和混合内存模型。
1.1 共享内存模型共享内存模型是一种采用共享内存的方式进行并行计算的模型。
在这个模型中,多个处理器可以同时访问同一个共享内存空间,从而实现数据共享和通信。
1.2 分布式内存模型分布式内存模型是一种采用分布式内存的方式进行并行计算的模型。
在这个模型中,每个处理器都有自己的独立内存空间,通过消息传递的方式进行数据通信和同步。
1.3 混合内存模型混合内存模型是一种将共享内存和分布式内存相结合的并行计算模型。
在这个模型中,多个处理器可以访问共享内存,并通过消息传递的方式进行通信和同步。
2. 并行程序设计工具为了方便开发者进行并行程序设计,有一些常用的并行程序设计工具可供使用。
下面介绍几种常见的工具。
2.1 OpenMP(开放多处理器)OpenMP是一种基于共享内存模型的并行程序设计工具,它可以通过在源代码中插入指令来实现并行计算。
通过使用OpenMP,开发者可以简单地将串行程序转换为并行程序,并利用多核处理器的性能优势。
2.2 MPI(消息传递接口)MPI是一种基于消息传递模型的并行程序设计工具,它可以在分布式内存系统中实现多个处理器之间的通信和同步。
通过使用MPI,开发者可以将任务分配给不同的处理器,并通过消息传递进行数据交换和协调。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Users’ Expectations from Parallel Programming Environments
▪ Currently, only few expert developers have the knowledge of programming parallel and distributed systems.
# pragma synchronize
barrier();
# pragma pfor iterate (i=0; N; 1)
for (i= id; i<N; i=i+p) c[i]=A[i]+A[i+1]; 例子: MPI,PVM, Pthreads
for (i=0;i<N;i++)c[i]=A[i]+A[i+1]; }
3
Parallel Programming is a Complex Task
▪ The development of parallel applications largely dependent on the availability of adequate software tools and environments.
方法
实例
优点
缺点
库例程 MPI, PVM 扩展 Fortran90 编译器注释 SGI powerC, HPF
易于实现, 不需要新编 无 编 译 器 检 查 ,
译器
分析和优化
允许编译器检查、分析 实现困难,需要新
和优化
编译器
介于库例程和扩展方法之间, 在串行平台 上不起作用.
7
3 并行性问题
3.1 进程的同构性 ❖SIMD: 所有进程在同一时间执行相同的指令 ❖MIMD:各个进程在同一时间可以执行不同的指令
并行程序设计基础
并行程序设计基础
▪ 并行程序设计概述 ▪ Approaches for Parallel
Programs ▪ Parallel Programming Model ▪ Parallel Programming Paradigm
2
并行程序设计概述 ▪ 并行程序设计难的原因 ▪ 并行程序构造方法 ▪ 并行性问题 ▪ 交互/通信问题
8
3 并行性问题
并行块 parbegin S1 S2 S3 …….Sn parend S1 S2 S3 …….Sn可以是不同的代码 并行循环: 当并行块中所有进程共享相同代码时 parbegin S1 S2 S3 …….Sn parend S1 S2 S3 …….Sn是相同代码
简化为 parfor (i=1; i<=n, i++) S(i)
(b) 扩展串行语言
例子:SGI power C
my_process_id,number_of_processes(), and barrier()
A(0:N-1)=b(0:N-1)*b(1:N)
c=A(0:N-1)+A(1:N)
例子: Fortran 90
6
2 并行程序构造方法
三种并行程序构造方法比较
(a) 使用库例程构造并行程序
#pragma local(i) {
id=my_process_id();
# pragma pfor iterate(i=0;N;1)
p=number_of_processes();
for (i=0;i<N;i++) A[i]=b[i]*b[i+1];
for ( i= id; i<N; i=i+p) A[i]=b[i]*b[i+1];
➢SPMD: 各个进程是同构的,多个进程对不同的数据执 行相同的代码(一般是数据并行的同义语) 常对应并行循环,数据并行结构,单代码 ➢MPMD:各个进程是异构的, 多个进程执行不同的代码 (一般是任务并行,或功能并行,或控制并行的同义语) 常对应并行块,多代码 要为有1000个处理器的计算机编写一个完全异构的并行 程序是很困难的
9
3 并行性问题
SPMD程序的构造方法
用单代码方法说明SPMD
要说明以下SPMD程序: parfor (i=0; i<=N, i++) foo(i)
▪ Parallel software developers handle issues/challenges such as:
▪ Non-determinism, communication, synchronization, data partitioning and distribution, load-balancing, faulttolerance, heterogeneity, shared or distributed memory, deadlocks, and race conditions.
5
2 并行程序构造方法
串行代码段
(c) 加编译注释构造并行程序的方法
for ( i= 0; i<N; i++ ) A[i]=b[i]*b[i+1];
#pragma parallel
for (i= 0; i<N; i++) cቤተ መጻሕፍቲ ባይዱi]=A[i]+A[i+1];
#pragma shared(A,b,c)
▪ Parallel computing can only be widely successful if parallel software is able to meet expectations of the users, such as:
▪ provide architecture/processor type transparency; ▪ provide network/communication transparency; ▪ be easy-to-use and reliable; ▪ provide support for fault-tolerance; ▪ accommodate heterogeneity; ▪ assure portability; ▪ provide support for traditional high-level languages; ▪ be capable of delivering increased performance; and finally, ▪ to provide parallelism transparency.