吉林大学 数学分析与高等代数 2003年

合集下载

2020年数学分析高等代数考研试题参考解答

2020年数学分析高等代数考研试题参考解答

安徽大学2008年高等代数考研试题参考解答北京大学1996年数学分析考研试题参考解答北京大学1997年数学分析考研试题参考解答北京大学1998年数学分析考研试题参考解答北京大学2015年数学分析考研试题参考解答北京大学2016年高等代数与解析几何考研试题参考解答北京大学2016年数学分析考研试题参考解答北京大学2020年高等代数考研试题参考解答北京大学2020年数学分析考研试题参考解答北京师范大学2006年数学分析与高等代数考研试题参考解答北京师范大学2020年数学分析考研试题参考解答大连理工大学2020年数学分析考研试题参考解答赣南师范学院2012年数学分析考研试题参考解答各大高校考研试题参考解答目录2020/04/29版各大高校考研试题参考解答目录2020/06/21版各大高校数学分析高等代数考研试题参考解答目录2020/06/04广州大学2013年高等代数考研试题参考解答广州大学2013年数学分析考研试题参考解答国防科技大学2003年实变函数考研试题参考解答国防科技大学2004年实变函数考研试题参考解答国防科技大学2005年实变函数考研试题参考解答国防科技大学2006年实变函数考研试题参考解答国防科技大学2007年实变函数考研试题参考解答国防科技大学2008年实变函数考研试题参考解答国防科技大学2009年实变函数考研试题参考解答国防科技大学2010年实变函数考研试题参考解答国防科技大学2011年实变函数考研试题参考解答国防科技大学2012年实变函数考研试题参考解答国防科技大学2013年实变函数考研试题参考解答国防科技大学2014年实变函数考研试题参考解答国防科技大学2015年实变函数考研试题参考解答国防科技大学2016年实变函数考研试题参考解答国防科技大学2017年实变函数考研试题参考解答国防科技大学2018年实变函数考研试题参考解答哈尔滨工程大学2011年数学分析考研试题参考解答哈尔滨工业大学2020年数学分析考研试题参考解答合肥工业大学2012年高等代数考研试题参考解答湖南大学2006年数学分析考研试题参考解答湖南大学2007年数学分析考研试题参考解答湖南大学2008年数学分析考研试题参考解答湖南大学2009年数学分析考研试题参考解答湖南大学2010年数学分析考研试题参考解答湖南大学2011年数学分析考研试题参考解答湖南大学2019年高等代数考研试题参考解答湖南大学2020年数学分析考研试题参考解答湖南师范大学2011年数学分析考研试题参考解答湖南师范大学2011年数学分析考研试题参考解答湖南师范大学2012年数学分析考研试题参考解答湖南师范大学2012年数学分析考研试题参考解答湖南师范大学2012年数学基础综合之高等代数考研试题参考解答湖南师范大学2012年数学基础综合之高等代数考研试题参考解答湖南师范大学2012年数学基础综合之数学分析考研试题参考解答湖南师范大学2013年数学分析考研试题参考解答湖南师范大学2013年数学分析考研试题参考解答湖南师范大学2013年数学基础之高等代数考研试题参考解答湖南师范大学2013年数学基础之数学分析考研试题参考解答湖南师范大学2014年数学分析考研试题参考解答华东师范大学2002年数学分析考研试题参考解答华东师范大学2012年数学分析考研试题参考解答华东师范大学2013年高等代数考研试题参考解答华东师范大学2013年数学分析考研试题参考解答华东师范大学2013年数学分析考研试题参考解答华东师范大学2014年高等代数考研试题参考解答华东师范大学2014年数学分析考研试题参考解答华东师范大学2015年高等代数考研试题参考解答华东师范大学2015年数学分析考研试题参考解答华东师范大学2016年高等代数考研试题参考解答华东师范大学2016年数学分析考研试题参考解答华东师范大学2020年高等代数考研试题参考解答华东师范大学2020年数学分析考研试题参考解答华南理工大学2005年高等代数考研试题参考解答华南理工大学2006年高等代数考研试题参考解答华南理工大学2007年高等代数考研试题参考解答华南理工大学2008年高等代数考研试题参考解答华南理工大学2009年高等代数考研试题参考解答华南理工大学2009年数学分析考研试题参考解答华南理工大学2010年高等代数考研试题参考解答华南理工大学2010年数学分析考研试题参考解答华南理工大学2011年高等代数考研试题参考解答华南理工大学2011年数学分析考研试题参考解答华南理工大学2012年高等代数考研试题参考解答华南理工大学2012年数学分析考研试题参考解答华南理工大学2012年数学分析考研试题参考解答华南理工大学2013年高等代数考研试题参考解答华南理工大学2013年数学分析考研试题参考解答华南理工大学2014年高等代数考研试题参考解答华南理工大学2014年数学分析考研试题参考解答华南理工大学2015年高等代数考研试题参考解答华南理工大学2015年数学分析考研试题参考解答华南理工大学2016年高等代数考研试题参考解答华南理工大学2016年数学分析考研试题参考解答华南理工大学2020年高等代数考研试题参考解答华南理工大学2020年数学分析考研试题参考解答华南师范大学1999年高等代数考研试题参考解答华南师范大学1999年数学分析考研试题参考解答华南师范大学2002年高等代数考研试题参考解答华南师范大学2013年数学分析考研试题参考解答华中科技大学1999年高等代数考研试题参考解答华中科技大学2000年数学分析考研试题参考解答华中科技大学2001年数学分析考研试题参考解答华中科技大学2002年高等代数考研试题参考解答华中科技大学2002年数学分析考研试题参考解答华中科技大学2003年数学分析考研试题参考解答华中科技大学2004年数学分析考研试题参考解答华中科技大学2005年高等代数考研试题参考解答华中科技大学2005年数学分析考研试题参考解答华中科技大学2006年高等代数考研试题参考解答华中科技大学2006年数学分析考研试题参考解答华中科技大学2007年高等代数考研试题参考解答华中科技大学2007年数学分析考研试题参考解答华中科技大学2008年高等代数考研试题参考解答华中科技大学2008年数学分析考研试题参考解答华中科技大学2009年高等代数考研试题参考解答华中科技大学2009年数学分析考研试题参考解答华中科技大学2010年高等代数考研试题参考解答华中科技大学2010年数学分析考研试题参考解答华中科技大学2011年高等代数考研试题参考解答华中科技大学2011年数学分析考研试题参考解答华中科技大学2013年高等代数考研试题参考解答华中科技大学2013年数学分析考研试题参考解答华中科技大学2014年高等代数考研试题参考解答华中科技大学2020年数学分析考研试题参考解答华中师范大学1998年数学分析考研试题参考解答华中师范大学1999年数学分析考研试题参考解答华中师范大学2001年数学分析考研试题参考解答华中师范大学2002年数学分析考研试题参考解答华中师范大学2003年数学分析考研试题参考解答华中师范大学2004年高等代数考研试题参考解答华中师范大学2004年数学分析考研试题参考解答华中师范大学2005年高等代数考研试题参考解答华中师范大学2005年数学分析考研试题参考解答华中师范大学2006年高等代数考研试题参考解答华中师范大学2006年数学分析考研试题参考解答华中师范大学2014年高等代数考研试题参考解答华中师范大学2014年数学分析考研试题参考解答吉林大学2020年数学分析考研试题参考解答暨南大学2013年数学分析考研试题参考解答暨南大学2014年数学分析考研试题参考解答江南大学2007年数学分析考研试题参考解答江南大学2008年数学分析考研试题参考解答江南大学2009年数学分析考研试题参考解答兰州大学2004年数学分析考研试题参考解答兰州大学2005年数学分析考研试题参考解答兰州大学2006年数学分析考研试题参考解答兰州大学2007年数学分析考研试题参考解答兰州大学2008年数学分析考研试题参考解答兰州大学2009年数学分析考研试题参考解答兰州大学2010年数学分析考研试题参考解答兰州大学2011年数学分析考研试题参考解答兰州大学2020年高等代数考研试题参考解答兰州大学2020年数学分析考研试题参考解答南京大学2010年数学分析考研试题参考解答南京大学2014年高等代数考研试题参考解答南京大学2015年高等代数考研试题参考解答南京大学2015年数学分析考研试题参考解答南京大学2016年高等代数考研试题参考解答南京大学2016年数学分析考研试题参考解答南京大学2020年数学分析考研试题参考解答南京航空航天大学2010年数学分析考研试题参考解答南京航空航天大学2011年数学分析考研试题参考解答南京航空航天大学2012年数学分析考研试题参考解答南京航空航天大学2013年数学分析考研试题参考解答南京航空航天大学2014年高等代数考研试题参考解答南京航空航天大学2014年数学分析考研试题参考解答南京师范大学2012年高等代数考研试题参考解答南京师范大学2013年高等代数考研试题参考解答南京师范大学2014年高等代数考研试题参考解答南京师范大学2014年高等代数考研试题参考解答南京师范大学2014年数学分析考研试题参考解答南开大学2002年数学分析考研试题参考解答南开大学2003年数学分析考研试题参考解答南开大学2004年高等代数考研试题参考解答南开大学2005年高等代数考研试题参考解答南开大学2005年数学分析考研试题参考解答南开大学2006年高等代数考研试题参考解答南开大学2006年数学分析考研试题参考解答南开大学2007年高等代数考研试题参考解答南开大学2007年数学分析考研试题参考解答南开大学2008年高等代数考研试题参考解答南开大学2008年数学分析考研试题参考解答南开大学2009年高等代数考研试题参考解答南开大学2009年数学分析考研试题参考解答南开大学2010年高等代数考研试题参考解答南开大学2010年数学分析考研试题参考解答南开大学2011年高等代数考研试题参考解答南开大学2011年数学分析考研试题参考解答南开大学2012年高等代数考研试题参考解答南开大学2012年数学分析考研试题参考解答南开大学2014年高等代数考研试题参考解答南开大学2014年数学分析考研试题参考解答南开大学2016年高等代数考研试题参考解答南开大学2016年数学分析考研试题参考解答南开大学2016年数学分析考研试题参考解答南开大学2017年高等代数考研试题参考解答南开大学2017年数学分析考研试题参考解答南开大学2018年高等代数考研试题参考解答南开大学2018年数学分析考研试题参考解答南开大学2019年高等代数考研试题参考解答南开大学2019年数学分析考研试题参考解答南开大学2020年高等代数考研试题参考解答南开大学2020年数学分析考研试题参考解答南开大学2020年数学分析考研试题参考解答清华大学2011年数学分析考研试题参考解答厦门大学1999年高等代数考研试题参考解答厦门大学2000年高等代数考研试题参考解答厦门大学2001年高等代数考研试题参考解答厦门大学2009年高等代数考研试题参考解答厦门大学2009年数学分析考研试题参考解答厦门大学2010年高等代数考研试题参考解答厦门大学2010年数学分析考研试题参考解答厦门大学2011年高等代数考研试题参考解答厦门大学2011年数学分析考研试题参考解答厦门大学2012年高等代数考研试题参考解答厦门大学2012年数学分析考研试题参考解答厦门大学2013年高等代数考研试题参考解答厦门大学2013年数学分析考研试题参考解答厦门大学2014年高等代数考研试题参考解答厦门大学2014年数学分析考研试题参考解答厦门大学2015年高等代数考研试题参考解答厦门大学2016年高等代数考研试题参考解答厦门大学2016年数学分析考研试题参考解答厦门大学2016年数学分析考研试题参考解答厦门大学2017年高等代数考研试题参考解答厦门大学2018年高等代数考研试题参考解答厦门大学2019年高等代数考研试题参考解答厦门大学2020年数学分析考研试题参考解答上海交通大学2020年高等代数考研试题参考解答上海交通大学2020年数学分析考研试题参考解答首都师范大学2011年高等代数考研试题参考解答首都师范大学2011年高等代数考研试题参考解答首都师范大学2011年数学分析考研试题参考解答首都师范大学2012年高等代数考研试题参考解答首都师范大学2012年数学分析考研试题参考解答首都师范大学2013年高等代数考研试题参考解答首都师范大学2013年数学分析考研试题参考解答首都师范大学2014年高等代数考研试题参考解答首都师范大学2014年数学分析考研试题参考解答首都师范大学2020年高等代数考研试题参考解答首都师范大学2020年数学分析考研试题参考解答四川大学2005年数学分析考研试题参考解答四川大学2006年数学分析考研试题参考解答四川大学2009年数学分析考研试题参考解答四川大学2011年数学分析考研试题参考解答四川大学2020年数学分析考研试题参考解答苏州大学2010年数学分析考研试题参考解答苏州大学2011年数学分析考研试题参考解答苏州大学2012年数学分析考研试题参考解答同济大学2011年数学分析考研试题参考解答同济大学2020年高等代数考研试题参考解答同济大学2020年数学分析考研试题参考解答武汉大学2010年高等代数考研试题参考解答武汉大学2010年数学分析考研试题参考解答武汉大学2011年高等代数考研试题参考解答武汉大学2011年数学分析考研试题参考解答武汉大学2011年数学分析考研试题参考解答武汉大学2012年数学分析考研试题参考解答武汉大学2012年线性代数考研试题参考解答武汉大学2013年高等代数考研试题参考解答武汉大学2013年数学分析考研试题参考解答武汉大学2014年高等代数考研试题参考解答武汉大学2014年数学分析考研试题参考解答武汉大学2015年高等代数考研试题参考解答武汉大学2015年数学分析考研试题参考解答武汉大学2020年高等代数考研试题参考解答武汉大学2020年数学分析考研试题参考解答西南大学2002年数学分析考研试题参考解答西南大学2003年数学分析考研试题参考解答西南大学2004年数学分析考研试题参考解答西南大学2006年高等代数考研试题参考解答西南大学2006年高等代数考研试题参考解答西南大学2007年高等代数考研试题参考解答西南大学2007年高等代数考研试题参考解答西南大学2007年数学分析考研试题参考解答西南大学2008年高等代数考研试题参考解答西南大学2008年高等代数考研试题参考解答西南大学2008年学分析考研试题参考解答西南大学2009年高等代数考研试题参考解答西南大学2009年学分析考研试题参考解答西南大学2010年高等代数考研试题参考解答西南大学2010年学分析考研试题参考解答西南大学2011年高等代数考研试题参考解答西南大学2011年学分析考研试题参考解答西南大学2012年高等代数考研试题参考解答西南大学2012年学分析考研试题参考解答西南师范大学2000年高等代数考研试题参考解答湘潭大学2011年数学分析考研试题参考解答浙江大学2009年高等代数考研试题参考解答浙江大学2009年高等代数考研试题参考解答浙江大学2009年数学分析考研试题参考解答浙江大学2010年高等代数考研试题参考解答浙江大学2010年数学分析考研试题参考解答浙江大学2011年高等代数考研试题参考解答浙江大学2011年数学分析考研试题参考解答浙江大学2012年高等代数考研试题参考解答浙江大学2012年数学分析考研试题参考解答浙江大学2013年数学分析考研试题参考解答浙江大学2014年高等代数考研试题参考解答浙江大学2014年数学分析考研试题参考解答浙江大学2015年数学分析考研试题参考解答浙江大学2016年高等代数考研试题参考解答浙江大学2016年数学分析考研试题参考解答浙江大学2020年高等代数考研试题参考解答浙江大学2020年数学分析考研试题参考解答中国海洋大学2020年数学分析考研试题参考解答中国科学技术大学2010年数学分析考研试题参考解答中国科学技术大学2010年线性代数与解析几何考研试题参考解答中国科学技术大学2011年分析与代数考研试题参考解答中国科学技术大学2011年高等数学B考研试题参考解答中国科学技术大学2011年数学分析考研试题参考解答中国科学技术大学2011年线性代数与解析几何考研试题参考解答中国科学技术大学2012年分析与代数考研试题参考解答中国科学技术大学2012年高等数学B考研试题参考解答中国科学技术大学2012年数学分析考研试题参考解答中国科学技术大学2012年线性代数与解析几何考研试题参考解答中国科学技术大学2013年分析与代数考研试题参考解答中国科学技术大学2013年高等数学B考研试题参考解答中国科学技术大学2013年数学分析考研试题参考解答中国科学技术大学2014年分析与代数考研试题参考解答中国科学技术大学2014年高等数学B考研试题参考解答中国科学技术大学2014年数学分析考研试题参考解答中国科学技术大学2014年数学分析考研试题参考解答中国科学技术大学2014年线性代数与解析几何考研试题参考解答中国科学技术大学2014年线性代数与解析几何考研试题参考解答中国科学技术大学2015年分析与代数考研试题参考解答中国科学技术大学2015年高等数学B考研试题参考解答中国科学技术大学2015年高等数学理考研试题参考解答中国科学技术大学2015年数学分析考研试题参考解答中国科学技术大学2015年线性代数与解析几何考研试题参考解答中国科学技术大学2016年数学分析考研试题参考解答中国科学技术大学2020年数学分析考研试题参考解答中国科学院大学2013年高等代数考研试题参考解答中国科学院大学2013年数学分析考研试题参考解答中国科学院大学2014年高等代数考研试题参考解答中国科学院大学2014年数学分析考研试题参考解答中国科学院大学2016年高等代数考研试题参考解答中国科学院大学2016年数学分析考研试题参考解答中国科学院大学2020年高等代数考研试题参考解答中国科学院大学2020年数学分析考研试题参考解答中国科学院数学与系统科学研究院2001年数学分析考研试题参考解答中国科学院数学与系统科学研究院2002年数学分析考研试题参考解答中国科学院数学与系统科学研究院2003年数学分析考研试题参考解答中国科学院数学与系统科学研究院2004年高等代数考研试题参考解答中国科学院数学与系统科学研究院2005年高等代数考研试题参考解答中国科学院数学与系统科学研究院2005年数学分析考研试题参考解答中国科学院数学与系统科学研究院2006年高等代数考研试题参考解答中国科学院数学与系统科学研究院2006年数学分析考研试题参考解答中国科学院数学与系统科学研究院2007年数学分析考研试题参考解答中国科学院研究生院2011年数学分析考研试题参考解答中国科学院研究生院2012年数学分析考研试题参考解答中国科学院-中国科学技术大学2000年数学分析考研试题参考解答中国人民大学1999年高等代数考研试题参考解答中国人民大学1999年数学分析考研试题参考解答中国人民大学2000年高等代数考研试题参考解答中国人民大学2000年数学分析考研试题参考解答中国人民大学2000年数学分析考研试题参考解答中国人民大学2003年高等代数考研试题参考解答中国人民大学2003年高等代数考研试题参考解答中国人民大学2003年数学分析考研试题参考解答中国人民大学2003年数学分析考研试题参考解答中国人民大学2004年高等代数考研试题参考解答中国人民大学2004年数学分析考研试题参考解答中国人民大学2017年高等代数考研试题参考解答中国人民大学2017年数学分析考研试题参考解答中国人民大学2018年高等代数考研试题参考解答中国人民大学2018年数学分析考研试题参考解答中国人民大学2019年高等代数考研试题参考解答中国人民大学2019年数学分析考研试题参考解答中国人民大学2020年高等代数考研试题参考解答中国人民大学2020年数学分析考研试题参考解答中南大学2011年数学分析考研试题参考解答中南大学2013年高等代数考研试题参考解答中山大学2005年数学分析高等代数考研试题参考解答中山大学2006年数学分析高等代数考研试题参考解答中山大学2007年高等代数考研试题参考解答中山大学2007年数学分析考研试题参考解答中山大学2008年数学分析高等代数考研试题参考解答中山大学2008年数学分析考研试题参考解答中山大学2009年数学分析高等代数考研试题参考解答中山大学2009年数学分析考研试题参考解答中山大学2010年数学分析高等代数考研试题参考解答中山大学2010年数学分析考研试题参考解答。

2003年考研数学三真题及全面解析

2003年考研数学三真题及全面解析

2003年全国硕士入学统考数学(三)试题及答案一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设,0,0,0,1cos )(=≠⎪⎩⎪⎨⎧=x x xx x f 若若λ其导函数在x=0处连续,则λ的取值范围是2>λ. 【分析】 当≠x 0可直接按公式求导,当x=0时要求用定义求导.【详解】 当1>λ时,有,0,0,0,1sin 1cos )(21=≠⎪⎩⎪⎨⎧+='--x x xx x x x f 若若λλλ 显然当2>λ时,有)0(0)(lim 0f x f x '=='→,即其导函数在x=0处连续.(2)已知曲线b x a x y +-=233与x 轴相切,则2b 可以通过a 表示为=2b 64a .【分析】 曲线在切点的斜率为0,即0='y ,由此可确定切点的坐标应满足的条件,再根据在切点处纵坐标为零,即可找到2b 与a 的关系.【详解】 由题设,在切点处有03322=-='a x y ,有 .220a x =又在此点y 坐标为0,于是有0300230=+-=b x a x ,故 .44)3(6422202202a a a x a x b =⋅=-=(3)设a>0,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(= 2a .【分析】 本题积分区域为全平面,但只有当10,10≤-≤≤≤x y x 时,被积函数才不为零,因此实际上只需在满足此不等式的区域内积分即可.【详解】 ⎰⎰-=D dxdy x y g x f I )()(=dxdy a x y x ⎰⎰≤-≤≤≤10,102=.])1[(2102112a dx x x a dy dx ax x=-+=⎰⎰⎰+(4)设n 维向量0,),0,,0,(<=a a a Tα;E 为n 阶单位矩阵,矩阵TE A αα-=, T aE B αα1+=, 其中A 的逆矩阵为B ,则a= -1 .【分析】 这里Tαα为n 阶矩阵,而22a T=αα为数,直接通过E AB =进行计算并注意利用乘法的结合律即可.【详解】 由题设,有)1)((T Ta E E AB αααα+-= =TT T T a a E αααααααα⋅-+-11=TT T T a a E αααααααα)(11-+-=TT T a a E αααααα21-+-=E aa E T=+--+αα)121(,于是有 0121=+--a a ,即 0122=-+a a ,解得 .1,21-==a a 由于A<0 ,故a=-1.(5)设随机变量X 和Y 的相关系数为0.9, 若4.0-=X Z ,则Y 与Z 的相关系数为0.9 .【分析】 利用相关系数的计算公式即可. 【详解】 因为)4.0()()]4.0([()4.0,cov(),cov(---=-=X E Y E X Y E X Y Z Y =)(4.0)()()(4.0)(Y E X E Y E Y E XY E +-- =E(XY) – E(X)E(Y)=cov(X,Y), 且.DX DZ =于是有 cov(Y ,Z)=DZDY Z Y ),cov(=.9.0),cov(==XY DYDXY X ρ(6)设总体X 服从参数为2的指数分布,n X X X ,,,21 为来自总体X 的简单随机样本,则当∞→n 时,∑==n i i n X n Y 121依概率收敛于 21.【分析】 本题考查大数定律:一组相互独立且具有有限期望与方差的随机变量n X X X ,,,21 ,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值:).(1111∞→→∑∑==n EX n X n ni i pn i i【详解】 这里22221,,,n X X X 满足大数定律的条件,且22)(i i i EX DX EX +==21)21(412=+,因此根据大数定律有 ∑==n i i n X n Y 121依概率收敛于.21112=∑=n i i EX n二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设f(x)为不恒等于零的奇函数,且)0(f '存在,则函数xx f x g )()(=(A) 在x=0处左极限不存在. (B) 有跳跃间断点x=0.(C) 在x=0处右极限不存在. (D) 有可去间断点x=0. [ D ] 【分析】 由题设,可推出f(0)=0 , 再利用在点x=0处的导数定义进行讨论即可. 【详解】 显然x=0为g(x)的间断点,且由f(x)为不恒等于零的奇函数知,f(0)=0. 于是有 )0(0)0()(lim )(lim)(lim 00f x f x f x x f xg x x x '=--==→→→存在,故x=0为可去间断点.(2)设可微函数f(x,y)在点),(00y x 取得极小值,则下列结论正确的是(A) ),(0y x f 在0y y =处的导数等于零. (B )),(0y x f 在0y y =处的导数大于零. (C) ),(0y x f 在0y y =处的导数小于零. (D) ),(0y x f 在0y y =处的导数不存在. [ A ]【分析】 可微必有偏导数存在,再根据取极值的必要条件即可得结论.【详解】 可微函数f(x,y)在点),(00y x 取得极小值,根据取极值的必要条件知0),(00='y x f y ,即),(0y x f 在0y y =处的导数等于零, 故应选(A).(3)设2nn n a a p +=,2nn n a a q -=, ,2,1=n ,则下列命题正确的是(A) 若∑∞=1n na条件收敛,则∑∞=1n np与∑∞=1n nq都收敛.(B) 若∑∞=1n na绝对收敛,则∑∞=1n np与∑∞=1n nq都收敛.(C) 若∑∞=1n na条件收敛,则∑∞=1n np与∑∞=1n nq敛散性都不定.(D) 若∑∞=1n na绝对收敛,则∑∞=1n np与∑∞=1n nq敛散性都不定. [ B ]【分析】 根据绝对收敛与条件收敛的关系以及收敛级数的运算性质即可找出答案. 【详解】 若∑∞=1n na绝对收敛,即∑∞=1n na收敛,当然也有级数∑∞=1n na收敛,再根据2nn n a a p +=,2nn n a a q -=及收敛级数的运算性质知,∑∞=1n np与∑∞=1n nq都收敛,故应选(B).(4)设三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a b b b a b b b a A ,若A 的伴随矩阵的秩为1,则必有 (A) a=b 或a+2b=0. (B) a=b 或a+2b ≠0.(C) a ≠b 且a+2b=0. (D) a ≠b 且a+2b ≠0. [ C ] 【分析】 A 的伴随矩阵的秩为1, 说明A 的秩为2,由此可确定a,b 应满足的条件. 【详解】 根据A 与其伴随矩阵A*秩之间的关系知,秩(A)=2,故有0))(2(2=-+=b a b a ab b b a bbb a ,即有02=+b a 或a=b.但当a=b 时,显然秩(A)2≠, 故必有 a ≠b 且a+2b=0. 应选(C).(5)设s ααα,,,21 均为n 维向量,下列结论不正确的是(A) 若对于任意一组不全为零的数s k k k ,,,21 ,都有02211≠+++s s k k k ααα ,则s ααα,,,21 线性无关.(B) 若s ααα,,,21 线性相关,则对于任意一组不全为零的数s k k k ,,,21 ,都有.02211=+++s s k k k ααα(C) s ααα,,,21 线性无关的充分必要条件是此向量组的秩为s.(D) s ααα,,,21 线性无关的必要条件是其中任意两个向量线性无关. [ B ] 【分析】 本题涉及到线性相关、线性无关概念的理解,以及线性相关、线性无关的等价表现形式. 应注意是寻找不正确的命题.【详解】(A): 若对于任意一组不全为零的数s k k k ,,,21 ,都有02211≠+++s s k k k ααα ,则s ααα,,,21 必线性无关,因为若s ααα,,,21 线性相关,则存在一组不全为零的数s k k k ,,,21 ,使得 02211=+++s s k k k ααα ,矛盾. 可见(A )成立.(B): 若s ααα,,,21 线性相关,则存在一组,而不是对任意一组不全为零的数s k k k ,,,21 ,都有.02211=+++s s k k k ααα (B)不成立.(C) s ααα,,,21 线性无关,则此向量组的秩为s ;反过来,若向量组s ααα,,,21 的秩为s ,则s ααα,,,21 线性无关,因此(C)成立.(D) s ααα,,,21 线性无关,则其任一部分组线性无关,当然其中任意两个向量线性无关,可见(D)也成立.综上所述,应选(B).(6)将一枚硬币独立地掷两次,引进事件:1A ={掷第一次出现正面},2A ={掷第二次出现正面},3A ={正、反面各出现一次},4A ={正面出现两次},则事件(A) 321,,A A A 相互独立. (B) 432,,A A A 相互独立.(C) 321,,A A A 两两独立. (D) 432,,A A A 两两独立. [ C ] 【分析】按照相互独立与两两独立的定义进行验算即可,注意应先检查两两独立,若成立,再检验是否相互独立.【详解】 因为21)(1=A P ,21)(2=A P ,21)(3=A P ,41)(4=A P , 且 41)(21=A A P ,41)(31=A A P ,41)(32=A A P ,41)(42=A A P 0)(321=A A A P ,可见有)()()(2121A P A P A A P =,)()()(3131A P A P A A P =,)()()(3232A P A P A A P =, )()()()(321321A P A P A P A A A P ≠,)()()(4242A P A P A A P ≠.故321,,A A A 两两独立但不相互独立;432,,A A A 不两两独立更不相互独立,应选(C).三 、(本题满分8分)设).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ 试补充定义f(1)使得f(x)在]1,21[上连续.【分析】 只需求出极限)(lim 1x f x -→,然后定义f(1)为此极限值即可.【详解】 因为)(lim 1x f x -→=])1(1sin 11[lim 1x x x x --+-→πππ =xx xx x πππππsin )1(sin )1(lim 111---+-→=xx x xx ππππππππcos )1(sin cos lim 111-+---+-→=xx x x xx ππππππππππsin )1(cos cos sin lim 11221----+-→=.1π由于f(x)在)1,21[上连续,因此定义π1)1(=f ,使f(x)在]1,21[上连续.四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足12222=∂∂+∂∂v f u f ,又)](21,[),(22y x xy f y x g -=,求.2222ygx g ∂∂+∂∂ 【分析】 本题是典型的复合函数求偏导问题:),(v u f g =,)(21,22y x v xy u -==,直接利用复合函数求偏导公式即可,注意利用.22uv fv u f ∂∂∂=∂∂∂ 【详解】vf x u f y xg ∂∂+∂∂=∂∂, .vf y u f x yg ∂∂-∂∂=∂∂ 故 vf v f x v u f xy u f y xg ∂∂+∂∂+∂∂∂+∂∂=∂∂2222222222,.2222222222v f vf y u v f xy u f x yg ∂∂-∂∂+∂∂∂-∂∂=∂∂ 所以 222222222222)()(vf y x u f y x yg x g ∂∂++∂∂+=∂∂+∂∂ =.22y x +五 、(本题满分8分) 计算二重积分 .)sin(22)(22dxdy y x e I Dy x +=⎰⎰-+-π其中积分区域D=}.),{(22π≤+y x y x【分析】 从被积函数与积分区域可以看出,应该利用极坐标进行计算. 【详解】 作极坐标变换:θθsin ,cos r y r x ==,有 dxdy y x e e I Dy x )sin(22)(22+=⎰⎰+-π=.sin 2022dr r re d e r ⎰⎰-πππθ令2r t =,则 tdt e e I t sin 0⎰-=πππ.记 tdt e A t sin 0⎰-=π,则t t de e A --⎰-=int 0π=]cos sin [0⎰----ππtdt e t e t t=⎰--πcos t tde=]sin cos [0tdt e t e t t⎰--+-ππ=.1A e -+-π因此 )1(21π-+=e A , ).1(2)1(2πππππe e e I +=+=-六、(本题满分9分)求幂级数∑∞=<-+12)1(2)1(1n nnx n x 的和函数f(x)及其极值. 【分析】 先通过逐项求导后求和,再积分即可得和函数,注意当x=0时和为1. 求出和函数后,再按通常方法求极值.【详解】.1)1()(1212∑∞=-+-=-='n n n xxx x f 上式两边从0到x 积分,得).1ln(211)0()(202x dt t t f x f x+-=+-=-⎰ 由f(0)=1, 得).1(),1ln(211)(2<+-=x x x f 令0)(='x f ,求得唯一驻点x=0. 由于,)1(1)(222x x x f +--='' 01)0(<-=''f ,可见f(x)在x=0处取得极大值,且极大值为 f(0)=1.七、(本题满分9分)设F(x)=f(x)g(x), 其中函数f(x),g(x)在),(+∞-∞内满足以下条件: )()(x g x f =',)()(x f x g =',且f(0)=0, .2)()(xe x g xf =+(1) 求F(x)所满足的一阶微分方程; (2) 求出F(x)的表达式.【分析】 F(x)所满足的微分方程自然应含有其导函数,提示应先对F(x)求导,并将其余部分转化为用F(x)表示,导出相应的微分方程,然后再求解相应的微分方程.【详解】 (1) 由)()()()()(x g x f x g x f x F '+'=' =)()(22x f x g +=)()(2)]()([2x g x f x g x f -+ =(22)x e -2F(x), 可见F(x)所满足的一阶微分方程为.4)(2)(2x e x F x F =+'(2) ]4[)(222C dx e e e x F dx xdx +⎰⋅⎰=⎰-=]4[42C dx e e x x +⎰-=.22x xCe e-+将F(0)=f(0)g(0)=0代入上式,得 C=-1. 于是.)(22x xe e x F --=八、(本题满分8分)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3, f(3)=1.试证必存在)3,0(∈ξ,使.0)(='ξf【分析】 根据罗尔定理,只需再证明存在一点c )3,0[∈,使得)3(1)(f c f ==,然后在[c,3]上应用罗尔定理即可. 条件f(0)+f(1)+f(2)=3等价于13)2()1()0(=++f f f ,问题转化为1介于f(x)的最值之间,最终用介值定理可以达到目的.【详解】 因为f(x)在[0,3]上连续,所以f(x)在[0,2]上连续,且在[0,2]上必有最大值M 和最小值m ,于是M f m ≤≤)0(, M f m ≤≤)1(, M f m ≤≤)2(. 故.3)2()1()0(M f f f m ≤++≤由介值定理知,至少存在一点]2,0[∈c ,使.13)2()1()0()(=++=f f f c f因为f(c)=1=f(3), 且f(x)在[c,3]上连续,在(c,3)内可导,所以由罗尔定理知,必存在)3,0()3,(⊂∈c ξ,使.0)(='ξf九、(本题满分13分) 已知齐次线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++++=+++++=+++++=+++++,0)(,0)(,0)(,0)(332211332211332211332211nn nn n n n n x b a x a x a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a 其中.01≠∑=ni ia试讨论n a a a ,,,21 和b 满足何种关系时,(1) 方程组仅有零解;(2) 方程组有非零解. 在有非零解时,求此方程组的一个基础解系.【分析】方程的个数与未知量的个数相同,问题转化为系数矩阵行列式是否为零,而系数行列式的计算具有明显的特征:所有列对应元素相加后相等. 可先将所有列对应元素相加,然后提出公因式,再将第一行的(-1)倍加到其余各行,即可计算出行列式的值.【详解】 方程组的系数行列式ba a a a a ba a a a ab a a a a a b a A n n n n++++= 321321321321 =).(11∑=-+ni i n a b b(1) 当0≠b 时且01≠+∑=ni iab 时,秩(A)=n ,方程组仅有零解.(2) 当b=0 时,原方程组的同解方程组为 .02211=+++n n x a x a x a 由01≠∑=ni ia可知,),,2,1(n i a i =不全为零. 不妨设01≠a ,得原方程组的一个基础解系为T a a )0,,0,1,(121 -=α,T a a )0,,1,0,(132 -=α,.)1,,0,0,(,1T n n a a -=α 当∑=-=ni iab 1时,有0≠b ,原方程组的系数矩阵可化为⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----∑∑∑∑====n i i n nni inni inni ia a a a a a a a a a a a a a a a a a a a 1321132131213211(将第1行的-1倍加到其余各行,再从第2行到第n 行同乘以∑=-ni ia11倍)→ ⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----∑=1001010100113211 n ni ia a a a a( 将第n 行n a -倍到第2行的2a -倍加到第1行,再将第1行移到最后一行)→.0000100101010011⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---由此得原方程组的同解方程组为12x x =,13x x =,1,x x n = . 原方程组的一个基础解系为 .)1,,1,1(T=α十、(本题满分13分)设二次型)0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T ,中二次型的矩阵A 的特征值之和为1,特征值之积为-12. (1) 求a,b 的值;(2) 利用正交变换将二次型f 化为标准形,并写出所用的正交变换和对应的正交矩阵. 【分析】 特征值之和为A 的主对角线上元素之和,特征值之积为A 的行列式,由此可求出a,b 的值;进一步求出A 的特征值和特征向量,并将相同特征值的特征向量正交化(若有必要),然后将特征向量单位化并以此为列所构造的矩阵即为所求的正交矩阵.【详解】 (1)二次型f 的矩阵为.200200⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=b b a A 设A 的特征值为).3,2,1(=i i λ 由题设,有1)2(2321=-++=++a λλλ,.12242002002321-=--=-=b a b ba λλλ解得 a=1,b= -2.(2) 由矩阵A 的特征多项式)3()2(22202012+-=+----=-λλλλλλA E ,得A 的特征值.3,2321-===λλλ对于,221==λλ解齐次线性方程组0)2(=-x A E ,得其基础解系 T )1,0,2(1=ξ,.)0,1,0(2T=ξ对于33-=λ,解齐次线性方程组0)3(=--x A E ,得基础解系.)2,0,1(3T-=ξ由于321,,ξξξ已是正交向量组,为了得到规范正交向量组,只需将321,,ξξξ单位化,由此得T )51,0,52(1=η,T )0,1,0(2=η,.)52,0,51(3T -=η令矩阵[]⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-==5205101051052321ηηηQ ,则Q 为正交矩阵. 在正交变换X=QY 下,有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020002AQ Q T ,且二次型的标准形为.322232221y y y f -+=十一、(本题满分13分) 设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x fF(x)是X 的分布函数. 求随机变量Y=F(X)的分布函数.【分析】 先求出分布函数F(x) 的具体形式,从而可确定Y=F(X) ,然后按定义求Y 的分布函数即可。

初试科目考试大纲-904数学分析与高等代数

初试科目考试大纲-904数学分析与高等代数

浙江师范大学硕士研究生入学考试初试科目考试大纲科目代码、名称: 904数学分析与高等代数适用专业: 045104学科教学(数学)一、考试形式与试卷结构(一)试卷满分及考试时间本试卷满分为150分,考试时间为180分钟。

(二)答题方式答题方式为闭卷、笔试。

试卷由试题和答题纸组成;答案必须写在答题纸相应的位置上;答题纸一般由考点提供。

(三)试卷内容结构各部分内容所占分值为:数学分析约80分高等代数约50分综合分析题约20分(四)试卷题型结构计算题:6大题,约80分。

证明分析题:3大题,约50分。

论述分析题:1大题,约20分。

二、考查目标(复习要求)全日制攻读教育硕士专业学位入学考试数学分析与高等代数考试内容包括数学分析、高等代数二门数学学科基础课程及用高等数学观点理解初等数学问题及教学的内容,要求考生系统掌握相关学科的基本知识、基础理论和基本方法,理解数学分析和高等代数中反映出的数学思想与方法,并能运用相关理论和方法分析、解决具有一定实际背景的数学问题,以及能利用数学分析、高等代数中的知识、数学思想理解、讨论初等数学问题及相关教学问题。

三、考查范围或考试内容概要第一部分:数学分析考查内容1、数列极限数列极限概念、收敛数列的定理、数列极限存在的条件2、函数极限函数极限概念、函数极限的定理、两个重要极限、无穷大量与无穷小量3、函数的连续性连续性概念、连续函数的性质4、导数与微分导数的概念、求导法则、微分、高阶导数与高阶微分5、中值定理与导数应用微分学基本定理、函数的单调性与极值6、不定积分不定积分概念与基本积分公式、换元法积分法与分部积分法7、定积分定积分概念、可积条件、定积分的性质、定积分的计算8、定积分的应用平面图形的面积、旋转体的侧面积9、级数正项级数、函数项级数、幂级数、傅里叶级数10、多元函数微分学偏导数与全微分、复合函数微分法、高阶偏导数与高阶全微分、泰勒公式与极值问题第二部分:高等代数考查内容多项式、行列式、线性方向组、矩阵、线性空间、线性变换第三部分:高观点下的初等数学考查内容利用数学分析、高等数学的知识及数学思想审视初等数学问题及相关教学问题。

2003数一数三考研数学真题及解析

2003数一数三考研数学真题及解析

2003年全国硕士研究生入学统一考试数学一试题一、填空题(本题共6小题,每小题4分,满分24分.)(1))1ln(12)(cos lim x x x +→= .(2)曲面22y x z+=与平面042=-+z y x 平行的切平面的方程是.(3)设)(cos 02ππ≤≤-=∑∞=x nx ax n n,则2a =.(4)从2R 的基⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=11,0121αα到基⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=21,1121ββ的过渡矩阵为 .(5)设二维随机变量(,)X Y 的概率密度为,y x x y x f 其他,10,0,6),(≤≤≤⎩⎨⎧= 则=≤+}1{Y X P.(6)已知一批零件的长度X (单位:cm )服从正态分布)1,(μN ,从中随机地抽取16个零件,得到长度的平均值为40(cm ),则μ的置信度为0.95的置信区间是.(注:标准正态分布函数值(1.96)0.975,(1.645)0.95.ΦΦ==)二、选择题(本题共6小题,每小题4分,满分24分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1)设函数()f x 在),(+∞-∞内连续,其导函数的图形如图所示,则()f x 有(A ) 一个极小值点和两个极大值点. (B ) 两个极小值点和一个极大值点. (C ) 两个极小值点和两个极大值点. (D ) 三个极小值点和一个极大值点.(2)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A ) n n b a <对任意n 成立.(B ) n n c b <对任意n 成立.(C ) 极限n n n c a ∞→lim 不存在.(D ) 极限n n n c b ∞→lim 不存在.(3)已知函数(,)f x y 在点(0,0)的某个邻域内连续,且22200(,)lim1()x y f x y xyx y →→-=+,则 (A ) 点(0,0)不是(,)f x y 的极值点. (B ) 点(0,0)是(,)f x y 的极大值点. (C ) 点(0,0)是(,)f x y 的极小值点.(D ) 根据所给条件无法判断点(0,0)是否为(,)f x y 的极值点.(4)设向量组I:r ααα,,,21 可由向量组II:s βββ,,,21 线性表示,则 (A ) 当s r <时,向量组II 必线性相关.(B ) 当s r>时,向量组II 必线性相关.(C ) 当s r <时,向量组I 必线性相关.(D ) 当s r >时,向量组I 必线性相关.(5)设有齐次线性方程组0Ax =和0Bx =,其中,A B 均为n m ⨯矩阵,现有4个命题: ①若0Ax =的解均是0Bx =的解,则秩(A )≥秩(B ); ②若秩(A )≥秩(B ),则0Ax =的解均是0Bx =的解; ③若0Ax =与0Bx =同解,则秩(A )=秩(B ); ④若秩(A )=秩(B ),则0Ax =与0Bx =同解. 以上命题中正确的是(A ) ①②.(B ) ①③.(C ) ②④.(D ) ③④.(6)设随机变量21),1)((~X Y n n t X =>,则 (A ) )(~2n Yχ.(B ) )1(~2-n Yχ.(C ) )1,(~n F Y .(D ) ),1(~n F Y .过坐标原点作曲线ln y x =的切线,该切线与曲线ln y x =及x 轴围成平面图形D . (1)求D 的面积A ;(2)求D 绕直线x e =旋转一周所得旋转体的体积V .四、(本题满分12分)将函数x xx f 2121arctan )(+-=展开成x 的幂级数,并求级数∑∞=+-012)1(n n n 的和.五、(本题满分10分) 已知平面区域}0,0),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界.试证:(1)dx ye dy xe dx ye dy xe xLy x Ly sin sin sin sin -=-⎰⎰--; (2).22sin sin π≥--⎰dx ye dy xex Ly六、(本题满分10分)某建筑工程打地基时,需用汽锤将桩打进土层.汽锤每次击打,都将克服土层对桩的阻力而作功.设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为,0k k >).汽锤第一次击打将桩打进地下a (m ).根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数(01)r r <<.问(1)汽锤击打桩3次后,可将桩打进地下多深? (2)若击打次数不限,汽锤至多能将桩打进地下多深? (注:m 表示长度单位米.)七、(本题满分12分)设函数()y y x =在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是()y y x =的反函数.(1)试将()x x y =所满足的微分方程0))(sin (322=++dy dx x y dyx d 变换为()y y x =满足的微分方程;(2)求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解.设函数()f x 连续且恒大于零,222()22()()()()t D t f xy z dVF t f x y d σΩ++=+⎰⎰⎰⎰⎰,22()2()()()D t tt f x y d G t f x dxσ-+=⎰⎰⎰,其中}),,{()(2222t z y x z y x t ≤++=Ω,}.),{()(222t y x y x t D ≤+=(1)讨论()F t 在区间),0(+∞内的单调性. (2)证明当0t >时,).(2)(t G t F π>九、(本题满分10分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=322232223A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100101010P ,P A P B *1-=,求2B E +的特征值与特征向量,其中*A 为A 的伴随矩阵,E 为3阶单位矩阵.十、(本题满分8分)已知平面上三条不同直线的方程分别为:1l 032=++c by ax ,:2l 032=++a cy bx , :3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a十一、(本题满分10分)已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品.从甲箱中任取3件产品放入乙箱后,求:(1)乙箱中次品件数X 的数学期望; (2)从乙箱中任取一件产品是次品的概率.十二、(本题满分8分)设总体X 的概率密度为⎩⎨⎧≤>=--,,,0,2)()(2θθθx x e x f x其中0>θ是未知参数.从总体X 中抽取简单随机样本n X X X ,,,21 ,记12ˆmin(,,,X X θ=L )n X .(1)求总体X 的分布函数()F x ; (2)求统计量θˆ的分布函数)(ˆx F θ;(3)如果用θˆ作为θ的估计量,讨论它是否具有无偏性.2003年考研数学一试题答案与解析一、填空题(1)【分析】 属1∞型. 原式=1cos 1cos 1ln(1)lim[1(cos 1)].x x x x x -⋅-+→+-利用等价无穷小因子替换易求得2121lim)1ln(1)1(cos lim 22020-=-=+⋅-→→x xx x x x , 故原式=12.e -(2)【分析】 曲面在任意点(,,)P x y z 处的法向量{2,2,1}x y =-n ,n 与平面042=-+z y x 的法向量{2,4,1}=-0n 平行,λλ⇔=0n n 为某常数,即22,24,1.x y λλλ==-=- 从而1, 2.x y ==,又点P 在曲面上22(1,2)()5z x y P ⇒=+=⇒点处的{2,4,1}=-n .因此所求切面方程是0)5()2(4)1(2=---+-z y x ,即245x y z +-=.(3)【分析】 这是求傅氏系数的问题. 已知)()(2ππ≤≤-=x x x f 是以2π为周期的偶函数,按傅氏系数计算公式得2220002211cos 2sin 22sin 22a x xdx x d x x xdx ππππππ===-⎰⎰⎰=00111cos 2cos 2cos 2 1.xd x x x xdx ππππππ=-=⎰⎰(4)【分析】 设由基12,αα到基12,ββ的过渡矩阵为C ,则1212(,)(,)C ββαα=,即11212(,)(,).C ααββ-=那么,由111110231023011201120112⎡⎤⎡⎤⎡⎤→→⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦ 可知应填:23.12⎡⎤⎢⎥--⎣⎦当然也可先求出11111,0101-⎡⎤⎡⎤=⎢⎥⎢⎥--⎣⎦⎣⎦再作矩阵乘法而得到过渡矩阵.(5)【分析】 =≤+}1{Y X P 1(,)x y f x y dxdy +≤⎰⎰11206xxdx xdy -=⎰⎰12016(12).4x x dx =-=⎰(6)【分析】 这是一个正态总体方差已知求期望值μ的置信区间问题,该类型置信区间公式为(,),I x x =+其中λ由{}0.95P U λ<=确定(~(0,1))U N 即 1.96λ=.将40,1,16, 1.96x n σλ====代入上面估计公式,得到μ的置信度为0.95的置信区间是(39.51,40.49).二、选择题(1)【分析】 由图,()f x 有三个驻点和一个不可导点0.x ='()f x 在三个驻点处,一个由正变负,两个由负变正,因而这三个驻点中一个是极大值点,两个是极小值点;而点0x =(()f x 的连续点)的左侧'()0f x >,0x =的右侧'()0f x <,0x =是()f x 由增变减的交界点,因而是极大值点.应选(C ).(2)【分析】 (A ),(B )显然不对,因为由数列极限的不等式性质只能得出数列“当n 充分大时”的情况,不可能得出“对任意n 成立”的性质.(C )也明显不对,因为“无穷小⋅无穷大”是未定型,极限可能存在也可能不存在. 故应选(D ).(3)【分析】 由条件000lim[(,)]0lim (,)(0,0)0.x x y y f x y xy f x y f →→→→⇒-=⇒==由极限与无穷小的关系⇒222(,)1(1)()f x y xyo x y -=++ (0).ρ=→⇒2222222(,)()(())()(0).f x y xy x y o x y xy o ρρ=++++=+→ 当y x =时,2(,)(0,0)[1(1)]0f x y f x o -=+>(0ρδ<<时), 当y x =-时,2(,)(0,0)[1(1)]0f x y f x o -=-+<(0ρδ<<时),其中δ是充分小的正数,因此,(0,0)不是(,)f x y 的极值点.应选(A ).(4)【分析】 根据定理“若12,,,s αααL可由12,,,t βββL 线性表出,且s t >,则12,,,s αααL 必线性相关”,即若多数向量可以由少数向量线性表出,则这多数向量必线性相关,故应选(D ).(5)【分析】 显然命题④错误,因此排除(C ),(D ).对于(A )与(B )其中必有一个正确,因此命题①必正确,那么②与③哪一个命题正确呢?由命题①,“若0Ax =的解均是0Bx =的解,则秩(A )≥秩(B )”正确,知“若0Bx =的解均是0Ax =的解,则秩(A )≥秩(B )”正确,可见“若0Ax =与0Bx =同解,则秩(A )=秩(B )”正确.即命题③正确,所以应当选(B ).(6)【分析】 根据t 分布的性质,2~(1,)X F n ,再根据F 分布的性质21~(,1),F n X因此21~(,1)Y F n X=.故应选择(C ).三、【解】(1)曲线ln y x =在点0000(,)(ln )x y y x =处的切线方程为0001();y y x x x -=- 由切线过原点(0,0),得000,y x e ==,所以该切线方程为x y e=.从而,图形的D 面积为(如图)1() 1.2y eA e ey dy =-=-⎰ (2)切线y x e x =、轴与直线x e =所围三角形绕x e =旋转所得圆锥体的体积为211,3V e π=而曲线ln y x x =、轴与直线x e =所围曲边三角形绕x e =的旋转体体积为1222011()(2),22y V e e dy e e ππ=-=-+-⎰或者221112()ln (2).22e V e x xdx e e ππ=-=-+-⎰因此所求旋转体的体积为 212(5123).6V V V e e π=-=-+四、【分析与求解】 (1)因为'()f x 简单,先求'()f x 的展开式,然后逐项积分得()f x 的展开式.因2220112211()()'2(1)4,(,),121214221()12n n nn x f x x x x x x x∞=--'==-=--∈--++++∑ 又(0)4f π=,两边积分得221000(1)411()2(1)42,(,).442122n n x n n nn n n f x t dt x x n ππ∞∞+==-=--=-∈-+∑∑⎰因为()f x 在21=x 连续,21102(1)41(1)21221n n nn x n n xn n ∞∞+===--=++∑∑收敛,所以210(1)411()2,(,].42122n n n n f x x x n π∞+=-=-∈-+∑(2)令21=x ,得21001(1)41(1)()2.24212421n n n n n n f n n ππ∞∞+==--=-⋅=-++∑∑又0)21(=f ,因此0(1).214n n n π∞=-=+∑五、【分析与证明】用格林公式把第二类曲线积分转化为二重积分.(1)由格林公式,有左边曲线积分=sin sin sin sin [()()](),y x y x DDxe ye dxdy e e dxdy x y --∂∂--=+∂∂⎰⎰⎰⎰ 右边曲线积分=sin sin ().y x De e dxdy -+⎰⎰ 因为区域D 关于y x =对称⇒⎰⎰-+Dx y dxdy e e )(sin sin =⎰⎰+-Dxy dxdy e e )(sin sin (x 与y 互换). 因此dx ye dy xe dx ye dy xex Ly x Lysin sin sin sin -=---.①(2)由(1)的结论,有sin sin sin sin sin sin ()()y x y x y yLDDxe dy ye dx e e dxdy e e dxdy ----=+=+⎰⎰⎰⎰⎰Ñ2222.DDdxdy π≥==⎰⎰⎰⎰六、【分析】 设第n 次打击后,桩被打进地下n x ,第n 次打击时,气锤所作的功为),3,2,1( =n W n . 由题设,已知当桩被打进地下的深度为x 时,土层对桩的阻力的大小为kx ,1n n W rW -=要求的是(n x n 3)=及lim .n n x →+∞【解】 通过求1nii W =∑直接求出nx .按功的计算公式:12211011,22x W kxdx kx ka ===⎰2312123,,,.nn x x x n x x x W kxdx W kxdx W kxdx -===⎰⎰⎰L相加得 21201.2nx n n W W W kxdx kx +++==⎰L又 21121n n n n W rW r W r W ---====L ,代入上式得21221111(1),.22n n r r r W kx W ka -++++==L 于是().n x a m ==因此3().x m ==lim ).n n x m →+∞=七、【证明】 (1)实质上是求反函数的一、二阶导数的问题.由反函数求导公式知y dy dx '=1,2211()'()'()'''y y x d x dx dx dy dy y y dy===⋅33''().y dxy y dy ''=-=-' 代入原微分方程,便得常系数的二阶线性微分方程.sin x y y =-''(*)(2)特征方程210r -=的两个根为1,21;r =±由于非齐次项()sin f x x =sin x e x αβ=,0,α=1β=,i i αβ±=±不是特征根,则设(*)的特解*cos sin y a x b x =+,代入(*)求得,10,2a b ==-,故x y sin 21*-=,于是(*)的通解为121()sin .2x x y x C e C e x -=+- 又由初始条件得1,121-==C C ,所求初值问题的解为.sin 21x e e y x x --=-八、【分析与证明】(1)分别作球坐标变换:sin cos ,sin sin ,cos x y z ρϕθϕθρϕ===与极坐标变换:cos ,sin .x r y r θθ==将()F t 中的分子与分母表成定积分,于是222220222()sin 2()().()()ttttd d f drf drF t d f r rdrf r rdrπππθϕρρϕρρθ==⎰⎰⎰⎰⎰⎰⎰下面求'()F t ,由它的符号讨论()F t 的单调性.由变限积分求导法得2222222022()()()()()2(())tttt f t f r rdr t f t f r r drF t f r rdr -'=⎰⎰⎰220220()()()20,[()]tttf t f r r t r drf r rdr -=>⎰⎰(0,)t ∈+∞.因此()F t 在),0(+∞单调增加.(2)如同题(1),先将()G t 表成定积分:22200022()()().2()()ttttd f r rdrf r rdrG t f r rdrf r drπθπ==⎰⎰⎰⎰⎰要证0t >时,2()(),F t G t π>即证2220022()(),()()t t ttf r r dr f r rdr f r rdrf r dr>⎰⎰⎰⎰即证222220()()[()]0.ttt f r dr f r r dr f r rdr ->⎰⎰⎰(*)我们将利用单调性证明这个不等式. 令222220()()()[()],tttt f r dr f r r dr f r rdr Φ=-⎰⎰⎰⇒2222222200'()()()()()2[()]()tttt f t f r r dr f t tf r dr f r rdr f t t Φ=+-⋅⎰⎰⎰2220()()()0t f t f r t r dr =->⎰,(0,)t ∈+∞又()t Φ在0t =处连续⇒()t Φ在[0,)+∞单调增加0t ⇒>时,()(0)0.t ΦΦ>=因此0t >时,).(2)(t G t F π>九、【解】由于322777232232223011E A λλλλλλλλλλ-------=---=--------2111(7)(1)232(1)(7),011λλλλλ=-----=---故A 的特征值为.7,1321===λλλ因为7,i A λ==∏若,A αλα=则.AA ααλ*=所以,A *的特征值为:7,7,1.由于1B P A P -*=,即A *与B 相似,故B 的特征值为7,7,1.从而2B E +的特征值为9,9,3.因为11111()()(),AB P P A P P P A P ααααλ--*--*-===按定义可知矩阵B 属于特征值Aλ的特征向量是1Pα-.因此2B E +属于特征值2+λA的特征向量是1Pα-.由于,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-1000011101P ,而当1λ=时,由222111()0,222000,222000E A x ---⎡⎤⎡⎤⎢⎥⎢⎥-=---→⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦得到属于1λ=的线性无关的特征向量为111,0α-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦210.1α-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ 当7λ=时,由422121(7)0,242011,224000E A x ---⎡⎤⎡⎤⎢⎥⎢⎥-=--→-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦ 得到属于7λ=的特征向量为311.1α⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦那么1111,0P α-⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦1211,1P α--⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦1301.1P α-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦故2B E +属于特征值9λ=的全部特征向量为121111,01k k -⎡⎤⎡⎤⎢⎥⎢⎥-+-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦12,k k 是不全为零的任意常数. 而2B E +属于特征值3λ=的全部特征向量为301,1k ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,其中3k 为非零的任意常数.十、【解】必要性:若三条直线交于一点,则线性方程组23,23,23ax by c bx cy a cx ay b +=-⎧⎪+=-⎨⎪+=-⎩(*)有唯一解,故()()2r A r A ==.于是0.A =由于23111236()23a bc A b c a a b c b c a c a b c a b--=-=++---2226()()a b c ab c ab ac bc =++++---2223()[()()()],a b c a b b c c a =++-+-+-(* *)由321,,l l l 是三条不同直线,知a b c ==不成立,那么0)()()(222≠-+-+-a c c b b a .故必有.0=++c b a充分性:若0,a b c ++=由(**)知0=A ,故秩() 3.r A <由22222132()2[()]2[()]0,224a b ac b a a b b a b b b c =-=-++=-++≠(否则0a b c ===.)知秩() 2.r A =于是()() 2.r A r A ==因此,方程组(*)有唯一解,即三条直线321,,l l l 交于一点.十一、【解】 (1)易见,X 服从超几何分布,其分布参数为123,3n N N ===,根据超几何分布的期望公式,可直接得到1123.2N EX nN N ==+(2)设A 表示事件“从乙箱中任意取出的一件产品是次品”,由于{0},{1},{2}X X X ===和{3}X =构成完备事件组,因此根据全概率公式,有3300(){}{}{}6k k kP A P X k P A X k P X k =======⋅∑∑3011131{}.66624k kP X k EX =====⋅=∑十二、【解】 (1)2(),1,()().0,x xx e F x f t dt x θθθ---∞≥⎧-==⎨<⎩⎰(2)}),,,{min(}ˆ{)(21ˆx X X X P x P x F n≤=≤=θθ 12121{min(,,,)}1{,,,}n n P X X X x P X x X x X x =->=->>>L L 121{}{}{}n P X x P X x P X x =->>>L1[1()]nF x =--=2(),1,.0,n x x e x θθθ--≥⎧-⎨<⎩(3)ˆθ的概率密度为 2()ˆˆ,2,()'().0,n x x ne f x F x x θθθθθ-->⎧==⎨≤⎩因为2()ˆ1ˆ()2,2n x E xf x dx nxe dx nθθθθθθ+∞+∞---∞===+≠⎰⎰ 所以ˆθ作为θ的矩估计量不具有无偏性.。

数学分析与高等代数考研真题详解--武汉大学卷

数学分析与高等代数考研真题详解--武汉大学卷


n+1
n

x x x x l xl x xl x =

n+ p
n+ p−1 +…+

n+1
< 2[
n
2 n+ p
1
+ ... +

] 2
1
n +1
l x x l l l x x <
2( − 2 l −1
)
1
1
n
=M
−n
(M=
2− 2 l −1
1)
显然由柯西收敛准则知,对于 ∀ε > 0 , ∃N > 0 ,使得 n>N 时
wwwboss163com博士家园二零一零年二月博士家园系列内部资料数学分析与高等代数考研真题详解武汉大学考研数学专卷目录9501年数学分析试题解答电子版在随书附赠的光盘中2002年招收硕士研究生入学考试数学分析试题2002年招收硕士研究生入学考试数学分析试题解答2002年招收硕士研究生入学考试高等代数试题2002年招收硕士研究生入学考试高等代数试题解答2003年招收硕士研究生入学考试数学分析试题及解答2003年招收硕士研究生入学考试高等代数试题及解答2004年招收硕士研究生入学考试数学分析试题及解答2004年招收硕士研究生入学考试高等代数试题及解答2005年招收硕士研究生入学考试高等代数试题及解答2005年招收硕士研究生入学考试数学分析试题及解答2006年招收硕士研究生入学考试数学分析试题及解答2007基础数学复试题2008年招收硕士研究生入学考试数学分析试题及解答2008年招收硕士研究生入学考试线性代数试题及解答2009年数学分析试题及解答电子版在随书附赠的光盘中2009年高等代数试题及解答电子版在随书附赠的光盘中2009博士家园系列内部资料武汉大学博士家园系列内部资料2002年数学分析答案由归纳法知n123

2003年考研数学四试题答案与解析

2003年考研数学四试题答案与解析
……如上解法,应注意计算 ∫∫ dxdy 时,最 D1
好的办法是利用二重积分的几何意义,直 接判断该积分的值就是区域 D1 的面积,可
由图直接得到 D1 的面积为 1。
本题考查了函数的复合以及简单二重积 分的计算。 【陈白皮】确定被积函数 f(x)g(y-x)的具体 表达式,是计算二重积分的关键。 【评注】 若被积函数只在某区域内不为零,则二重积分的计算只需在积分区域 与被积函数不为零的区域的公共部分上积分即可. 完全类似例题见《数学复习指南》P.191【例 8.16-17】 .
其中 A 的逆矩阵为 B ,则 a = -1
.
【分析】 本题考查了矩阵的运算性质(分配律、结合律),逆矩阵等知识点。
这里αα T 为 n 阶矩阵,而α Tα = 2a 2 为数,直接通过 AB = E 进行计算并注
意利用乘法的结合律即可. 【详解】 由题设,有
AB = (E − αα T )(E + 1 αα T ) a
0⎥⎥ . 0⎥⎦
【评注】 本题实质上是已知矩阵等式求逆的问题,应先分解出因式 A-E, 写成逆矩阵的定义形式,从而确定(A-E) 的逆矩阵.
【陈白皮】当 n 阶矩阵 A 满足某个矩阵等式时,要计算 A 的逆矩阵,总是
将这个矩阵等式分解为 AC=E,得到 A−1 = C 。
完全类似例题见《数学最后冲刺》P.92【例 7】. 【二李】本题恒等变形的方法早已出现,见 91 年 10 题。
x→∞ x
x→∞
a = lim y 及 b = lim ( y − ax) 。
x x→+∞
( x→−∞)
x→+∞ ( x→−∞)
本题为常规题型,完全类似例题见《数学复习指南》P.153 【例 6.30-31】.

东北大学专业课参考书目

东北大学专业课参考书目
基础工业工程
《基础工业工程》
易树平郭伏
机械工业出版社
2007年
851
物流工程与管理
《物流管理新论》
戢守峰
科学出版社
2005年
852
电子技术基础
《电路与电子学》
王文辉
电子工业出版社
2005年
《数字逻辑与数字系统》
王永军
电子工业出版社
2005年
853
C语言程序设计与数据结构
《标准C语言程序设计》
金名等译
《法理学》
张文显
高等教育出版社
最新版
614
国际政治
《国际政治学概论》
陈岳
中国人民大学出版社
最新版
615
马克思主义基本原理
《马克思主义基本原理概论》
本书编写组
高等教育出版社
最新版
616
科学技术概论
《科学技术发展概论》
李兆友
东北大学出版社
2006年
617
管理学基础
《现代管理学原理》
娄成武
中国人民大学出版社
2007年
813
代数基础
《高等代数》(1-9章)
北京大学数学系
高等教育出版社
2003年
《近世代数》(1-2章)
杨子胥
高等教育出版社
2003年
814
物理化学
《物理化学》
傅献彩
高等教育出版社
2005年
815
线性代数与空间解析几何
《线性代数与空间解析几何》
邢伟
高等教育出版社
2005年
816
材料力学
《材料力学》
东北大学2012年硕士研究生招生参考书目

初试科目考试大纲-904数学分析与高等代数

初试科目考试大纲-904数学分析与高等代数

浙江师范大学硕士研究生入学考试初试科目考试大纲科目代码、名称: 904数学分析与高等代数适用专业: 420104学科教学(数学)一、考试形式与试卷结构(一)试卷满分及考试时间本试卷满分为150分,考试时间为180分钟。

(二)答题方式答题方式为闭卷、笔试。

试卷由试题和答题纸组成;答案必须写在答题纸相应的位置上;答题纸一般由考点提供。

(三)试卷内容结构各部分内容所占分值为:数学分析约100分高等代数约50分(四)试卷题型结构计算题:7大题,约100分。

分析论述题:3大题,约50分。

二、考查目标(复习要求)全日制攻读教育硕士专业学位入学考试数学分析与高等代数考试内容包括数学分析、高等代数二门数学学科基础课程,要求考生系统掌握相关学科的基本知识、基础理论和基本方法,理解数学分析和高等代数中反映出的数学思想与方法,并能运用相关理论和方法分析、解决具有一定实际背景的数学问题。

三、考查范围或考试内容概要第一部分:数学分析考查内容1、数列极限数列极限概念、收敛数列的定理、数列极限存在的条件2、函数极限函数极限概念、函数极限的定理、两个重要极限、无穷大量与无穷小量3、函数的连续性连续性概念、连续函数的性质4、导数与微分导数的概念、求导法则、微分、高阶导数与高阶微分5、中值定理与导数应用微分学基本定理、函数的单调性与极值6、不定积分不定积分概念与基本积分公式、换元法积分法与分部积分法7、定积分定积分概念、可积条件、定积分的性质、定积分的计算8、定积分的应用平面图形的面积、旋转体的侧面积9、级数正项级数、函数项级数、幂级数、傅里叶级数10、多元函数微分学偏导数与全微分、复合函数微分法、高阶偏导数与高阶全微分、泰勒公式与极值问题第二部分:高等代数考查内容多项式、行列式、线性方向组、矩阵、线性空间、线性变换参考教材或主要参考书:华东师范大学编:《数学分析》(上、下),高等教育出版社,2001年,第三版。

北京大学编:《高等代数》,高等教育出版社,2003年,第三版。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

吉林大学 数学分析与高等代数 2003年
一、 填空题(判断题填“√”或“×”,计算题填结果) 1、 任何单调数列必有极限( ) 2、 数列{(-1)
n
1n
n +}的下极限为(

3、 若函数f (x )在开区间(0,1)上一致连续,则f (x )在(0,1)上有
界( )
4、 有界区间上的有界连续函数必有最大值( )
5、 设A 为n 阶实对称矩阵,x 为n 维列向量,x T 为x 的转置,则f(x)=x T Ax 的梯度向量为( )
6、 设三阶方阵A 与B 相似,B 的三个特征根为111234
,|B|=-1.则
|A *
+I|=( ).其中A *
为A 的伴随矩阵.
7、 已知A,B,C 均为n 阶方阵,且AB+ABC+C=0.则(I+C )-1
=( ). 8、 已知
112
410x y ⎛⎫⎛⎫ ⎪ ⎪-⎝⎭⎝⎭
则x=( ),y=( ) 二、 单选题
1. 设A 与B 皆为m ×n 阶矩阵,A 的n 个列为12,,,n ααα ,B 的n 个列为
12,,,n βββ ,且已知A 为列秩矩阵。

则B 也为列秩矩阵的充要条件是
A. 12,,,n ααα 均可表为12,,,n βββ 的线性组合
B. 12,,,n βββ 均可表为12,,,n ααα 的线性组合
C. A 可经行初等变换化为B
D. A 可经列初等变换化为B
2. 设A,B 均n 阶方阵,且无公共特征根,f (λ)是A 的特征多项式。

则f (B )必为
A.零矩阵
B.可逆矩阵
C.不可逆的非零矩阵
D.无法确定
3.设123,,,S S S S 均为数域Ω上的向量空间的子空间,且123.S S S S =++则123S S S S =⊕⊕的充要条件为 A.123{}S S S ⋂⋂=∅
B.121323{}S S S S S S ⋂=⋂=⋂=∅
C.23123{}(){}S S S S S ⋂=∅⋂+=∅且
D.以上都不对 三、 计算下列极限
1.1/2
1
1lim ()
n
n
n k k
→∞
=∑
2.220
1lim
()x x
→-
3.2
2
2
2
2
2
1
2arctan
arctan arctan lim (
)
1
2
n n
n n n n n n n n n n
→∞
+
+++++
4.2
2
4
2
sin()cos()lim
(tan )ln(1)
0x x dt
x x t t x +

-+⎰
四、判断下列级数的敛散性或一致收敛性
1.1
1
11(1)
n n n

+=+-∑
2.2
11
sin
(1)
n
n n n

=-∑
3.2003
1
2
1
ln(1)2
(
)
1
n n
n
n ∞
=+∑+
4.2
1
ln ,(0,1)n
n x x x

=∈∑
五、设f(x)是在[0,1]有定义的函数,f ′(x)处处存在并且连续,且满足
1
()0f x dx =⎰
.试证明:存在(0,1)ξ∈,使得 f ′(ξ
)=2
()f ξξ
-
六、适用Lagrange 乘数法求函数2
2
2
(,,)23f x y z y x z
=++在单位球22
2
1x y z ++≤上
的最大值和最小值。

七、计算第二型曲面积分2
2
2
2
,3434c y x dx dy x y
x y
-++⎰其中C 为圆周22
1x y +=,方
向为正向。

八、回答下列问题: 1.计算积分2
2
2003
1
()
x
y x y dxdy +≤+⎰⎰
2.设f (x )在[a,b]上单调不减,(),().f a a f b b ≥≤试证明:存在[,]a b ξ∈,使
得()f ξξ=。

3.设f (x )为连续函数,f (x )=0当|x|≥1时成立,
试证明对(,)x ∈-∞+∞一致地有 lim ()()()n n ny f x y dy f x ϕ+∞
-∞→∞
-=

九、证明题
1.设,στ为n 维欧氏空间V 上的对称变换,证明στ也为对称变换的充要条件是σττσ=。

2.设σ是数域Ω上的n 维向量空间V 上的线性变换,0λ是σ的r 重特征根。

证明σ的属于特征根0λ的线性无关的特征向量组至多含有r 个向量。

3.设A,B,C 均为n 阶实对称矩阵,且AB+BA=C.证明:若A,C 为正定矩阵,则B 也是正定矩阵。

吉林大学2002数分 一、 计算下列极限
1.2
2
1/lim (21)n
n n →∞
-
2.1
arcsin lim x
x x -
→-
3.11
21lim
(c o s
c o s c o s )n n n n n n
→∞
-+++
4.1/0
lim ()
n
n →∞

5.2
2
(tan )(1)
lim
ln (1)(sin )
x
x x x e
x x x →--+-
6.2
24
5
sin()cos()lim
ln(1)
x x t t dt x →+⎰
二、判断下列式子的敛散性或一致收敛性
1.2
co s(1)
x ∞
+⎰
2.2
1
20022002
2
1
1(1)(1)sin
1n n
n n
n
n
+∞
=-+
+∑
3.2002
2002
2002
1
1(
)
sin
1
n n n
n

=+∑
4.(),(0,1)21
n
n n
x
f x x x x =
∈++
三、设f (x )在[0,1]上连续且满足 0≤f (x )≤1 ,试证:对任何自然数n ,都存在[]0,1n ξ∈,使得()n
n n f ξξ=。

四、试证明当0<x ≤1时 ,有 3
1arctan 6x x x <-
进一步,试说明存在唯一正实数α,使得上述不等式当0x α
<<时成立,当
x α>时不成立.
五、 计算第二型曲面积分22
(sin())(sin())()x yz dydz y zx dzdx z x y dxdy ∑-+-+-+⎰⎰
其中∑为球面2
2
2
1x y z ++=下半部分的上侧. 六、 证明下列各题
1. 设(),()f x g x 在上[1,)+∞有定义,且满足 12112|()()|||,f x f x a x x -≤-
21212312|||()()|||a x x g x g x a x x -≤-≤-其中12,[1,)x x ∈+∞是任意的,123,,a a a
均为正常数。

试证函数()()g()
f x F x x =
在[2,)+∞上一致连续。

2. 设函数f (x )在实轴R 上n 次连续可微,且满足
()
(1)(0)(0)(0)0n f f f f =='=== 求证:存在(0,1)ξ∈,使得()()f nf ξξξ'=. 3. 设{}n a
为单调递减的正项数列,级数1ln(1n n a ∞
=+

收敛,试证:lim 0
n a →∞
=。

相关文档
最新文档