集合间的并集交集运算练习题(含答案)
新教材2022版数学必修第一册(人教B版)课时作业-1.1.3.1交集与并集-含解析

课时作业(三)交集与并集一、选择题1.(多选)若集合M⊆N,则下列结论正确的是()A.M∩N=M B.M∪N=NC.M⊆(M∩N) D.(M∪N)⊆N2.已知集合A={x|x≥-3},B={x|-5≤x≤2},则A∪B=()A.{x|x≥-5}B.{x|x≤2}C.{x|-3<x≤2}D.{x|-5≤x≤2}3.设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C =()A.{-1,1}B.{0,1}C.{-1,0,1}D.{2,3,4}4.设集合A={x|-1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是()A.a<2B.a>-2C.a>-1D.-1<a≤2二、填空题5.定义A-B={x|x∈A,且x∉B},若M={1,2,3,4,5},N={2,3,6},则N-M =________.6.设集合A={1,2,a},B={1,a2},若A∩B=B,则实数a允许取的值有________个.7.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围为________.三、解答题8.设A={x|-1<x<2},B={x|1<x<3},求A∪B,A∩B.9.已知A={x|a<x≤a+8},B={x|x<-1或x>5}.若A∪B=R,求a的取值范围.[尖子生题库]10.集合A={x|-1≤x<3},B={x|2x-4≥x-2}.(1)求A∩B;(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.课时作业(三)交集与并集1.解析:∵集合M⊆N,∴在A中,M∩N=M,故A正确;在B中,M∪N=N,故B正确;在C中,M⊆(M∩N),故C正确;在D中,(M∪N)⊆N,故D正确.答案:ABCD2.解析:结合数轴(图略)得A∪B={x|x≥-5}.答案:A3.解析:本题主要考查集合的运算.由题意得A∪B={1,2,3,4,-1,0},∴(A∪B)∩C={1,2,3,4,-1,0}∩{x∈R|-1≤x<2}={-1,0,1}.故选C.答案:C4.解析:在数轴上表示出集合A,B即可得a的取值范围为a>-1.答案:C5.解析:关键是理解A-B运算的法则,N-M={x|x∈N,且x∉M},所以N-M={6}.答案:{6}6.解析:由题意A∩B=B知B⊆A,所以a2=2,a=±2,或a2=a,a=0或a=1(舍去),所以a=±2,0,共3个.答案:37.解析:由A∪B=R,得A与B的所有元素应覆盖整个数轴.如图所示:所以a必须在1的左侧,或与1重合,故a≤1.答案:(-∞,1]8.解析:如图所示:A ∪B ={x |-1<x <2}∪{x |1<x <3}={x |-1<x <3}. A ∩B ={x |-1<x <2}∩{x |1<x <3}={x |1<x <2}.9.解析:在数轴上标出集合A ,B ,如图.要使A ∪B =R ,则⎩⎪⎨⎪⎧a +8≥5,a <-1,解得-3≤a <-1. 综上可知,a 的取值范围为-3≤a <-1.10.解析:(1)∵B ={x |x ≥2},∴A ∩B ={x |2≤x <3}.(2)C =⎩⎨⎧⎭⎬⎫x ⎪⎪x >-a 2,B ∪C =C ⇒B ⊆C ,∴-a 2<2,∴a >-4. 即a 的取值范围为a >-4.。
集合的基本运算交集并集练习题

集合的基本运算交集并集练习题1.1. 集合间的基本运算考察下列集合,说出集合C与集合A,B之间的关系: A?{1,3,5},B?{2,4,6},C??1,2,3,4,5,6?;A?{xx是有理数},B?{xx是无理数},用Venn图分别表示上面各组中的3组集合。
思考:上述每组集合中,A,B,C之间均有怎样的关系?1、交集定义:一般地,由所有属于集合A且属于集合B的元素组成的集合,叫作集合A、B的交集。
记作:A∩B 读作:“A交B” 。
即:A∩B={x|x∈A,且x∈B}用Venn图表示:常见的3种交集的情况:说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集讨论:A∩B与A、B、B∩A的关系?A∩A=A∩?=A∩BB∩AA∩B=A ? A∩B=B?:1、A={3,5,6,8},B={4,5,7,8},则A∩B=;2、A={等腰三角形},B={直角三角形},则A∩B=3、A={x|x>3},B={x|x 2、并集定义:一般地,由所有属于集合A或者属于集合B的元素组成的集合,称为集合A与集合B 的并集,记作A∪B,读作:“A 并B”即A∪B={x|x∈A或x∈B}。
用Venn图表示:说明:定义中要注意“所有”和“或者”这两个条件。
讨论:A∪B与集合A、B有什么特殊的关系?A∪A=, A∪Ф=, A∪B∪AA∪B=A? , A∪B=B?:1、A={3,5,6,8},B={4,5,7,8},则A∪B=2、设A ={锐角三角形},B={钝角三角形},则A∪B=;3、A={x|x>3},B={x|x 3、一些特殊结论⑴若A?B,则A∩B=A;⑵若B?A,则A∪B=A;⑶若A,B两集合中,B=?,,则A∩?=?, A∪?=A。
1求A∪B。
2、设A={x|x>-2},B={x|x3、已知集合A={y|y=x2-2x-3,x∈R},B={y|y=-x2+2x+13,x∈R}。
高中数学交集、并集练习题(有解析)

高中数学交集、并集练习题(有解析)数学必修1(苏教版)1.3 交集、并集若集合A={x|x是6的倍数},B={x|x是4的倍数},则A与B有公共元素吗?它们的公共元素能组成一个集合吗?两个集合A与B的公共元素能组成一个集合吗?若能组成一个集合C,则C与A、B的关系如何?基础巩固1.若集合A={0,1,2,3,4},B={1,2,4}则AB=()A.{0,1,2,3,4} B.{1,2,3,4}C.{1,2} D.{0}答案:A2.设S={x||x|3},T={x|3x-51},则ST=()A.B.{x|-33}C.{x|-32} D.{x|23}答案:C3.已知A,B均为集合U={1,3,5,7,9}的子集,且AB={3}, AUB={9},则A=()A.{1,3} B.{3,7,9}C.{3,5,9} D.{3,9}答案:D4.设A={(x,y)|4x+y=6},B={(x,y)|3x+2y=7},则AB为()A.{x=1,或y=2} B.{1,2}C.{(1,2)} D.(1,2)解析:AB=x,y4x+y=63x+2y=7={(1,2)}.答案:C5.已知集合A={(x,y)|x,yR且x2+y2=1},B={(x,y)|x,yR且x +y=1,则AB的元素个数为()A.4个B.3个C.2个D.1个解析:由x2+y2=1,x+y=1x=1,y=0或x=0,y=1,即AB={(1,0),(0,1)}.答案:C6.已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(UA)B为()A.{1,2,4} B.{2,3,4}C.{0,2,4} D.{0,2,3,4}答案:C7.已知方程x2-px+15=0与x2-5x+q=0的解分别为M和S,且MS={3},则pq=________.解析:∵MS={3},3既是方程x2-px+15=0的根,又是x2-5x+q=0的根,从而求出p,q.答案:438.已知全集S=R,A={x|x1},B={x|05},则(SA)B=________.解析:SA={x|x1}.答案:{x|15}9.设集合A={x||x-a|1,xR},B={x|15},若AB=,则a的取值范畴是________.解析:∵A={x|a-1a+1},若AB=,则a+11或a-1a0或a6.答案:{a|a0或a6}10.设集合A={0,1,2,3,4,5,7},B={1,3,6,8,9},C={3,7,8},那么集合(AC是________.答案:{1,3,7,8}11.满足条件{1,3}A={1,3,5}的所有集合A的个数是________个.答案:4能力提升12.集合A={x||x|1,xR},B={y|y=x2,xR},则AB为()A.{x|-11} B.{x|x0}C.{x|01} D.解析:∵A={x|-11},B={y|y0}AB={x|01}.答案:C13.若A、B、C为三个集合,且有AB=BC,则一定有()A.AC B.CAC.A D.A=答案:A14.设全集U={a,b,c,d},A={a,b},B={b,c,d},则UAUB =________解析:UA={c,d},UB={a},UAUB={a,c,d}.答案:{a,c,d}15.(2021上海卷)设常数aR,集合A={x|(x-1)(x-a)0},B={x|xa-1},若AB=R,则a的取值范畴为________.解析:当a1时,A={x|x1或xa},要使AB=R,则a1,a-112;当a1时,A={x|xa或x1},要使AB=R,则a1,a-1a1.综上,a答案:{a|a2}16.已知集合A={x||x+2|3,xR},集合B={x|(x-m)(x-2)0},xR},且AB=(-1,n),求m和n的值.解析:|x+2|-3x+2-51,A={x|-51},又∵AB=(-1,n),-1是方程(x-m)(x-2)=0的根,即m=-1,现在B={x|-12},AB =(-1,1),即n=1.17.设集合P={1,2,3,4},求同时满足下列三个条件的集合A:(1)AP;(2)若xA,则2xA;(3)若xPA,则2xPA.解析:∵21=2,22=4,因此1和2不能同时属于A,也不能同时属于UA,同样地,2和4也不能同时属于A和UA,对P的子集进行考查,可知A只能为:{2},{1,4},{2,3}{1,3,4}.18.设集合A={x|x+10或x-40},B={x|2aa+2}.(1)若A,求实数a的取值范畴;(2)若AB=B,求实数a的取值范畴.解析:(1)A={x|x-1或x4},∵A,2a2+a,a+24或2aa+2,2a-1.a=2或a-12.综上所述,实数a的取值范畴为aa-12或a=2.(2)∵AB=B,BA.①B=时,满足BA,则2aa+22,②B时,则2aa+2,a+2-1或2aa+2,2a4.即a-3或a=2.与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。
集合专题训练(含答案)

集合专题训练(含答案)1.对集合中有关概念的考查在2020年校运动会中,集合A表示参加比赛的运动员,集合B表示参加比赛的男运动员,集合C表示参加比赛的女运动员。
那么下列关系正确的是()A。
A是B的子集B。
B是C的子集C。
A与B的交集等于CD。
B与C的并集等于A解析:根据题意,A包含了所有参加比赛的运动员,B只包含了男运动员,C只包含了女运动员。
因此,B是A的子集。
选项A正确。
点评:此题考查了集合的子集概念和集合运算,需要注意从元素的角度理解集合的含义。
2.对集合性质及运算的考查已知全集U={2,3,4,5,6,7},集合M={3,4,5,7},集合N={2,4,5,6},那么下列哪个选项是正确的?A。
M与N的交集为{4,6},N等于全集UB。
M与N的并集为{2,3,4,5,6,7},N等于全集UC。
(C并N)与M的并集等于全集UD。
(C并M)与N的交集等于N解析:根据题意,M与N的交集为{4,5},N不等于全集U;M与N的并集为{2,3,4,5,6,7},N不等于全集U;(C并N)与M的并集包含了全集U中的所有元素,因此选项C正确;(C并M)与N的交集为{4},不等于N。
因此选项D错误。
点评:此题考查了集合的并、交、补运算以及集合间的关系应用。
可以使用文氏图来帮助理解。
3.对与不等式有关集合问题的考查已知集合M={x|x+3<x-1},集合N={x|-3<x<1},那么集合{ x | x-1<x }等于哪个选项?A。
M并NB。
M交NC。
实数集RD。
(M交N)的补集解析:将集合M中的不等式化简得到-3<x,将集合N中的不等式化简得到-3<x<1,因此集合M交N等于{x|-3<x<1}。
而{x|x-1<x}等价于{x|x<1},因此选项C正确。
点评:此题考查了解不等式的知识内容,同时也考查了集合的运算。
需要注意参数的取值范围以及数形结合思想的应用。
高中一年级数学单元检测交集与并集(含答案)

答案:{k |k ≥-1}解析:因为M ={x |-1≤x <2},N ={x |x -k ≤0}={x |x ≤k },如图,当k ≥-1时,M ,N 有公共部分,满足M ∩N ≠∅.三、解答题:(共35分,11+12+12)10.已知集合A ={-2,0,3},M ={x |x 2+(a +1)x -6=0},N ={y |y 2+2y -b =0},若M ∪N =A ,求a ,b 的值.解:因为A ={-2,0,3},0∉M 且M ∪N =A ,所以0∈N .将0代入方程y 2+2y -b =0,求得b =0.由此可得N ={y |y 2+2y =0}={0,-2}.因为3∉N 且M ∪N =A ,所以3∈M .将3代入方程x 2+(a +1)x -6=0,求得a =-2.此时M ={x |x 2-x -6=0}={-2,3},满足M ∪N =A , 所以a =-2,b =0.11.已知集合A ={x |2<x <4},B ={x |a <x <3a }.(1)若A ∩B =∅,求实数a 的取值范围;(2)若A ∩B ={x |3<x <4},求a 的值.解:(1)因为A ∩B =∅,所以可分两种情况讨论:B =∅和B ≠∅. 当B =∅时,a ≥3a ,解得a ≤0;当B ≠∅时,⎩⎨⎧a >0a ≥4或3a ≤2,解得a ≥4或0<a ≤23. 综上,实数a 的取值范围是⎩⎨⎧⎭⎬⎫a ⎪⎪⎪a ≤23或a ≥4. (2)因为A ∩B ={x |3<x <4},所以a =3.12.设A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x -8=0}.(1)若A ∩B =A ∪B ,求a 的值;(2)若∅Ø (A ∩B ),且A ∩C =∅,求a 的值;(3)若A ∩B =A ∩C ≠∅,求a 的值.解:(1)B ={x |x 2-5x +6=0}={2,3},C ={x |x 2+2x -8=0}={-4,2}.因为A ∩B =A ∪B ,所以A =B ,则A ={2,3},所以⎩⎪⎨⎪⎧2+3=a 2×3=a 2-19,解得a =5. (2)因为∅Ø (A ∩B ),且A ∩C =∅,B ={2,3},C ={-4,2}, 所以-4∉A,2∉A,3∈A ,所以32-3a +a 2-19=0, 即a 2-3a -10=0,解得a =5或a =-2.当a =-2时,A ={-5,3},满足题意;当a =5时,A ={2,3},不满足题意,舍去. 综上可知,a =-2.(3)因为A ∩B =A ∩C ≠∅,B ={2,3},C ={-4,2}, 所以2∈A ,则22-2a +a 2-19=0,即a 2-2a -15=0,解得a =5或a =-3.当a =5时,A ={2,3},不满足题意,舍去; 当a =-3时,A ={-5,2},满足题意.综上可知,a =-3.。
集合的基本运算练习题含答案

集合的基本运算练习题(2)1. 已知集合A={x|2x2−7x+3<0},B={x∈Z|lg x<1},则阴影部分表示的集合的元素个数为()A.1B.2C.3D.42. 已知集合A={x|x2−4<0},B={x|x2−4x+3<0},则A∪B=()A.{x|−2<x<1}B.{x|1<x<2}C.{x|−2<x<3}D.{x|−2<x<2}3. 已知集合A={x∈Z|y=log2(3−x)},B={y|y=√x+1},则A∩B=()A.(0, 3)B.[1, 3)C.{1, 2}D.{1, 2, 3}4. 若集合A={x∈N||x−1|≤1},B={x|y=√1−x2},则A∩B的真子集的个数为()A.3B.4C.7D.85. 设集合A={x|1<x<2},B={x|x<a}满足A⫋B,则实数a的取值范围是( )A.{a|a≥1}B.{a|a≤1}C.{a|a≥2}D.{a|a≤2}6. 已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________.7. 设集合A={2,4}, B={2,6,8},则A∪B=________.8. 设集合A={5,a+1},集合B={a,b}.若A∩B={2},则A∪B=________.9. 我们把集合{x|x∈A且x∉B}叫做集合A与B的差集,记作A−B.据此回答下列问题:(1)若A={1, 2, 3, 4},B={2, 3, 4, 5},求A−B;(2)在下列各图中用阴影部分表示集合A−B;(3)若A={x|0<x≤a},B={x|−1≤x≤2},且A−B=⌀,求a的取值范围.10. 已知集合A={−1,0},B={−1,3},则A∪B=________.11. 已知全集U=R,集合A={x|0<x<1},B={x|3≤9x≤27},C={x|a−2<x< 2a−4}.(1)求(∁U A)∩B;(2)若A∩C=C,求a的取值范围.12. 已知A={x|a≤x≤2a+3},B={x|x>1或x<−6}.(1)若A∩B=(1,3],求a的值;(2)若A∪B=B,求a的取值范围.参考答案与试题解析集合的基本运算练习题(2)一、选择题(本题共计 5 小题,每题 5 分,共计25分)1.【答案】B【考点】Venn图表达集合的关系及运算【解析】根据图所示的阴影部分所表示的集合的元素属于集合A但不属于集合B,即求A∩B,根据交集的定义和补集的定义即可求得【解答】阴影部分所表示的集合为A∩B,A={x|2x2−7x+3<0}=(1, 3),2B={x∈Z|lg x<1}={x∈Z|0<x<10},A∩B={1, 2},那么满足图中阴影部分的集合的元素的个数为2,2.【答案】C【考点】并集及其运算【解析】解不等式得出集合A、B,根据并集的定义写出A∪B.【解答】集合A={x|x2−4<0}={x|−2<x<2},B={x|x2−4x+3<0}={x|1<x<3},则A∪B={x|−2<x<3}.3.【答案】C【考点】交集及其运算【解析】先求出集合A,B,由此能求出A∩B.【解答】∵集合A={x∈Z|y=log(3−x)}={x∈Z|3−x>0}={x∈Z|x<3},2B={y|y=√x+1}={y|y≥1},∴A∩B={x∈Z|1≤x<3}={1, 2}.4.【答案】A【考点】交集及其运算子集与真子集【解析】分别求出集合A和B,从而求出A∩B={0, 1},由此能求出A∩B的真子集的个数.【解答】解:集合A={x∈N||x−1|≤1},B={x|y=√1−x2},∴A={0, 1, 2},B={x|−1≤x≤1},∴A∩B={0, 1},∴A∩B的真子集的个数为22−1=3.故选A.5.【答案】C【考点】集合关系中的参数取值问题【解析】根据真子集的定义、以及A、B两个集合的范围,求出实数a的取值范围.【解答】解:因为集合A={x|1<x<2},B={x|x<a},且满足A⫋B,所以集合A是集合B的真子集,所以a≥2.故选C.二、填空题(本题共计 3 小题,每题 5 分,共计15分)6.【答案】a≤1【考点】集合关系中的参数取值问题并集及其运算【解析】利用数轴,在数轴上画出集合,数形结合求得两集合的并集.【解答】解:∵A={x|x≤1},B={x|x≥a},且A∪B=R,如图所示:故当a≤1时,命题成立.故答案为:a≤1.7.【答案】{2,4,6,8}【考点】并集及其运算【解析】此题暂无解析【解答】解:因为集合A={2,4}, B={2,6,8},所以A∪B={2,4,6,8}.故答案为:{2,4,6,8}.8.【答案】{5,2,1}【考点】交集及其运算并集及其运算【解析】此题暂无解析【解答】解:由题意得a+1=2,解得a=1,则b=2,∴A∪B={5,2,1}.故答案为:{5,2,1}.三、解答题(本题共计 4 小题,每题 5 分,共计20分)9.【答案】解:(1)若A={1, 2, 3, 4},B={2, 3, 4, 5},则A−B={1};(2)在下列各图中用阴影部分表示集合A−B;(3)若A={x|0<x≤a},B={x|−1≤x≤2},且A−B=⌀,则a≤2,∴a的取值范围是(−∞, 2]【考点】Venn图表达集合的关系及运算【解析】(1)根据差集定义即可求A−B;(2)根据差集定义即可阴影部分表示集合A−B;(3)根据A−B=⌀,即可求a的取值范围.【解答】解:(1)若A={1, 2, 3, 4},B={2, 3, 4, 5},则A−B={1};(2)在下列各图中用阴影部分表示集合A−B;(3)若A={x|0<x≤a},B={x|−1≤x≤2},且A−B=⌀,则a≤2,∴a的取值范围是(−∞, 2]10.【答案】{−1,0,3}【考点】并集及其运算【解析】此题暂无解析【解答】解:∵A={−1,0},B={−1,3}∴A∪B={−1,0,3}.故答案为:{−1,0,3}.11.【答案】集合A={x|0<x<1}=(7, 1),所以∁U A=(−∞, 0]∪[7;又B={x|3≤9x≤27}={x|4≤2x≤3}={x|≤x≤,],所以(∁U A)∩B=[1,];若A∩C=C,则C⊆A;因为C={x|a−2<x<2a−4},所以当C=⌀时,a−2≥5a−4;当C≠⌀时,则,解得,即.综上知,a的取值范围是.【考点】交、并、补集的混合运算【解析】此题暂无解析【解答】此题暂无解答12.【答案】解:(1)∵A∩B={x|1<x≤3},可得{2a+3=3−6≤a≤1,∴a=0.(2)由A∪B=B得A⊆B.①当A=⌀时满足题意,此时,a>2a+3,解得a<−3;②当A≠⌀时,有{a≤2a+3a>1或2a+3<−6,解得a>1.综上,a的取值范围为:a<−3或a>1,即(−∞, −3)∪(1, +∞).【考点】集合关系中的参数取值问题【解析】(1)根据A={x|a≤x≤2a+3},B={x|x<−6, 或x>1},再由A∩B={x|1< x≤3}可得{2a+3=3−6≤a≤1,由此求得a的值.(2)由A∪B=B得A⊆B,分A=⌀和A≠⌀两种情况,分别求出a的取值范围,再取并集,即得所求.【解答】解:(1)∵A∩B={x|1<x≤3},可得{2a+3=3−6≤a≤1,∴a=0.(2)由A∪B=B得A⊆B.①当A=⌀时满足题意,此时,a>2a+3,解得a<−3;②当A≠⌀时,有{a≤2a+3a>1或2a+3<−6,解得a>1.综上,a的取值范围为:a<−3或a>1,即(−∞, −3)∪(1, +∞).。
集合的概念与运算例题及答案

集合的概念与运算例题及答案1 集合的概念与运算(一)目标:1.理解集合、子集的概念,能利用集合中元素的性质解决问题2.理解交集、并集、全集、补集的概念,掌握集合的运算性质,3.能利用数轴或文氏图进行集合的运算,掌握集合问题的常规处理方法.重点:1.集合中元素的3个性质,集合的3种表示方法,集合语言、集合思想的运用;2.交集、并集、补集的求法,集合语言、集合思想的运用.基本知识点:知识点1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称集)(2)元素:集合中每个对象叫做这个集合的元素知识点2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合N ,{}Λ,2,1,0=N(2)正整数集:非负整数集内排除0的集记作N *或N + {}Λ,3,2,1*=N (3)整数集:全体整数的集合记作Z , {}Λ,,,210±±=Z(4)有理数集:全体有理数的集合记作Q , {}整数与分数=Q (5)实数集:全体实数的集合记作R {}数数轴上所有点所对应的=R 注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集记作N *或N + Q 、Z 、R 等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z *知识点3、元素与集合关系(隶属)(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a ?注意:“∈”的开口方向,不能把a ∈A 颠倒过来写知识点4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)知识点5、集合与元素的表示:集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q ……例题精析1:1、下列各组对象能确定一个集合吗(1)所有很大的实数(不确定)(2)好心的人(不确定)(3)1,2,2,3,4,5.(有重复)2、设a,b 是非零实数,那么b ba a+可能取的值组成集合的元素是_-2,0,2__ 3、由实数x,-x,|x |,332,x x -所组成的集合,最多含( A )(A )2个元素(B )3个元素(C )4个元素(D )5个元素4、设集合G 中的元素是所有形如a +b 2(a ∈Z, b ∈Z )的数,求证:(1) 当x ∈N 时, x ∈G;(2) 若x ∈G ,y ∈G ,则x +y ∈G ,而x1不一定属于集合G 证明(1):在a +b 2(a ∈Z, b ∈Z )中,令a=x ∈N,b=0,则x= x +0*2= a +b 2∈G,即x ∈G证明(2):∵x ∈G ,y ∈G ,∴x= a +b 2(a ∈Z, b ∈Z ),y= c +d 2(c ∈Z, d ∈Z )∴x+y=( a +b 2)+( c +d 2)=(a+c)+(b+d)2∵a ∈Z, b ∈Z,c ∈Z, d ∈Z∴(a+c) ∈Z, (b+d) ∈Z∴x+y =(a+c)+(b+d)2 ∈G ,又∵211b a x +==2222222b a b b a a --+- 且22222,2b a b b a a ---不一定都是整数,∴211b a x +==2222222b a b b a a --+-不一定属于集合G知识点6、集合的表示方法:(1)列举法:把集合中的元素一一列举出来,写在大括号内表示集合例如,由方程012=-x 的所有解组成的集合,可以表示为{-1,1}注:(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53, (100)所有正奇数组成的集合:{1,3,5,7,…}(2)a 与{a}不同:a 表示一个元素,{a}表示一个集合,该集合只有一个元素(2)描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法格式:{x ∈A| P (x )} 含义:在集合A 中满足条件P (x )的x 的集合例如,不等式23>-x 的解集可以表示为:}23|{>-∈x R x 或}23|{>-x x 所有直角三角形的集合可以表示为:}|{是直角三角形x x注:(1)在不致混淆的情况下,可以省去竖线及左边部分如:{直角三角形};{大于104的实数}(2)错误表示法:{实数集};{全体实数}(3)、文氏图:用一条封闭的曲线的内部来表示一个集合的方法思考:何时用列举法何时用描述法},5,23,{2232y x x y x x +-+⑵有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法如:集合}1|),{(2+=x y y x ;集合{1000以内的质数}例集合}1|),{(2+=x y y x 与集合}1|{2+=x y y 是同一个集合吗 }1|),{(2+=x y y x 是抛物线12+=x y 上所有的点构成的集合,集合}1|{2+=x y y =}1|{≥y y 是函数12+=x y 的所有函数值构成的数集例题精析2:1、用描述法表示下列集合①{1,4,7,10,13} }5,23|{≤∈-=n N n n x x 且②{-2,-4,-6,-8,-10} }5,2|{≤∈-=n N n n x x 且2、用列举法表示下列集合①{x ∈N|x 是15的约数} {1,3,5,15}②{(x ,y )|x ∈{1,2},y ∈{1,2}}{(1,1),(1,2),(2,1)(2,2)}注:防止把{(1,2)}写成{1,2}或{x=1,y=2}③=-=+}422|),{(y x y x y x )}32,38{(- ④},)1(|{N n x x n ∈-= {-1,1}⑤},,1623|),{(N y N x y x y x ∈∈=+ {(0,8)(2,5),(4,2)}⑥}4,|),{(的正整数约数分别是y x y x{(1,1),(1,2),(1,4)(2,1),(2,2),(2,4),(4,1),(4,2),(4,4)}3、关于x 的方程ax +b=0,当a,b 满足条件____时,解集是有限集;当a,b 满足条件_____时,解集是无限集4、用描述法表示下列集合:(1) { 1, 5, 25, 125, 625 }= ;(2) { 0,±21, ±52, ±103, ±174, ……}= 巩固提升:1、数集{}21,,x x x -中元素x 所满足的条件是 2、已知{}23,21,1A a a a =--+,其中a R ∈,⑴若3A -∈,求实数a 的值;⑵当a 为何值时,集合A 的表示不正确。
集合及其运算2

集合及其运算(2)班级 姓名[学习目标]1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集2.能使用Venn 图表达集合的关系及运算.[基础训练]1.已知集合M ={x|-3<x≤5},N ={x|-5<x<5},则M∩N=________.2.已知集合A ={1,2,3},B ={2,m ,4},A∩B={2,3},则m =________.3.设集合A ={x|2≤x<4},B ={x|3x -7≥8-2x},则A ∪B =__________.4.集合P ={x ∈Z |0≤x<3},M ={x ∈Z |x 2≤9},则P∩M=________.5.集合M ={y|y =x 2-1,x ∈R },集合N ={x|y =9-x 2,x ∈R },则M∩N=________.[典型例题]题型一 与集合有关的运算例1. 设A ={x|2x 2-px +q =0},B ={x|6x 2+(p +2)x +5+q =0},若A∩B=⎩⎨⎧⎭⎬⎫12, 求A ∪B.变式:设全集是实数集R ,A ={x|2x 2-7x +3≤0},B ={x|x 2-4>0}.求A∩B;A ∪B ;(∁R A)∩B;(∁R A)∩(∁R B);A ∪(∁R B)题型二集合运算的实际应用例2.某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26、15、13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,求同时参加数学和化学小组的有多少人?变式:高三某班同学中,有象棋爱好者占53%,篮球爱好者占55%,同时爱好这两项的人百分率最多是多少,最少是多少?题型三利用韦恩(Venn)图进行集合的运算例3.已知A,B均为集合U={1,2,3,4,5,6}的子集,且A∩B={3},(∁U B)∩A={1},(∁U A)∩(∁U B)={2,4},则B∩(∁U A)=________.题型四分类讨论思想在集合运算中的应用例4设全集是实数集R,A={x|2x2-7x+3≤0},B={x|x2+a<0}.(1)当a=-4时,求A∩B和A∪B;(2)若(∁R A)∩B=B,求实数a的取值范围.[随堂练习]1.已知集合P ={-2,0,2,4},Q ={x |0<x <3},则P ∩Q =________.2.已知全集U ={0,1,2,3,4,5,6,7,8,9},集合A ={0,1,3,5,8},集合B ={2,4,5,6,8},则(∁U A )∩(∁U B )=________.3.已知S ={(x ,y )|y =1,x ∈R },T ={(x ,y )|x =1,y ∈R },则S ∩T =________.4.已知集合A ={y|y =x 2-4x ,x ∈R },B ={y|y =-x 2+4x ,x ∈R },求A ∩B.5. 已知集合A ={x|5<x ≤6},集合 B ={x|m+1<x<2m-1},若A ∩B φ≠,求实数m 的取值范围.[反思总结][课后检测]1.设集合A ={1,2},则满足A ∪B ={1,2,3}的集合B 的个数为________.2.设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a =____.3.设全集U =A ∪B ={x ∈N *|lg x <1},若A ∩(∁U B )={m |m =2n +1,n =0,1,2,3,4},则集合B =______________.4. 已知集合A ={-4,2a -1,a 2},B ={a -5,1-a,9},若9∈(A ∩B ),则实数a =________.5.已知A ={(x ,y )|y =|ln x |},B =⎩⎨⎧⎭⎬⎫(x ,y )|x 29+y 24=1,则A ∩B 的子集个数为________.6.设M={a|a=(2,0)+m(0,1),m∈R}和N={b|b=(1,1)+n(1,-1),n∈R}都是元素为向量的集合,则M∩N=________.7.已知集合A={x|y=x2-5x-14},集合B={x|y=lg(-x2-7x-12)},集合C={x|m+1≤x≤2m-1}.(1)求A∩B;(2)若A∪C=A,求实数m的取值范围.8.设集合A={x|x2-3x+2=0},B={x|x2+2(a+1)x+(a2-5)=0}.(1)若A∩B={2},求实数a的值;(2)若A∪B=A,求实数a的取值范围.集合及其运算(2)班级 姓名[学习目标]1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集2.能使用Venn 图表达集合的关系及运算.[基础训练]1.已知集合M ={x |-3<x ≤5},N ={x |-5<x <5},则M ∩N =________.答案 {x |-3<x <5}解析 画数轴,找出两个区间的公共部分即得M ∩N ={x |-3<x <5}.2.已知集合A ={1,2,3},B ={2,m ,4},A ∩B ={2,3},则m =________.答案 3解析 ∵A ∩B ={2,3},∴3∈B ,∴m =3.3.设集合A ={x |2≤x <4},B ={x |3x -7≥8-2x },则A ∪B =__________.{x |x ≥2}4.集合P ={x ∈Z |0≤x <3},M ={x ∈Z |x 2≤9},则P ∩M =________.答案 {0,1,2}解析 由题意知:P ={0,1,2},M ={-3,-2,-1,0,1,2,3},∴P ∩M ={0,1,2}5.集合M ={y |y =x 2-1,x ∈R },集合N ={x |y =9-x 2,x ∈R },则M ∩N =________.答案 [-1,3]解析 ∵y =x 2-1≥-1,∴M =[-1,+∞)[典型例题]题型一 方程解集的运算例1.设A ={x |2x 2-px +q =0},B ={x |6x 2+(p +2)x +5+q =0},若A ∩B =⎩⎨⎧⎭⎬⎫12,求A ∪B . 【解析】 ∵A ∩B =⎩⎨⎧⎭⎬⎫12,∴12∈A ,12∈B .将12分别代入方程2x 2-px +q =0及6x 2+(p +2)x +5+q =0,联立得方程组⎩⎨⎧ 12-12p +q =0,32+12(p +2)+5+q =0,解得⎩⎪⎨⎪⎧p =-7,q =-4, ∴A ={x |2x 2+7x -4=0}=⎩⎨⎧⎭⎬⎫-4,12, B ={x |6x 2-5x +1=0}=⎩⎨⎧⎭⎬⎫12,13, ∴A ∪B =⎩⎨⎧⎭⎬⎫12,13,-4.题型二集合运算的实际应用例2.某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26、15、13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,求同时参加数学和化学小组的有多少人?解析由题意知,同时参加三个小组的人数为0,令同时参加数学、化学人数为x人.20-x+6+5+4+9-x+x=36,x=8.答案8变式:变式:高三某班同学中,有象棋爱好者占53%,篮球爱好者占55%,同时爱好这两项的百分率最多是多少,最少是多少?53%,8%题型三利用韦恩(Venn)图进行集合的运算例3.已知A,B均为集合U={1,2,3,4,5,6}的子集,且A∩B={3},(∁U B)∩A ={1},(∁U A)∩(∁U B)={2,4},则B∩(∁U A)=________.解析依题意及韦恩图可得,B∩(∁U A)={5,6}.答案{5,6}题型四 分类讨论思想在集合运算中的应用例4设全集是实数集R ,A ={x |2x 2-7x +3≤0},B ={x |x 2+a <0}.(1)当a =-4时,求A ∩B 和A ∪B ;(2)若(∁R A )∩B =B ,求实数a 的取值范围.解题导引 解决含参数问题的集合运算,首先要理清题目要求,看清集合间存在的相互关系,注意分类讨论、数形结合思想的应用以及空集的特殊性.解 (1)A ={x |12≤x ≤3}. 当a =-4时,B ={x |-2<x <2},∴A ∩B ={x |12≤x <2}, A ∪B ={x |-2<x ≤3}.(2)∁R A ={x |x <12或x >3}. 当(∁R A )∩B =B 时,B ⊆∁R A ,即A ∩B =∅.①当B =∅,即a ≥0时,满足B ⊆∁R A ;②当B ≠∅,即a <0时,B ={x |--a <x <-a },要使B ⊆∁R A ,需-a ≤12,解得-14≤a <0. 综上可得,a 的取值范围为a ≥-14.[随堂练习]1.已知集合P ={-2,0,2,4},Q ={x |0<x <3},则P ∩Q =________.解析:由题易知P ∩Q ={2}.答案:{2}2.已知全集U ={0,1,2,3,4,5,6,7,8,9},集合A ={0,1,3,5,8},集合B ={2,4,5,6,8},则(∁U A )∩(∁U B )=________.解析:∁U A ={2,4,6,7,9},∁U B ={0,1,3,7,9},则(∁U A )∩(∁U B )={7,9}.答案:{7,9}3.已知S ={(x ,y )|y =1,x ∈R },T ={(x ,y )|x =1,y ∈R },则S ∩T =________.解析:集合S 表示直线y =1上的点,集合T 表示直线x =1上的点,S ∩T 表示直线y=1与直线x=1的交点.答案:{(1,1)}4.已知集合A={y|y=x2-4x,x∈R},B={y|y=-x2+4x,x∈R},求A∩B.A={y|y=(x-2)2-4,x∈R}={y|y≥-4,y∈R},B={y|y=-(x-2)2+4,x∈R}={y|y≤4,y∈R},所以A∩B={y|-4≤y≤4,y∈R}.≠,求实数m的取值范围.5. 已知集合A={x|5<x≤6},集合 B={x|m+1<x<2m-1},若A∩Bφ35<<m[反思总结][课后检测]1.设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数为________.答案 4解析由题意知B的元素至少含有3,因此集合B可能为{3}、{1,3}、{2,3}、{1,2,3}.2.设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=____.答案 1解析∵3∈B,由于a2+4≥4,∴a+2=3,即a=1.3.设全集U=A∪B={x∈N*|lg x<1},若A∩(∁U B)={m|m=2n+1,n=0,1,2,3,4},则集合B=______________.答案{2,4,6,8}解析A∪B={x∈N*|lg x<1}={1,2,3,4,5,6,7,8,9},A∩(∁U B)={1,3,5,7,9},∴B={2,4,6,8}.4.已知集合A={-4,2a-1,a2},B={a-5,1-a,9},若9∈(A∩B),则实数a=________.[自主解答](1)集合{z|z=x+y,x∈A,y∈B}={-1,1,3}.故所求集合中元素的个数为3.(2)∵9∈(A ∩B ),∴9∈A 且9∈B ,∴2a -1=9或a 2=9.∴a =5或a =±3.当a =5时,A ={-4,9,25},B ={0,-4,9},符合题意;当a =3时,A ={-4,5,9},B 不满足集合中元素的互异性,故a ≠3;当a =-3时,A ={-4,-7,9},B ={-8,4,9},符合题意.∴a =5或a =-3.[答案] (1)3 (2)5或-35.已知A ={(x ,y )|y =|ln x |},B =⎩⎨⎧⎭⎬⎫(x ,y )|x 29+y 24=1,则A ∩B 的子集个数为________.解析:A ∩B 中元素的个数就是函数y =|ln x |的图象与椭圆x 29+y 24=1的交点个数,如图所示.由图可知,函数图象和椭圆有两个交点,即A ∩B 中有两个元素,故A ∩B 的子集有22=4个.答案:46.设M ={a |a =(2,0)+m (0,1),m ∈R }和N ={b |b =(1,1)+n (1,-1),n ∈R }都是元素为向量的集合,则M ∩N =________.解析:设c =(x ,y )∈M ∩N ,则有(x ,y )=(2,0)+m (0,1)=(1,1)+n (1,-1),即(2,m )=(1+n,1-n ),所以⎩⎪⎨⎪⎧2=1+n ,m =1-n ,由此解得n =1,m =0,(x ,y )=(2,0), 即M ∩N ={(2,0)}.答案:{(2,0)}7.已知集合A ={x |y =x 2-5x -14},集合B ={x |y =lg(-x 2-7x -12)},集合C ={x |m +1≤x ≤2m -1}.(1)求A ∩B ;(2)若A ∪C =A ,求实数m 的取值范围.解:(1)∵A =(-∞,-2]∪[7,+∞),B =(-4,-3),∴A ∩B =(-4,-3).(2)∵A ∪C =A ,∴C ⊆A .①C =∅,2m -1<m +1,∴m <2.②C ≠∅,则⎩⎪⎨⎪⎧ m ≥2,2m -1≤-2,或⎩⎪⎨⎪⎧m ≥2,m +1≥7, 解得m ≥6.综上可得,实数m 的取值范围是m <2或m ≥6.8.设集合A ={x|x 2-3x +2=0},B ={x|x 2+2(a +1)x +(a 2-5)=0}.(1)若A ∩B ={2},求实数a 的值;(2)若A ∪B =A ,求实数a 的取值范围.A ={x |x 2-3x +2=0}={1,2}.(1)∵A ∩B ={2},∴2∈B .将x =2代入B 中的方程,得a 2+4a +3=0,∴a =-1或a =-3.当a =-1时,B ={x |x 2-4=0}={-2,2},满足条件;当a =-3时,B ={x |x 2-4x +4=0}={2},满足条件.综上所述,a 的值为-1或-3.(2)对于集合B ,Δ=4(a +1)2-4(a 2-5)=8(a +3),∵A ∪B =A ,∴B ⊆A ,∴①当Δ<0,即a <-3时,B =Ø,满足条件;②当Δ=0,即a =-3时,B ={2},满足条件;③当Δ>0,即a >-3时,只有B =A ={1,2}满足条件,则由根与系数的关系得:即 无解.综上所述,a 的取值范围是a ≤-3.设全集I =R ,已知集合M ={x |(x +3)2≤0},N ={x |x 2+x -6=0}.(1)求(∁I M )∩N ;(2)记集合A =(∁I M )∩N ,已知集合B ={x |a -1≤x ≤5-a ,a ∈R },若B ∪A =A ,求实数a 的取值范围.解:(1)∵M ={x |(x +3)2≤0}={-3},N ={x |x 2+x -6=0}={-3,2},∴∁I M ={x |x ∈R 且x ≠-3},∴(∁I M )∩N ={2}.(2)A =(∁I M )∩N ={2},∵A ∪B =A ,∴B ⊆A ,∴B =∅或B ={2},当B =∅时,a -1>5-a ,∴a >3;当B ={2}时,⎩⎪⎨⎪⎧a -1=2,5-a =2,解得a =3,4.已知集合A ={x |x 2-6x +8<0},B ={x |(x -a )·(x -3a )<0}.(1)若A ⊆B ,求a 的取值范围;(2)若A ∩B =∅,求a 的取值范围;(3)若A ∩B ={x |3<x <4},求a 的取值范围.解:∵A ={x |x 2-6x +8<0},∴A ={x |2<x <4}.(1)若A ⊆B ,当a =0时,B =∅,显然不成立;当a >0时,B ={x |a <x <3a },应满足⎩⎪⎨⎪⎧a ≤2,3a ≥4⇒43≤a ≤2; 当a <0时,B ={x |3a <x <a },应满足⎩⎪⎨⎪⎧3a ≤2,a ≥4,此时不等式组无解, ∴当A ⊆B 时,43≤a ≤2. (2)∵要满足A ∩B =∅,当a =0时,B =∅满足条件;当a >0时,B ={x |a <x <3a },a ≥4或3a ≤2.∴0<a ≤23或a ≥4; 当a <0时,B ={x |3a <x <a },a ≤2或3a ≥4.∴a <0时成立,综上所述,a ≤23或a ≥4时,A ∩B =∅. (3)要满足A ∩B ={x |3<x <4},显然a =3.2.已知集合A ={x |x 2-3x -10≤0},B ={x |m +1≤x ≤2m -1},若A ∪B =A ,求实数m 的取值范围.正解 由x 2-3x -10≤0,解得-2≤x ≤5,即A ={x |-2≤x ≤5}.因为A ∪B =A ,所以B ⊆A .①若B ≠Ø,则2m -1≥m +1,解得m ≥2.又B ⊆A ,所以解得-3≤m ≤3.所以2≤m ≤3.②若B =Ø,则2m -1<m +1,解得m <2.综合①②可知,m 的取值范围为(-∞,3].6.(2013·南京四校联考)已知集合P ={-1,m },Q =⎩⎨⎧⎭⎬⎫x ⎪⎪-1<x <34,若P ∩Q ≠∅,则整数m =________.解析:由条件得m ∈Q ,即-1<m <34,从而整数m =0. 答案:07.设函数f (x )=lg(1-x 2),集合A ={x |y =f (x )},B ={y |y =f (x )},则图中阴影部分表示的集合为________.解析:因为A ={x |y =f (x )}={x |1-x 2>0}={x |-1<x <1},则u =1-x 2∈(0,1],所以B ={y |y =f (x )}={y |y ≤0},A ∪B =(-∞,1),A ∩B =(-1,0],故图中阴影部分表示的集合为(-∞,-1]∪(0,1).答案:(-∞,-1]∪(0,1)11.(满分14分)A ={x |-2<x <-1或x >1},B ={x |a ≤x <b },A ∪B ={x |x >-2},A ∩B ={x |1<x <3},求实数a ,b 的值.解:∵A ∩B ={x |1<x <3},∴b =3,又A ∪B ={x |x >-2},∴-2<a ≤-1,又A ∩B ={x |1<x <3},∴-1≤a <1,∴a =-1.14. 已知A ={x |x 2-3x +2=0},B ={x |x 2-ax +a -1=0},C ={x |x 2-mx +2=0},且A ∪B =A ,A ∩C =C ,求实数a 及m 的值.解 ∵A ={1,2},B ={x |(x -1)[x -(a -1)]=0},又A∪B=A,∴B⊆A.∴a-1=2⇒a=3(此时A=B),或a-1=1⇒a=2(此时B={1}).由A∩C=C⇒C⊆A,从而C=A或C=∅(若C={1}或C={2}时,可检验不符合题意).当C=A时,m=3;当C=∅时,Δ=m2-8<0⇒-22<m<2 2.综上可知a=2或a=3,m=3或-22<m<2 2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 1.1.3 课时4
一、选择题
1.若集合A ={0,1,2,3},B ={1,2,4},则集合A ∪B =( ) A .{0,1,2,3,4} B .{1,2,3,4} C .{1,2}
D .{0}
解析 由并集的概念,可得A ∪B ={0,1,2,3,4}. 答案 A
2.已知集合M ={(x ,y )|x +y =2},N ={(x ,y )|x -y =4},那么集合M ∩N 为( ) A .x =3,y =-1 B .(3,-1) C .{3,-1}
D .{(3,-1)}
解析 ∵要求集合M 与N 的公共元素,
∴⎩
⎪⎨
⎪⎧
x +y =2x -y =4解得⎩
⎪⎨
⎪⎧
x =3
y =-1∴M ∩N ={(3,-1)},选D .
答案 D
3.设全集U =R ,A ={x ∈N |1≤x ≤10},B ={x ∈R |x 2
+x -6=0},则右图中阴影部分表示的集合为( )
A .{2}
B .{3}
C .{-3,2}
D .{-2,3}
解析 注意到集合A 中的元素为自然数,因此易知A ={1,2,3,4,5,6,7,8,9,10},而直接解集合B 中的方程可知B ={-3,2},因此阴影部分显然表示的是A ∩B ={2},选A .
答案 A
4.满足M ?{a 1,a 2,a 3,a 4},且M ∩{a 1,a 2,a 3}={a 1,a 2}的集合M 的个数是( ) A .1 B .2 C .3
D .4
解析 直接列出满足条件的M 集合有{a 1,a 2}、{a 1,a 2,a 4},因此选B . 答案 B 二、填空题
5.[2015·福建六校高一联考]已知集合A ={1,3,m },
B ={3,4},A ∪B ={1,2,3,4},则m =________.
解析 由题意易知2∈(A ∪B ),且2?B ,∴2∈A ,∴m =2. 答案 2
6.设集合A ={-3,0,1},B ={t 2
-t +1}.若A ∪B =A ,则t =________. 解析 由A ∪B =A 知B ?A , ∴t 2
-t +1=-3 ① 或t 2-t +1=0 ② 或t 2-t +1=1
③
①无解;②无解;③t =0或t =1. 答案 0或1
7.已知集合P ={-1,a +b ,ab },集合Q =⎩
⎨⎧
⎭
⎬⎫
0,b a
,a -b ,若P ∪Q =P ∩Q ,则a -b =
________.
解析 由P ∪Q =P ∩Q 易知P =Q ,由Q 集合可知a 和b 均不为0,因此ab ≠0,于是必须
a +
b =0,所以易得b
a
=-1,因此又必得ab =a -b ,代入b =-a 解得a =-2.所以b =2,因
此得到a -b =-4.
答案 -4 三、解答题
8.已知集合A ={x |0≤x -m ≤3},B ={x |x <0或x >3},试分别求出满足下列条件的实数
m 的取值范围.
(1)A ∩B =?; (2)A ∪B =B .
解 ∵A ={x |0≤x -m ≤3}, ∴A ={x |m ≤x ≤m +3}.
(1)当A ∩B =?时,有⎩
⎪⎨
⎪⎧
m ≥0,
m +3≤3,解得m =0.
(2)当A ∪B =B 时,则A ?B ,∴有m >3或m +3<0,解得m <-3或m >3. ∴m 的取值范围为{m |m >3或m <-3}.
9.[2015·衡水高一调研]已知集合A ={-1,1},B ={x |x 2
-2ax +b =0},若B ≠?且A ∪B =A ,求a ,b 的值.
解 B ≠?且A ∪B =A ,所以B ≠?且B ?A ,故B 存在两种情况: (1)当B 含有两个元素时,B =A ={-1,1},此时a =0,b =-1; (2)当B 含有一个元素时,Δ=4a 2
-4b =0,∴a 2
=b .
若B ={1}时,有a 2
-2a +1=0,∴a =1,b =1. 若B ={-1}时,有a 2
+2a +1=0,∴a =-1,b =1.
综上:⎩⎪⎨
⎪⎧
a =0,
b =-1
或⎩⎪⎨⎪⎧
a =1,
b =1
或⎩⎪⎨⎪⎧
a =-1,
b =1.。