24.7线段垂直平分线的性质定理及其逆定理
24.7线段垂直平分线的性质定理及其逆定理

线段垂直平分线的应用线段垂直平分线上的点到这条线段两个端点的距离相等,这是线段垂直平分线的一个重要性质,在解题过程中,若题目中出现或经过构造出现线段垂直平分线,利用上述性质可顺利解决问题.一、用于计算例1 如图1,点P 在∠AOB 内,点M 、N 分别是点P PEF 的周长为5,求MN 的长.分析:由图1知MN 的长是ME 、EF 、FN 而P 与M 关于OA 对称,P 与N 关于OB 对称,所以OA 、 OB 分别是PM 、PN 知EM=EP , FP=FN ,故MN 的长就是△PEF 的周长.解:因为P 与M 关于OA 对称,P 与N 关于OB 的垂直平分线,所以EM=EP , FP=FN .所以例2 如图2所示,DE 是△ABC 的边AB E 平分∠B AC ,若∠B=30º,求∠C 的度数.分析:由DE 是AB 边的垂直平分线可知BE=A E ∠B=∠1,又因为A E 是∠B AC 的角平分线,所以∠1=∠即可求出∠C 的度数. 解:因为DE 是AB 边的垂直平分线,所以BE=A E ∠B=∠1.因为∠B=30º,所以∠1=30º.又因为A E 平分∠B AC ,所以∠2=∠1=30º,即∠B AC=60º.因为∠C=180º-∠B AC -∠B ,所以∠C=90º.点评:通过以上两例可以看出,我们在求一些边长、周长或角的度数时,如果能恰当地二、用于证明例3 如图3,已知AB=AC , AD 平分∠BAC ,求证:∠分析:由已知AB=AC 及AD 平分∠BAC ,易想到连结BC ,得 等腰△ABC ,且AD 垂直平分BC ,从而有DB=CD 及BE=EC ,可得∠EBC=∠ECB ,∠DBC=∠DCB ,两式相减即有∠DBE=∠ECD .证明:连结BC ,因为AB=AC ,AD 平分∠BAC ,所以AD 垂 直平分BC ,所以BE=EC ,DB=CD ,所以∠EBC=∠ECB ,∠DBC= ∠DCB ,所以∠EBC -∠DBC=∠ECB -∠DCB ,即∠DBE=∠ECD 点评:本题也可以通过证明△ABE ≌△ACE 得∠AEB=∠AEC 及BE=EC ,再证明△BDE ≌△DCE .但这种证法显然没有利用线段垂直平分线性质来得简捷.例4 如图4,在△ABC 中,AB=2AC ,∠BAD=∠CAD ,分析:要证明CD ⊥CA ,只要使∠ACD=90º.由于AD=DB 可在AB 边上取中点E ,连结DE ,由AB=2AC 及∠BAD=∠得△ADE ≌△ADC ,从而得∠ACD=∠AED ,由AD=DB 知D 在AB 的垂直平分线上,可知∠AED=90º,问题解决.证明:在AB 边上取中点E ,连结DE ,因为AD=DB ,E 为中点,所以ED ⊥AB .因为AB=2AC ,所以AE=21AB= AC .在△ADE 和△ADC 中,AE= AC ,∠DAE=∠DAC ,AD 共用,所以△ADE ≌△ADC ,所以∠ACD=∠AED=90º,所以CD ⊥CA .点评:由于受习惯思维的影响,同学们在解题过程中,在可以用线段垂直平分线性质说明的问题,仍然用三角形全等的方法来解决,这就给解题增加的麻烦,我们应有意识地应用这个性质探求新的解题途径,切勿机械套用全等三角形知识.线段垂直平分线定理知识总结一、线段垂直平分线的性质定理说明:1、这里的距离指的是点与点之间的距离,也就是两点之间线段的长度2、在使用该定理时必须保证两个前提条件:一是垂直于线段,二是平分这条线段。
线段垂直平分线的性质定理及其逆定理

24.7 线段垂直均分线的性质定理及其逆定理学习目标:知识目标:掌握角均分线的性质定理及其逆定理的证明和简单应用。
能力目标:1.经历用尺规作角垂直均分线的过程,并能说明其作法的依照;2.可以娴熟的安照证明的格式和步骤对一些命题进行证明。
感情目标:培育学生步步有据的推理意识。
学习重、难点:学习要点及难点:角直均分线的性质定理及其逆定理的灵巧运用。
预习导航:通读课本141-142 页,思虑以下几个简单问题:1.三角形全等的判断公义的推论是什么?2.角直均分线的性质定理的内容是什么?3.角直均分线的性质定理的逆定理的内容是什么?学习过程:一、创建情境、引入课题二、互动学习、考证定理(一)三角形全等的判断公义的推论的证明推论的内容是:依据推论的内容,画出图形,并联合图形写出已知、求证、给出证明。
上学期我们学习了线段垂直均分线的时候运用对称的知识证明这一性质,今日我们从此外的角度赐予证明。
(二)角均分线性质定理的证明已知:如图, OC 是∠ AOB 的均分线,OA,PE⊥OB,垂足分别为 D、 E。
求证: PD=PE。
( 提示:运用三角形全等的判断公义的推论来证明 ) P 是 OC 上随意一点,ADPD ⊥C角均分线的性质定理及其逆定理的证明主要波及三角形全等的证明,关于学生来说比较简单,应松手让学生独立达成。
P12OEB(三)角均分线性质定理的逆定理的证明1.依据互逆定理的定义,写出角均分线性质定理的逆定理。
2.依据定理的内容,画出图形,并联合图形,写出已知、求证,并给出证明。
(四)用尺规作图法画角均分线自学课本 142 页“察看与思虑”中,用尺规作图法画角的均分线,思虑:这类画法的依照是:三、角均分线的性质定理及其逆定理的应用例如下图, AD 是∠ BAC 的平分线,DE ⊥ AB,垂足为 E,DF ⊥ AC, E垂足为 F,且 BD =DC ,B D求证: BE=CF。
(提示:证明线段相等的常有方法有:①A F由学生自己写出性质定理。
2024北师大版数学八年级下册1.3.1《线段垂直平分线的性质定理及其逆定理》教案

2024北师大版数学八年级下册1.3.1《线段垂直平分线的性质定理及其逆定理》教案一. 教材分析《线段垂直平分线的性质定理及其逆定理》是北师大版数学八年级下册第1章第3节的内容。
本节课主要学习了线段垂直平分线的性质定理及其逆定理,这两个定理是几何中的重要知识,对于学生理解和掌握几何图形的性质具有重要意义。
教材通过生动的实例引入定理,并通过证明和应用让学生深入理解定理的含义。
二. 学情分析学生在学习本节课之前,已经学习了线段的中垂线、垂线的性质等知识,对于垂直平分线的概念有一定的了解。
但是,对于定理的证明和应用还需要进一步的引导和培养。
因此,在教学过程中,需要关注学生的认知水平,引导学生通过观察、思考、证明和应用等方式,逐步理解和掌握定理。
三. 教学目标1.理解线段垂直平分线的性质定理及其逆定理。
2.学会运用性质定理及其逆定理解决实际问题。
3.培养学生的逻辑思维能力和空间想象能力。
四. 教学重难点1.性质定理及其逆定理的理解和证明。
2.性质定理及其逆定理在实际问题中的应用。
五. 教学方法采用问题驱动法、合作学习法和引导发现法进行教学。
通过设置问题,引导学生观察、思考、证明和应用,激发学生的学习兴趣,培养学生的自主学习能力。
六. 教学准备1.教学PPT。
2.几何模型和教具。
3.练习题。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题:如何找到一个线段的中点,使得从这个中点向线段的两个端点引垂线,垂线的长度相等?引导学生思考和讨论,激发学生的学习兴趣。
2.呈现(10分钟)教师通过PPT呈现线段垂直平分线的性质定理及其逆定理,让学生初步了解定理的内容。
然后,通过几何模型和教具,引导学生观察、思考和证明定理。
3.操练(10分钟)学生分组合作,运用性质定理及其逆定理解决实际问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)教师通过PPT展示一些练习题,让学生独立完成。
然后,学生进行讲解和讨论,巩固对性质定理及其逆定理的理解和应用。
线段垂直平分线定理知识总结

线段垂直平分线定理知识总结一、线段垂直平分线的性质定理说明:1、这里的距离指的是点与点之间的距离,也就是两点之间线段的长度。
2、在使用该定理时必须保证两个前提条件:一是垂直于线段,二是平分这条线段。
例题、如图所示,在△ABC 中,已知AC=27,AB 的垂直平分线交AB 于点D ,交AC 于点E ,△BCE 的周长等于50,求BC 的长。
分析:题中给出了线段垂直平分线这个条件,所以可以考虑运用其性质定理,从而得出AE=BE ,把BE 与AE 进行等量代换,再根据△BCE 的周长及AC 的长,可求出BC 的长。
解:因为ED 是线段AB 的垂直平分线, 所以BE=AE 。
因为△BCE 的周长等于50, 即BE +EC +BC=50, 所以AE +EC +BC=50。
又因为AE +EC=AC=27, 所以BC=50-27=23。
二、线段垂直平分线定理的逆定理证明某一条直线是另一条线段的垂直平分线有两种方法:第一种:根据线段垂直平分线的定义,也就是经过线段的中点,并且垂直于这条EDCBA线段的直线,叫做这条线段的垂直平分线。
使用这种方法必须满足两个条件:一是垂直二是平分;第二种:可以证明有两个点都在线段的垂直平分线上,根据两点确定一条直线,就可以判断这两点所在的直线就是这条线段的垂直平分线。
例题1、如图所示,P 为线段AB 外的一点,并且PA=PB 。
求证:点P 在线段AB 的垂直平分线上。
分析:要想说明某一点在线段的垂直平分线上,可以根据线段的垂直平分线的定义来进行判断。
证明:过点P 作PC ⊥AB ,垂足为点C 。
因为PA=PB , 所以∠A=∠B 。
又因为PC ⊥AB , 所以∠PAB=∠PBA=90°. 在△PAC 和△PBC 中A B PAC PBC PC PC ∠=∠⎧⎪∠=∠⎨⎪=⎩所以△PAC ≌△PBC , 所以AC=BC 。
又因为PC ⊥AB ,所以PC 垂直平分线段AB ,所以点P 在线段AB 的垂直平分线上。
线段的垂直平分线---知识讲解(提高)

线段的垂直平分线---知识讲解(提高)【学习目标】1.掌握线段的垂直平分线的性质定理及其逆定理,能够利用尺规作已知线段的垂直平分线.2.会证明三角形的三条中垂线必交于一点.掌握三角形的外心性质定理.3.已知底边和底边上的高,求作等腰三角形.4.能运用线段的垂直平分线的性质定理及其逆定理解决简单的几何问题及实际问题. 【要点梳理】要点一、线段的垂直平分线 1.定义经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.2.线段垂直平分线的做法求作线段AB 的垂直平分线.作法:(1)分别以点A ,B 为圆心,以大于21AB 的长为半径作弧,两弧相交于C ,D 两点; (2)作直线CD ,CD 即为所求直线. 要点诠释:(1)作弧时的半径必须大于21AB 的长,否则就不能得到两弧的交点了. (2)线段的垂直平分线的实质是一条直线. 要点二、线段的垂直平分线定理线段的垂直平分线定理:线段垂直平分线上的点到这条线段两个端点的距离相等. 要点诠释:线段的垂直平分线定理也就是线段垂直平分线的性质,是证明两条线段相等的常用方法之一.同时也给出了引辅助线的方法,“线段垂直平分线,常向两端把线连”.就是遇见线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件.要点三、线段的垂直平分线逆定理 线段的垂直平分线逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上. 要点诠释:到线段两个端点距离相等的所有点组成了线段的垂直平分线.线段的垂直平分线可以看作是与这条线段两个端点的距离相等的所有点的集合. 要点四、三角形的外心三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心. 要点诠释:1.三角形三条边的垂直平分线必交于一点(三线共点),该点即为三角形外接圆的圆心.2.锐角三角形的外心在三角形内部;钝角三角形的外心在三角形外部;直角三角形的外心在斜边上,与斜边中点重合.3.外心到三顶点的距离相等.要点五、尺规作图作图题是初中数学中不可缺少的一类试题,它要求写出“已知,求作,作法和画图”,画图必须保留痕迹,在现行的教材里,一般不要求写出作法,但是必须保留痕迹.证明过程一般不用写出来.最后要点题即“xxx即为所求”.【典型例题】类型一、线段的垂直平分线定理1.如图,在△ABC中,分别以点A和点B为圆心,大于的AB的长为半径画孤,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为()A、7B、14C、17D、20【思路点拨】首先根据题意可得MN是AB的垂直平分线,即可得AD=BD,又由△ADC的周长为10,求得AC+BC的长,则可求得△ ABC的周长.【答案】C;【解析】∵在△ABC中,分别以点A和点B为圆心,大于的AB的长为半径画孤,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.∴MN是AB的垂直平分线,∴AD=BD,∵△ADC的周长为10,∴AC+AD+CD=AC+BD+CD=AC+BC=10,∵AB=7,∴△ABC的周长为:AC+BC+AB=10+7=17.【总结升华】此题考查了线段垂直平分线的性质与作法.题目难度不大,解题时要注意数形结合思想的应用.举一反三:【变式】阅读“作线段的垂直平分线”的作法,完成填空及证明.已知:线段AB,要作线段AB的垂直平分线.作法:(1)分别以A 、B 为圆心,大于12AB 的同样长为半径作弧,两弧分别交于点C 、D ; (2)作直线CD .直线CD 即为所求作的线段AB 的垂直平分线. 根据上述作法和图形,先填空,再证明.已知:如图,连接AC 、BC 、AD 、BD ,AC=AD=___=___. 求证:CD ⊥AB ,CD 平分AB . 证明:【答案】已知:如图,连接AC 、BC 、AD 、BD ,AC=AD=BC=BD . 求证:CD ⊥AB ,CD 平分AB . 证明:CD 与AB 交于点E . ∵在△ACD 和△BCD 中,,AC BC AD BD CD CD =⎧⎪=⎨⎪=⎩∴△ACD ≌△BCD (SSS ). ∴∠1=∠2. ∵AC=BC ,∴△ACB 是等腰三角形. ∴CE ⊥AB ,AE=BE .即 CD ⊥AB ,CD 平分AB .2.(2015秋•和县期中)如图,在△ABC 中,AB 边的垂直平分线l 1交BC 于点D ,AC 边的垂直平分线l2交BC于点E,l1与l2相交于点O,连结0B,OC,若△ADE的周长为6cm,△OBC 的周长为16cm.(1)求线段BC的长;(2)连结OA,求线段OA的长;(3)若∠BAC=120°,求∠DAE的度数.【思路点拨】(1)根据线段垂直平分线的性质得到DA=DB,EA=EC,根据三角形的周长公式计算即可;(2)根据线段垂直平分线的性质和三角形的周长公式计算即可;(3)根据线段垂直平分线的性质和等腰三角形的性质进行计算.【答案与解析】解:(1)∵l1是AB边的垂直平分线,∴DA=DB,∵l2是AC边的垂直平分线,∴EA=EC,BC=BD+DE+EC=DA+DE+EA=6cm;(2)∵l1是AB边的垂直平分线,∴OA=OB,∵l2是AC边的垂直平分线,∴OA=OC,∵OB+OC+BC=16cm,∴OA=0B=OC=5cm;(3)∵∠BAC=120°,∴∠ABC+∠ACB=60°,∵DA=DB,EA=EC,∴∠BAD=∠ABC,∠EAC=∠ACB,∴∠DAE=∠BAC﹣∠BAD﹣∠EAC=60°.【总结升华】本题考查的是线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.举一反三:【变式】如图,在△ABC中,已知BC=7,AC=16,AB的垂直平分线交AB于点D,交AC于点E,求△BEC的周长.【答案】∵DE是AB的垂直平分线,∴BE=AE,∴BE+EC=AE+EC=AC.∴△BEC的周长=BE+EC+BC=AC+BC=23.要点二、线段的垂直平分线的逆定理3.(2016春•鄄城县期中)如图,在△ABC中,AD是高,在线段DC上取一点E,使DE=BD,已知AB+BD=DC.求证:E点在线段AC的垂直平分线上.【思路点拨】根据线段的垂直平分线性质求出BD=DE,推出DE+EC=AE+DE,得出EC=AE,根据线段垂直平分线性质推出即可.【答案与解析】证明:∵AD是高,∴AD⊥BC,又∵BD=DE,∴AD所在的直线是线段BE的垂直平分线,∴AB=AE,∴AB+BD=AE+DE,又∵AB+BD=DC,∴DC=AE+DE,∴DE+EC=AE+DE∴EC=AE,∴点E在线段AC的垂直平分线上.【总结升华】本题考查了线段的垂直平分线的应用,掌握线段垂直平分线的性质和判定定理是解题的关键.类型三、线段的垂直平分线定理与逆定理的综合应用4.联想三角形外心的概念,我们可引入如下概念.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.举例:如图1,若PA=PB,则点P为△ABC的准外心.应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD=12AB,求∠APB的度数.探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长.【思路点拨】应用:连接PA、PB,根据准外心的定义,分①PB=PC,②PA=PC,③PA=PB三种情况利用等边三角形的性质求出PD与AB的关系,然后判断出只有情况③是合适的,再根据等腰直角三角形的性质求出∠APB=45°,然后即可求出∠APB的度数;探究:先根据勾股定理求出AC的长度,根据准外心的定义,分①PB=PC,②PA=PC,③PA=PB 三种情况,根据三角形的性质计算即可得解.【答案与解析】应用:解:①若PB=PC,连接PB,则∠PCB=∠PBC,∵CD为等边三角形的高,∴AD=BD,∠PCB=30°,∴∠PBD=∠PBC=30°,∴PD=33DB=36AB,与已知PD=12AB矛盾,∴PB≠PC,②若PA=PC,连接PA,同理可得PA≠PC,③若PA=PB,由PD=12AB,得PD=BD,∴∠APD=45°,故∠APB=90°;探究:解:∵BC=5,AB=3,2222534AC BC AB∴=-=-=①若PB=PC,设PA=x,则x2+32=(4-x)2,∴x=78,即PA=78,②若PA=PC,则PA=2,③若PA=PB,由图知,在Rt△PAB中,不可能.故PA=2或78.【总结升华】考查了线段垂直平分线的性质,等腰三角形的性质,勾股定理,读懂题意,弄清楚准外心的定义是解题的关键,根据准外心的定义,要注意分三种情况进行讨论.举一反三:【变式】在△ABC中,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G,若∠BAC=110°,则∠EAG=________.【答案】40°;解:∠B=x,∠c=y,则,∠B+∠C=180°-∠BAC,即x+y=70°①,∵DE、GF分别是AB、AC的垂直平分线,∴BE=AE,AG=CG,∴∠BAE=∠B=x,∠CAG=∠C=y,∵∠BAE+∠EAG+∠GAC=∠BAC,∴x+y+∠EAG=110°②,联立①②得,∠EAG=110°-70°=40°.故答案为:40°.要点四、尺规作图5.如图,每个格的单位长度是1,△ABC的外心坐标是 (_____________).【思路点拨】可分别作BC与AB的垂直平分线,两条垂直平分线交于点G,则点G即为△ABC 的外心,继而可求得答案.【答案与解析】分别作BC与AB的垂直平分线,两条垂直平分线交于点G,则点G即为△ABC的外心,∴△ABC的外心坐标是(-2,-1).故答案为:(-2,-1).【总结升华】考察尺规作图的能力和三角形的外心的定义.此题难度适中,注意掌握数形结合思想的应用.举一反三:【变式】数学来源于生活又服务于生活,利用数学中的几何知识可以帮助我们解决许多实际问题.李明准备与朋友合伙经营一个超市,经调查发现他家附近有两个大的居民区A、B,同时又有相交的两条公路,李明想把超市建在到两居民区的距离、到两公路距离分别相等的位置上,绘制了如下的居民区和公路的位置图.聪明的你一定能用所学的数学知识帮助李明在图上确定超市的位置!请用尺规作图确定超市P的位置.(作图不写作法,但要求保留作图痕迹.)【答案】解:如图,点P就是要找的点.。
第二十四的判定定理;线段垂直平分线的性质定理及其逆定理;

**5.如图所示,已知M是∠AOB的平分线OS上的一点,MC⊥OA,MD⊥OB,C、D为垂足,P是OS上的另一点,求证:PC=PD.
【试题答案】
一.选择题
1. D 2. B 3. A 4. B 5. B 6. D
∴AD是BC的垂直平分线,
∴AD⊥BC.
例3.已知:如图所示,在Rt△ABC中,∠A=90°,AB=3,AC=5,BC的垂直平分线DE交BC于点D,交AC于点E.求△ABE的周长.
分析:△ABE的周长为AB+BE+AE,由于DE是BC的垂直平分线,所以EB=EC,利用等量代换可得△ABE的周长为AB+AE+EC=AB+AC.
证明:过D作DE⊥AB,交BA的延长线于E点,作DF⊥BC,交BC于F点.
∵BD平分∠ABC,DE⊥AB,DF⊥BC,
∴DE=DF(角平分线上的点到角两边的距离相等),
∴∠DEA=∠DFC=90°(垂直的定义).
又∵∠BAD+∠C=180°(已知),
∠BAD+∠EAD=180°(邻补角定义),
∴∠C=∠EAD(同角的补角相等),
A.28°B.25°C.22.5°D.20°
*4.如图所示,已知AC⊥BC,DE⊥AB,AD平分∠BAC,则下列结论错误的是()
A.BD+ED=BCB.DE平分∠ADB
C.AD平分∠EDCD.ED+AC>AD
5.如果一个三角形的一条角平分线恰好是对边上的高,那么这个三角形是()
A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形
二.填空题
1. 5;10;52. 17 3. 5,30°,4.到角的两边距离5.到角的两边距离相等的点在这个角的平分线上,真6.(1)平分线上;(2)AM,BM
线段垂直平分线的逆定理
线段垂直平分线的逆定理
线段垂直平分线的逆定理是一个有趣的几何定理,可以用来证明某些有关线段的性质。
它也被称为三角形垂直平分线定理,因为它可以用来证明三角形内角和对应的外角之间的关系。
定理:如果一条线段AB与CD垂直平分,则
∠ACD=∠BDC。
证明:
设线段AB的中点为M,线段CD的中点为N。
1. 由垂直平分线定理可知,AM⊥CD,BN⊥CD。
2. 因此,线段MN是CD的中垂线,所以MN⊥CD。
3. 又因为AM⊥CD,MN⊥CD,故M和N都在同一个CD 的平面上,于是,∠AMN=∠BNM。
4. 由边平行定理得,∠ACD=∠AMN=∠BNM=∠BDC,即证明了∠ACD=∠BDC。
结论:如果一条线段AB与CD垂直平分,则
∠ACD=∠BDC。
线段垂直平分线的逆定理是几何学中重要的定理,它可以用来证明三角形内角和外角的关系。
例如:如果一个三角形的内角A、B和C的大小分别为α、β和γ,如果AO与BC垂直平分,那么α+γ=2β。
它还可以用来证明其
他任意多边形的角之和等于(n-2)×180°,其中n为多边形的边数。
这也是一个有趣的定理,可以用来解决许多几何问题,是几何学中不可或缺的一部分。
线段垂直平分线的性质定理的逆定理
A
?? C
B
A
P
c
B
P
?
c
B
尝试一: 证明:过点P 作线段AB 的垂线PC,垂足为点C. 则∠PCA =∠PCB =90°. 在Rt△PCA 和Rt△PCB 中,
PA =PB, PC =PC, ∠PCA =∠PCB
失败!SSA不能证全等。
尝试二:
证明:连结点P和AB的中点C(作△PAB的中线PC),
知识要点
线段垂直平分线的逆定理: 到线段两个端点距离相等的点,在这条线段的垂直平分线上.
应用格式:
P
∵ PA =PB,
∴ 点P 在AB 的垂直平分线上.
A
B
作用:判断一个点是否在线段的垂直平分线上.
三 例题1:
已知:如图,在△ABC中,AB,AC的中垂线DP与EP相交于点P,
求证:点P在BC的中垂线上。
优翼 课件
冀教版八年级数学上(JJ)
第十六章 轴对称和中心对称
16.2 线段的垂直平分线 第2课时 线段垂直平分线性质定理的逆定理
定兴二中肖村分校 白金山
导入新课
情境引入
如图,A,B是路边两个新建小区,要在公路边增设一 个公共汽车站,使两个小区到车站的直线距离一样长,该公 共汽车站应建在什么地方?
AE=AE ∴ △ABE ≌△ADE(SSS). ∴BE=DE(全等三角形对应线段相等)
证明两条线段相等的方法:
一、全等三角形。 二、线段中垂线性质 定理
挑战自我
已知:如图,在△ABC中, ∠C =90°,线 段BC的中垂线交AB于点D,点D为AB中点, 点F为AC中点,连结DF, 求证:DF是线段AC的垂直平分线
垂直平分线的定理
垂直平分线的定理
1 垂直平分线的定义
经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线,又称“中垂线”。
垂直平分线可以看成到线段两个端点距离相等的点的集合,垂直平分线是线段的一条对称轴。
2 垂直平分线定理
经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线,又称“中垂线”。
垂直平分线定理为:垂直平分线垂直且平分其所在线段。
垂直平分线上任意一点,到线段两端点的距离相等。
三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等。
3 垂直平分线的逆定理
到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
4 垂直平分线的判定方法
1、利用定义:经过某一条线段的中点,并且垂直于这条线段的直线是线段的垂直平分线。
2、到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.(即线段垂直平分线可以看成到线段两端点距离相等的点的集合)。
北师版八年级下册数学线段的垂直平分线的性质定理及其逆定理教案
1.3线段的垂直平分线第1课时线段的垂直平分线的性质定理及其逆定理1.会证明线段的垂直平分线的性质定理及判定定理.2.能运用线段的垂直平分线的性质定理及判定定理进行相关的证明与计算.自学指导:阅读教材P22~23,完成下列问题.知识探究1.CD是线段AB的垂直平分线,E为垂足,点P是直线CD上的任意一点,连接PA,PB,则AE=BE,PA=PB,CD⊥AB,∠AEC=∠BEC.2.线段垂直平分线上的点到这条线段两个端点的距离相等;到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.自学反馈1.已知,如图,EF是线段AB的垂直平分线,M是EF上的一点.若MA=6,则MB=6;若∠AMF=20°,则∠BMF=20°.2.如图,AB=AC,MB=MC,直线AM是线段BC的垂直平分线吗?解:直线AM是线段BC的垂直平分线.理由:∵AB=AC,∴点A在线段BC的垂直平分线上.同理,点M在线段BC的垂直平分线上.∴直线AM是线段BC的垂直平分线.活动1小组讨论例1如图,AB=AC=8 cm,AB的垂直平分线交AC于D,若△ADB的周长为18 cm,求DC的长.解:∵DM是AB的垂直平分线,∴AD=BD.设CD的长为x,则AD=AC-CD=8-x.∵△ADB的周长为AB+AD+BD=8+(8-x)+(8-x)=18,∴x=3,即CD的长为3 cm.由线段垂直平分线的性质得AD=BD进而求解.例2如图,△ABC中,AC⊥BC于点C,AD平分∠BAC,DE⊥AB于E,求证:直线AD是CE的垂直平分线.证明:∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴∠EAD=∠CAD,∠AED=∠ACD=90°.又∵AD=AD,∴△AED≌△ACD(AAS).∴DE=CD.∴点D在CE的垂直平分线上.在Rt△AED和Rt△ACD中,∵AD=AD,DE=DC,∴Rt△AED≌Rt△ACD(HL).∴AE=AC.∴点A在CE的垂直平分线上.∴直线AD是CE的垂直平分线.活动2跟踪训练1.下列条件中,不能判定直线MN是线段AB的垂直平分线的是(C)A.MA=MB,NA=NBB.MA=MB,MN⊥ABC.MA=NA,MB=NBD.MA=MB,MN平分∠AMB2.如图,MN是线段AB的垂直平分线,垂足是D,点P是MN上的一点.若AB=10 cm,PA=10 cm,则BD=5cm,PB=10cm,PD3.如图,Rt△ABC中,∠B=90°,AB=3 cm,AC=5 cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长是7cm.4.如图,在△ABC中,∠C=90°,AB的垂直平分线交AC于点D,垂足为E,若∠A=30°,CD=2.(1)求∠BDC的度数;(2)求BD的长.解:(1)∵DE垂直平分AB,∴DA=DB.∴∠DBE=∠A=30°.∴∠BDC=60°.(2)在Rt△BDC中,∵∠BDC=60°,∴∠DBC=30°.∴BD=2CD=4.活动3课堂小结1.线段垂直平分线上的点到这条线段两个端点的距离相等.2.到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24.7线段垂直平分线的性质定理及其逆定理
课前预习
1.线段垂直平分线的性质定理:
线段垂直平分线上的点到这条线段两个端点的
2.线段垂直平分线定理的逆定理:到一条线段两个端点距离相等的点,在
这条线段的上。
当堂训练
知识点1:线段垂直平分线的性质
1.如图所示,用两根钢索加固直立的电线杆,若要使钢索AB与AC的长度相等,•需加_ _______条件,理由是___ _____.
2.(09钦州)如图,AC=AD,BC=BD,则有()
A.AB垂直平分CD B.CD垂直平分AB
C.AB与CD互相垂直平分D.CD平分∠ACB
3.如图所示,CD是AB的垂直平分线,若AC=1.6cm,BD=2.3cm,则四边
形ABCD的周长是().
A.3.9cm B.7.8cm C.4cm D.4.6cm
4.如图所示,∠C=90°,AB的垂直平分线交BC于D,连接AD,
若∠CAD=20°,则∠B=().
A.20° B.30° C.35° D.40°
知识点2:线段垂直平分线定理的逆定理
5.AB=AD,BC=CD,AC、BD相交于点E.则AB是
线段CD的___ _____.
课后作业
6.给出以下两个定理:
①线段垂直平分线上的点到这条线段两个端点的距离相等;
②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.
应用上述定理进行如下推理,如图,直线l是线段MN的垂直平分线.∵点A在直线l上,∴AM=AN().
∵BM=BN,∴点B在直线l上().
∵CM≠CN,∴点C不在直线l上.
这是因为如果点C在直线l上,
那么CM=CN().这与条件CM≠CN矛盾.典例精析
【例1】如图所示,在△ABC中,D为BC上的一点,连结
AD,点E在AD上,
并且∠1=∠2,∠3=
∠4。
求证:AD垂直
平分BC
【分析】证明某一条直线是另一条线段的垂直平分线,可以证明有两个点都在线段的垂直平分线上,也就是通过得出EB=EC,AB=AC,从而证明出AD垂直平分BC
【证明】∵∠1=∠2,∴EB=EC,
∴点E在线段BC的垂直平分线上。
又∵∠1=∠2,∠3=∠4,
∴∠ABC=∠ACB,
∴点A也在线段BC的垂直平分线上。
∴AD垂直平分BC
【方法归纳】证明某一条直线是另一条线段的垂直平分线有两种方法:
第一种:根据线段垂直平分线的定义,也就是经过线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
使用这种方法必须满足两个条件:一是垂直二是平分;
第二种:可以证明有两个点都在线段的垂直平分线上,根据两点确定一条直线,就可以判断这两点所在的直线就是这条线段的垂直平分线。
误区警示
【例2】判断:若PA=PB,则过点P的直线是线段AB的垂直平分线
【错解】正确
【错因剖析】PA=PB只能说明点P在AB 的垂直平分线上,但不是过点P的
直线就是DE的垂直平分线,产生错
误的原因是线段的垂直平分线的判
定理解不透。
应再找到
名校讲坛
以上推理中各括号内应注明的理由依次是()A.②①①B.②①② C.①②②D .①②①到A、B距离相等的第二个点【正解】
7.如图,已知直线MN是线段AB的垂直平分线,垂足为D,点P是MN上一点,若PA=10 cm,则PB=______cm。
8.如图,在△ABC中,AC的垂直平分线交AC于E,交
BC于D,△ABD的周长是
12 cm,AC=5cm,则
AB+BC=___ __cm;△ABC
的周长是__________cm.
9.如图所示,在Rt△ABC
中,∠C=90°,沿着
过点B的一条直线BE
折叠△ABC使点C•恰
好落在AB边的中点D
处,则∠A的度数等于________.
10.(09泉州)如图,在△ABC
中,BC边上的垂直平分线
DE交边BC于点D,交边
AB于点E.若△EDC的周长
为24,△ABC与四边形
AEDC的周长之差为12,则线段DE的长为.
11.(09肇庆有改动)如图,在△ABC中,AB=AC, ∠A=36°,线段AB 的垂
直平分线交AB于D,交
AC于E,连接BE.求证:
∠CBE=36°;
.
12.已知:如图△ABC中,边AB,BC的垂直平分
线相交于点P.
求证:点P在AC的垂直平分线上.
13.(09.梧州)如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE∥AB交MN于E,连结AE、CD.
(1)求证:AD=CE;
(2)填空:四边形ADCE的形状是.
14.(09烟台有改动)如图,
直角梯形ABCD中,
BC
AD∥,
90
BCD
∠=°,且BC=CD,
过点D作AB
DE∥,交
BCD
∠的平分线于点E,
连接BE.将BCE
△绕点
C,顺时针旋转90°得到
DCG △,连接EG..
求证:CD 垂直平分EG .
1.BD=DC 线段垂直平分线上的点到线段两个端点的距离相等
2.A
3.B
4.C
5. 垂直平分线
6.D
7. 10
8. 12, 17
9.30° 10. 6
11.∵DE 是A B 的垂直平分线,∴EA EB =, ∴36EBA A ∠=∠=°. ∵36AB AC A =∠=,°, ∴72ABC C ∠=∠=°.
∴36CBE ABC EBA ∠=∠-∠=°
12.连接PA 、PB 、PC ,则有PA=PB ,PB=PC ,
∴PA=PC ,
∴点P 在AC•的垂直平分线上
13.(1)证明:∵MN 是AC 的垂直平分线
∴OA =OC ∠AOD =∠EOC =90°
∵CE ∥AB ∴∠DAO =∠ECO ∴△ADO ≌△CEO ∴AD =CE
(2)四边形ADCE 是菱形.
14CE 平分BCD ∠,∴BCE DCE ∠=∠. ∵BC=CD CE=CE ,BCE DCE ∴△≌△,BE DE ∴=.
由图形旋转的性质知
CE CG BE DG DE DG ==∴=,,.
C D ∴,都在EG 的垂直平分线上,
CD ∴垂直平分EG .
(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注)。