高中数学解题方法之分离变量法(含标准答案)
专题17 参变分离法解决导数问题(解析版)

专题17参变分离法解决导数问题1.分离变量法在处理含参a 的函数(,)f x a 不等式和方程问题时,有时可以将变量分离出来,如将方程(,)0f x a =,转化为()()g x h a =这样就将把研究含参函数(,)f x a 与x 轴的位置关系的问题转化为不含参的函数()g x 与动直线()y h a =的位置关系问题,这种处理方法就叫分离变量法。
(1)优点:分离变量法可以将含参函数中的参数分离出去,避免直接讨论,从而简化运算;(2)解题过程中可能遇到的问题:①参数无法分离;②参数分离后的函数()y g x =过于复杂;③讨论位置关系时可能用到()y g x =的函数极限,造成说理困难.2.分类:分离参数法有完全分离参数法(全分参)和部分分离参数法(半分参)两种注意事项:无论哪种分参方法,分参过程中需注意变量的正负对不等号的影响!一、单选题1.已知函数()ln f x x ax =-在区间()1,2上单调递增,则a 的取值范围是()A .(],1-∞B .1,2⎛⎤-∞ ⎥⎝⎦C .1,2⎛⎫-∞ ⎪⎝⎭D .(),1-∞【解析】1()0f x a x '=-≥在区间()1,2上恒成立,即1a x≥在区间()1,2上恒成立,显然1y x=在区间()1,2的最小值为12,所以12a ≤.故选:B .2.若函数()5ln f x x a x x=--在[)1,+∞上是增函数,则实数a 的取值范围是()A .-⎡⎣B .(,-∞C .(],6-∞D .(]0,6【解析】因为函数()f x 在[)1,+∞上是增函数,所以()0f x '≥在[)1,+∞上恒成立,即()2510a f x x x '=+-≥,即5a x x≤+恒成立,又5x x +≥=x =a ≤,故选:B 3.已知函数()e xf x mx x=-(e 为自然对数的底数),若()0f x >在()0,∞+上恒成立,则实数m 的取值范围是()A .(),2-∞B .2e ,4⎛⎫-∞ ⎪⎝⎭C .(],e -∞D .2e ,4∞⎛⎫+ ⎪⎝⎭【解析】若()0f x >在()0,∞+上恒成立,则2ex m x <在()0,∞+上恒成立等价于2e x min m x ⎛⎫< ⎪⎝⎭在()0,∞+上恒成立,令()()2e0xh x x x =>,则()()()3e 20x x x h x x-'>=,令()0h x '>,解得2x >,令()0h x '<,解得02x <<,故()h x 在()0,2上单调递减,在()2,+∞上单调递增,故()()2e 24minh x h ==,故2e 4m <.故选:B.4.关于x 的方程210x mx ++=在[]0,2内有解,则实数m 的取值范围()A .(],2-∞-B .[)2,+∞C .5,2∞⎛⎤-- ⎥⎝⎦D .5,2⎡⎫+∞⎪⎢⎣⎭【解析】当0x =时,可得10=显然不成立;当(]0,2x ∈时,由于方程210x mx ++=可转化为1m x x =--,(]0,2,x ∈令1y x x =--,可得222111x y x x-=-=',当01x <<时,0y '>,函数单调递增;当12x <<时,0y '<,函数单调递减,所以当1x =时,函数1y x x=--取唯一的极大值,也是最大值,所以2max y =-,所以2y ≤-,即2m ≤-,所以实数m 的取值范围(],2-∞-.故选:A.5.若函数()ln x f x x x ae =+没有极值点,则实数a 的取值范围是()A .1,e⎛⎫+∞ ⎪⎝⎭B .10,e ⎛⎫ ⎪⎝⎭C .1,e ∞⎛⎤-- ⎥⎝⎦D .1,0e ⎛⎫- ⎪⎝⎭【解析】由题意可得,()1ln 0x f x x ae '=++=没有零点,或者有唯一解(但导数在点的两侧符号相同),即1ln xxa e +-=没有交点,或者只有一个交点但交点的两侧符号相同.令1ln ()x x g x e+=,0x >,则1ln 1()xx x g x e --'=,令1()ln 1h x x x=--则()h x 在()0,∞+上单调递减且()10h =,所以当01x <<时,()0h x >,()0g x '>,()g x 单调递增,当1x >时,()0h x <,()0g x '<,()g x 单调递减,故当1x =时,()g x 取得最大值1(1)g e=,又0x →时,()g x →-∞,x →+∞时,()0g x →,结合图象可知,1a e -≥即1a e≤-.故选:C.6.若对任意正实数x ,不等式()21xe a x -≤恒成立,则实数a 的范围是()A .ln 2122a ≤+B .ln 212a ≤+C .1ln 22a ≤+D .ln 2122a ≥+【解析】因为不等式()2e 1xa x -≤恒成立,2e 0x >,所以21e xa x ≤+恒成立,设()21ex f x x =+,则()min a f x ≤,因为()221e x f x '=-+,令()0f x '=,则ln 22x =,所以当ln 2,2x ⎛⎫∈-∞ ⎪⎝⎭时,()0f x '<,当ln 2,2x +∈∞⎛⎫⎪⎝⎭时,()0f x '>,所以()f x 在ln 2,2⎛⎫-∞ ⎝⎭上单调递减,在ln 2,2+∞⎛⎫⎪⎝⎭上单调递增,所以()min ln 21ln 2222f x f ⎛⎫==+⎪⎝⎭,所以ln 2122a ≤+,故选:A 7.已知函数()x f x a x xe =-+,若存在01x >-,使得()0 0f x ≤,则实数a 的取值范围为:()A .[0,)+∞B .(,0]-∞C .[1,)+∞D .(,1]-∞【解析】由题意可得0x a x xe +≤-在()1,-+∞上能成立,所以x a x xe ≤-在()1,-+∞上能成立,令()()1x x xe h x x -=>-,则()()11xx h x e -+'=,令()()11x x x e m =-+,则()()02x x m x e +'=-<,所以()()11xx x e m =-+在()1,-+∞上单调递减,且()()000110e m -+⨯==,即()00h '=,因此()h x 在()1,0-上单调递增,在()0,∞+上单调递减,所以()()max 00h x h ==,所以0a ≤,故选:B.8.当0x >时,11e 2x a x->-恒成立,则a 的取值范围为()A .()1,+∞B .()e,∞+C .1,e ∞⎛⎫+ ⎪⎝⎭D .()2,+∞【解析】由11121e2e x x x a a x x --->-⇒>,设()121e x x f x x --=,则()()()2212121121e ex x x x x x f x x x --+-+-++'==,当()0,1x ∈时,()0f x '>,当(1,)x ∈+∞时,()0f x '<,所以函数()f x 在区间()0,1上递增,在区间(1,)+∞上递减,故()()11f x f ≤=,故1a >.故选:A.9.对任意0x >,不等式e ln()(1)0x ax a x -+-≥恒成立,则正数a 的最大值为()A BC .1eD .e【解析】∵e ln()(1)0x ax a x -+-≥,∴ln()e ln()ln()e x ax x ax ax ax +≥+=+.令()e x f x x =+,则不等式化为()(ln())f x f ax ≥.∵()e (0)xf x x x =+>为增函数,∴ln()x ax ≥,即ex a x≤.令e ()=x g x x ,则2(1)e ()x x g x x'-=,当01x <<时,()0g x '<,即()g x 递减;当1x >时,()0g x '>,即()g x 递增;所以()()min 1e e g x g a ⇒≤==.∴实数a 的最大值为e .故选:D 10.已知函数21()()2x f x x x e -=-,若当1x >时,()10f x mx m -++≤有解,则实数m 的取值范围为()A .(,1]-∞B .(,1)-∞-C .(1,)-+∞D .[1,)+∞【解析】()10f x mx m -++≤有解,即21(211)(1)1x x x e m x --+-≤--,设1t x =-,则0t >,不等式转化成2(1)1tt e mt -£-在0t >时有解,则2(1)1t t e m t -+³有解,记2(1)1()t t e h t t-+=,则322(1)1()tt t t e h t t+-+-¢=,再令32()(1)1t g t t t t e =+-+-,则32()(4)0t g t t t t e ¢=++>,那么()g t 在0t >时递增,所以()(0)0g t g >=,于是()0h t '>,()h t 在0t >时递增,故20(1)1()lim t t t e h t t ®-+>,记()()21t t t e ϕ=-,0()(0)()lim (0)10t t h t t j j j ®-¢>==--,于是2(1)1tt e m t-+³有解,只需要1m >-.故选:C 二、多选题11.已知函数()ln f x x ax =-有两个零点1x ,2x ,且12x x <,则下列选项正确的是()A .10,a e ⎛⎫∈ ⎪⎝⎭B .()y f x =在(0,)e 上单调递增C .126x x +>D .若221,a e e ⎛⎫∈ ⎪⎝⎭,则212a x x a --<【解析】令()0f x =得ln x a x=,记ln ()xg x x =21ln ()xg x x -'=,令()0g x '=得x e =当(0,)x e ∈时,()0g x '>,()g x 单调递增;当(,)x e ∈+∞时,()0g x '<,()g x 单调递减;且0x →时,()g x →-∞,1(e)g e=,x →+∞时,()0g x →据题意知y a =的图象与()y g x =的图象有两个交点,且交点的横坐标为1x ,2x ,所以10,a e ⎛⎫∈ ⎪⎝⎭,故A 选项正确;因为11()'-=-=ax f x a x x ,所以当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x 递增,因为10,a e ⎛⎫∈ ⎪⎝⎭,所以1(0,)0,e a ⎛⎫⊆ ⎪⎝⎭,故B 选项正确;当1a e →时,1e a→,10f a ⎛⎫→ ⎪⎝⎭,又因为()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减,所以12,x e x e →→,所以1226x x e +→<,所以C 选项错误;因为()f x 在10,a ⎛⎫ ⎪⎝⎭递增,在1,a ⎛⎫+∞ ⎪⎝⎭递减,且221,a e e ⎛⎫∈ ⎪⎝⎭所以110,x a ⎛⎫∈ ⎪⎝⎭,21,x a ⎛⎫∈+∞ ⎪⎝⎭,因为()1(1)0f a f x =-<=,所以11x >因为()2222ln 2ln 20f e f x a a ⎛⎫=-<-== ⎪⎝⎭,所以22x a <所以21221a x x a a--<-=,故D 选项正确故选:ABD.12.已知函数()()1x f x x k e =-+在区间[11]-,上只有一个零点,则实数k 可取的值有()A .1-B .0C .1D .2【解析】由题意可知,()10x x k e -+=在区间[1,1]-上只有一个根,等价于1xk x e =+在区间[1,1]-上只有一个根,等价于y k =与1()xg x x e =+的图像有唯一一个公共点,由1()x g x x e =+得1()1x g x e=-',令()0g x '=得0x =,当10x -≤<时,()0g x '<,则()g x 在[1,0)-上单调递减,当01x <≤时,()0g x '>,则()g x 在(0,1]上单调递增,∴在区间[1,1]-内,当0x =时()g x 取极小值也是最小值,∴当()(0)1g x g ≥=,又1(1)1g e =+,(1)1g e -=-,且111e e ->+,则满足条件的k 的取值范围是{}11(1,1]e e⋃+-,所以k 可取的值为1、2.故选:CD.13.设函数()f x =为自然对数的底数).若存在[]0,1b ∈使()()f f b b =成立,则实数a 的取值可以是()A .0B .1C .2D .3【解析】易知()f x 在定义域内单调递增,若()f b b >,则()()()f f b f b b >>,若()f b b <,则()()()f f b f b b <<.故存在[]0,1b ∈使()()f f b b =成立,则()f b b =,即()f x x =在[]0,1上有解.故[]2e ,0,1x x a x x x ⇔=+∈=-,设[]2e ,0,1()x g x x x x +∈-=,则e 1(2)x g x x =-+',令2e 1,2e ()()x x h x h x x '=+--=,在[)0,ln 2上()0,()h x h x '<单减,在(]ln 2,1上()0,()h x h x '>单增,故()(ln 2)32ln 20h x h ≥=->即()0g x '>,()g x 在[]0,1上单增,又(0)1,(1)e g g ==,故1e a ≤≤.故选:BC.14.已知定义在R 上的奇函数()f x 在(,0]-∞上单调递增,则“对于任意的(0,1]x ∈,不等式2(2)(ln )0x f ae x f x x x ++-≥恒成立”的充分不必要条件可以是()A .1a e-≤<B .4312a e e≤<C .3211a e e ≤<D .1a ee≤<【解析】奇函数()f x 在(,0]-∞上单调递增,则在(0,)+∞上也单调递增,即()f x 是R 上的单增函数;222(2)(ln )0(2)(ln )(ln )x x f ae x f x x x f ae x f x x x f x x x ++-≥⇔+≥--=-,则22ln xae x x x x +≥-,(0,1]x ∈,即22ln xx x x xa e --≥在(0,1]x ∈上恒成立;令22ln ()xx x x xg x e --=,则222(22ln 1)(2ln )43(1)ln ()x x x xx x e x x x x e x x x x g x e e-------+-+-'==(1)(3ln )x x x x e ---=,(0,1]x ∈记()ln 3h x x x =--,1()10h x x'=-≤恒成立,即()h x 单减,又3311()0h e e=>,(1)20h =-<,则必有0(0,1]x ∈,使000()ln 30h x x x =--=,故0(0,)x x ∈,()0h x >,0(,1]x x ∈,()0h x <,因此0(0,)x x ∈,()0g x '>,()g x 单增,0(,1]x x ∈,()0g x '<,()g x 单减,因此0020000000002ln (ln )2()()x x x x x x x x x x g x g x e e ----≤==,由0300000ln 30ln 3,x x x x x x e ---=⇒-==代入得00030003321()()x x x x x e g x g x e e e --≤===,故若使22ln xx x x xa e --≥在(0,1]x ∈上恒成立,则031()a g x e ≥=,根据充分不必要条件的定义可以判断C 、D 正确,A 、B 错误;故选:CD.三、填空题15.若函数21()e 2x f x x a =-是R 上的减函数,则实数a 的最小值为_______【解析】由题意得,()e 0x f x x a '=-≤在R 上恒成立,即e xxa ≥在R 上恒成立,令1()=,()=e ex x x xg x g x -',当1x <时,()0g x '>,()g x 递增,当1x >时,()0g x '<,()g x 递减,故max 1()=g(1)=eg x ,故1e a ≥,即函数a 的最小值为1e ,16.已知函数()()e ln xf x m x m =+∈,若对任意正数12,x x ,当12x x >时,都有()()1212f x f x x x ->-成立,则实数m 的取值范围是______.【解析】由()()1212f x f x x x ->-得,()()1122f x x f x x ->-令()()g x f x x =-,∴()()12g x g x >,∴()g x 在()0,∞+单调递增,又∵()()e ln x g x f x x m x x =-=+-,∴()e 10xmg x x'=+-≥,在()0,∞+上恒成立,即()1e x m x ≥-令()()1exh x x =-,则()()e 110xh x x '=-++<∴()h x 在()0,∞+单调递减,又因为()()01e 00h =-⨯=,∴0m ≥.17.已知函数()333sin x x x f x =+-,若对任意的()0,x ∈+∞,不等式()()ln 20f x f ax -+≤恒成立,则实数a 的取值范围为___________.【解析】因为()()()()()()3333sin 33sin f x x x x x x x f x -=-+---=-+-=-,所以()f x 为奇函数,因为()()22333cos 331cos 0x x x x f x '=+-=+-≥,所以()f x 为R 上的增函数,由(ln 2)()0f x f ax -+≤得(ln 2)()()f x f ax f ax -≤-=-,则ln 2x ax -≤-,因为,()0x ∈+∞,所以ln 2x a x--≥.令ln 2()(0)x g x x x-=>,则()23ln xg x x -'=,令()0g x '=,得3e x =,当30e x <<时,()0g x '>,()g x 单调递增,当3e x >时,()0g x '<,()g x 单调递减,故()()33max 1e e g x g ==,所以31e a -≥,即31e a ≤-,所以实数a 的取值范围为31,e ⎛⎤-∞- ⎥⎝⎦.18.已知(0,2)x ∈,若关于x 的不等式21e 2x k x x x <+-恒成立,则实数k 的取值范围是________.【解析】依题意,知220+->k x x ,即22>-k x x 对任意(0,2)x ∈恒成立,从而0k ≥,因此由原不等式,得2e 2<+-x k x x x 恒成立.令2e ()2=+-xf x x x x ,则2e ()(1)2⎫⎛'=-⋅+⎪ ⎝⎭x f x x x .令()0f x '=,得1x =.当(1,2)x ∈时,()0f x '>.函数()f x 在(1,2)上单调递增;当(0,1)x ∈时,()0f x '<,函数()f x 在(0,1)上单调递减,所以min ()(1)e 1<==-k f x f ,故实数k 的取值范围是[0,e 1)-.四、解答题19.已知函数21()ln 2f x x x =-.(1)求函数()f x 在区间1,22⎡⎤⎢⎥⎣⎦上的最大值和最小值(参考数据:ln 20.7≈);(2)若不等式2()(2)f x a x >-有解,求实数a 的取值范围.【解析】(1)求导得:211()x f x x x x-'=-=,令()0f x '>可得112x <<,令()0f x '>可得12x <<,于是函数()f x 在1,12⎛⎫⎪⎝⎭单调递增,在(1,2)单调递减,于是当1x =时,()f x 取最大值为12-,又111ln 0.825228f ⎛⎫=-≈- ⎪⎝⎭,(2)ln 22 1.3f =-≈-,于是当2x =时,()f x 取最小值为ln 22-综上:当1x =时,()f x 取最大值为12-,当2x =时,()f x 取最小值为ln 22-(2)原不等式即为:221ln (2)2x x a x ->-,可化简为2ln 122x a x -<-记2ln 1()2x g x x =-,则原不等式有解可转化为2()a g x -<的最大值求导得:312ln ()xg x x '-=,于是函数()g x 在上单调递增,在)+∞上单调递减于是:()max 11g22g x e ==-,于是11222a e -<-,解得:5122a e>-.20.已知函数()2()ln f x x ax x =+,a R ∈.(1)若()f x 的图像在1x =处的切线经过点(0,2)-,求a 的值;(2)当21x e <<时,不等式2()f x x <恒成立,求a 的取值范围.【解析】(1)由题知()f x 的定义域为(0,)+∞.又()(2)ln f x x a x x a '=+++,则(1)1f a '=+.又因为(1)0f =,所以切点为(1,0).所以02110a +=+-,解得1a =.(2)当21x e <<时,0ln 2x <<.当21x e <<时,不等式2()f x x <恒成立,即不等式ln xa x x<-,()2x e ∈1,恒成立.设()ln x g x x x=-,()2x e ∈1,,则222ln 1(ln )ln 1()1(ln )(ln )x x x g x x x '--+=-=-.因为2213(ln )ln 1ln 024x x x ⎛⎫-+=-+> ⎪⎝⎭,所以()0g x '<.所以()g x 在()21,e 上单调递减,从而()22()2eg x g e >=-.要使原不等式恒成立,即()a g x <恒成立,故22ea ≤-.即a 的取值范围为2,2e ⎛⎤-∞- ⎥⎝⎦.21.已知函数()()212ln f x x ax x a R =-+∈,曲线()f x 在点()()1,1f 处的切线l 的斜率为4.(1)求切线l 的方程;(2)若关于x 的不等式()2f x x bx +恒成立,求实数b 的取值范围.【解析】(1)函数()f x 的定义域为{}|0x x >,12()2f x x a x'=-+,由题意知,(1)144f a '=-=,所以10a =,故2()1012ln f x x x x =-+,所以(1)9f =-,切点坐标为(1,9)-故切线l 的方程为413y x =-.(2)由(1)知,2()1012ln (0)f x x x x x =-+>,所以2()f x x bx ≤+,可化为:12ln 10x x bx -≤,即12ln 10xb x≥-在(0,)+∞上恒成立,令12ln ()10x g x x =-,则212(1ln )()x g x x -'=,当(0,e)x ∈时,()0g x '>,()g x 在(0,e)上单调递增,当(e,)x ∈+∞时,()0g x '<,()g x 在(e,)+∞上单调递减,所以当e x =时,函数()g x 取得最大值12(e)10eg =-,故当1210e b ≥-时,12ln 10x b x≥-在(0,)+∞上恒成立,所以实数b 的取值范围是1210,e ⎡⎫-+∞⎪⎢⎣⎭.22.已知函数()ln 1f x x mx =--.(1)若0x ∀>,不等式()0f x <恒成立,求m 的取值范围;(2)若曲线()y f x =存在过点(1,0)的切线,求证:1m ≥-.【解析】(1)由已知有()0f x <恒成立,即代表ln 10x mx --<恒成立,因为0x >,故ln 1x m x->恒成立,令ln 1()x g x x -=()0x >,故22ln ()xg x x -'=,令()0g x '>,解得:20x e <<,故()g x 在()20,e 上单调递增,在()2,e +∞上单调递减,故()g x 在()0,+∞的最大值为221()g e e =,故21m e >,所以m 的取值范围是21e ⎫+∞⎪⎝⎭;(2):设切点为000(,ln 1)x x mx --,又因为1()f x m x'=-,所以函数在0x x =处的切线斜率01k m x =-,所以函数在0x x =处的切线方程为:0000(ln 1)()1m x y x mx x x ⎛⎫---=- ⎪⎝-⎭,又切线经过点(1,0).故可得:00000(ln 1)(1)1m x x mx x ⎛⎫---=- ⎪⎝⎭-,化简整理可得:0001ln 2(0)m x x x =+->,令1()ln 2(0)h x x x x=+->,21()x h x x-'=,令()0h x '>,解得1x >,故()h x 在(0,1)上单调递减,(1,)+∞单调递增,故()h x 在(0,)+∞的最小值为(1)1h =-,故:1m ≥-,得证.23.已知函数()()()x x f x e sinx ax a R g x e cosx=-∈=(1)当0a =时,求函数f (x )的单调区间;(2)若函数()()()F x f x g x =-在,2ππ⎛⎫ ⎪⎝⎭上有两个极值点,求实数a 的取值范围.【解析】(1)当0a =时,()e sin x f x x =,()e (sin cos )x f x x x '=+sin()4x x π+,当224k x k ππππ<+<+,即32244k x k ππππ-<<+时,()0f x '>,当2224k x k πππππ+<+<+,即372244k x k ππππ+<<+时,()0f x '<,所以()f x 的增区间是32,2,44k k k ππππ⎛⎫-+∈ ⎪⎝⎭Z ,减区间是372,2,44k k k ππππ⎛⎫++∈ ⎪⎝⎭Z .(2)()e sin e cos e (sin cos )x x x F x x ax x x x ax =--=--,()e (sin cos cos sin )2e sin x x F x x x x x a x a '=-++-=-,由题意2e sin 0x x a -=在,2ππ⎛⎫ ⎪⎝⎭上有两个不等实根,即2e sin x a x =有两个实根,设()2e sin x h x x =,则()2e (sin cos )sin()4x x h x x x x π'=+=+,,2x ππ⎛⎫∈ ⎪⎝⎭时,35,444x πππ⎛⎫+∈ ⎪⎝⎭,所以324x ππ<<时,()0h x '>,()h x 单调递增,34x ππ<<时,()0h x '<,()h x 单调递减,所以34max 3()2e 4h x h ππ⎛⎫== ⎪⎝⎭,其中22e 2h ππ⎛⎫= ⎪⎝⎭,()0h π=,所以当3242e a ππ⎛⎫∈ ⎪⎝⎭时,2e sin x a x =在,2ππ⎛⎫ ⎪⎝⎭上有两个实根,即当3242e a ππ⎛⎫∈ ⎪⎝⎭时,函数()F x 在,π2π⎛⎫ ⎪⎝⎭上有两个极值点.24.已知函数2()ln ()f x x x ax a =+∈R 的图象在点(1,(1))f 处的切线与直线(1e)y x =-平行(e 是自然对数的底数).(1)求函数()f x 的解析式;(2)若2()2e f x kx x >-在(0,)+∞上恒成立,求实数k 的取值范围.【解析】(1)由题意得()2ln (0)f x x x x a x ++>'=,所以(1)1f a '=+,又()f x 的图象在点(1,(1))f 处的切线与直线(1e)y x =-平行,所以11e a +=-,解得a e =-,所以2()ln e f x x x x =-.(2)2()2e f x kx x >-在(0,)+∞上恒成立,即22ln e 0x x kx x -+>在(0,)+∞上恒成立,因为0x >,所以22ln e e ln x x x k x x x+<=+.令e ()ln g x x x =+,则221e e ()x g x x x x-=-='.当(0,e)x ∈时,()0g x '<;当(e,)x ∈+∞时,()0g x '>.所以函数e ()ln g x x x=+在(0,e)上单调递减,在(e,)+∞上单调递增,所以()(e)2g x g ≥=,故2k <,即实数k 的取值范围是(,2)-∞.25.已知函数()()21e xax x f x a R -+=∈.(1)当2a =-时,求()f x 的单调区间;(2)当0x ≥时,()1f x ≤,求a 的取值范围.【解析】(1)2a =-时,()221e x x x f x --+=,()()()212e xx x f x +-'=,令()1102f x x '=⇒=-,22x =.∴()f x的单调递增区间为,⎛-∞ ⎝,()2,+∞,单调递减区间为1,22⎛⎫- ⎪⎝⎭.(2)法一:常规求导讨论()()()()221212e ex x ax a x ax x x F -++----'==.①当0a ≤时,令()02f x x '=⇒=且当02x ≤<时,()0f x '<,()f x ;当2x >时,()0f x '>,()f x .注意到()01f =,2x ≥时,()0f x <符合题意.②当12a =时,()()21220ex x f x --'=≤,()f x 在[)0,∞+上 ,此时()()01f x f ≤=符合题意.③当102a <<时,令()102f x x '=⇒=,21x a =,且当()f x 在[)0,2上 ,12,a ⎛⎫ ⎪⎝⎭上 ,1,a ⎛⎫+∞ ⎪⎝⎭上 ,此时()()01f x f ≤=符合题意.③当102a <<时,令()102f x x '=⇒=,21x a=,且当()f x 在[)0,2上 ,12,a ⎛⎫ ⎪⎝⎭上 ,1,a ⎛⎫+∞ ⎪⎝⎭上 ,此时只需1111111e 1e a aa a f a -+⎛⎫=≤⇒≥ ⎪⎝⎭,显然成立.④当12a >时,令()110f x x a'=⇒=,22x =,且当()f x 在10,a ⎡⎫⎪⎢⎣⎭上 ,1,2a ⎛⎫ ⎪⎝⎭上 ,()2,+∞上 .此时只需()22411e 121e 24a f a -+=≤⇒<≤.综上:实数a 的取值范围2e 1,4⎛⎤+-∞ ⎥⎝⎦.法二:参变分离①0x =时,不等式显然成立.②当0x >时,2e 1x x a x +-≤,令()2e 1x x g x x +-=,()()()33e 12e 2e 2x x x x x g x x x ----+'==.令()02g x x '=⇒=且当02x <<时,()0g x '<,()g x ;当2x >时,()0g x '>,()g x ,∴()()2min e 124g x g +==,∴2e 14a +≤.26.已知函数()ln a f x x x x=++,a ∈R .(1)若()f x 在1x =处取得极值,求a 的值;(2)若()f x 在区间()1,2上单调递增,求a 的取值范围;(3)若函数()()g x f x x '=-有一个零点,求a 的取值范围.【解析】(1)因为()ln a f x x x x =++,则2221()1a x x a f x x x x +-'=-+=,由于()'10f =,则221101a +-=,∴2a =,当2a =时,()()222221212()1x x x x f x x x x x +-+-'=-+==因为()f x 的定义域为()0,∞+,则()0f x '=时,1x =,当()0,1x ∈时,()0f x '<,()f x 单调递减,当()1,x ∈+∞时,()0f x '>,()f x 单调递增,所以()f x 在1x =处取得极小值,所以2a =符合题意,故2a =.(2)()22'x x a f x x+-=,∴20x x a +-≥在()1,2x ∈恒成立,即2a x x ≤+在()1,2x ∈恒成立,∴a 的取值范围为(],2-∞.(3)220x x a a x +--=在()0,x ∈+∞有1个根即方程32a x x x -=--在()0,x ∈+∞有1个根,令32()h x x x x =--,0x >,则()()2()321131h x x x x x '=--=-+当()0,1x ∈时,()0h x '<,()h x 单调递减,当()1,x ∈+∞时,()0h x '>,()h x 单调递增,且(0)0h =,(1)1h =-,x →+∞时,()h x →+∞,当0a -≥即0a ≤时,1个根;当1a -=-即1a =时,1个根,综上:a 的取值范围为(]{},01-∞U .27.已知函数()ln x f x x=.(I )求函数()f x 的单调区间和极值;(II )若不等式()kx f x ≥在区间(0,)+∞上恒成立,求实数k 的取值范围.【解析】(I )因为()()21ln 0x f x x x -'=>,当()0,e x ∈时,()0f x '>,当()e,x ∈+∞时,()0f x '<,所以()f x 的单调增区间为()0,e ,单调减区间为()e,+∞;且()()1e ef x f ==极大,无极小值;(II )因为()kx f x ≥在区间(0,)+∞上恒成立,所以2ln x k x ≥在区间(0,)+∞上恒成立,设()()2ln 0xg x x x =>,则()max k g x ≥,因为()()432ln 12ln 0x x x x g x x x x --'==>,当(x ∈时,()0g x '>,()g x单调递增,当)x ∈+∞时,()0g x '<,()g x 单调递减,所以()max 1e 2e g x g ===,所以12e k ≥.28.已知函数()()e e 0x f x x x=>.(1)求函数()f x 的最小值;(2)若不等式()ln 1f x x a x ≥++对于()1,x ∈+∞恒成立,求a 的取值范围.【解析】(1)求导:1e e 1e e ()x xf x x x ++'=-,即e 1e ()(e)x f x x x+'=-当()0,f x '<解得0e;x <<当()0,f x '>解得ex >()f x 的单调递减区间为()0,e ;单调递增区间为()e,+∞∴函数()f x 的最小值为(e)1f =(2)由(1)得()(e)1f x f ≥=,所以要使得()ln 1f x x a x ≥++恒成立,必须满足:(e)e ln e 1ef a a ≥++⇒≤-,下面证明:当e a -≤时()ln 1f x x a x ≥++恒成立e a ≤ e eln 1l 1e n e e x x x a x x x x x ∴---≥-+-,∴只需证明e e eln 10xx x x -+-≥,设e ()n 1e el x x x x x ϕ=-+-,则e e 1e e e e 11()()()1()e x x x x x x x x x x ϕ+⎛⎫'=---=⋅-⋅- ⎪⎝⎭由(1)得e e 10x x-≥且只在e x =取等号,∴当0e x <<时,()0x ϕ'<,()ϕx 单调递减,∴当e x >时,()0x ϕ'>,()ϕx 单调递增e ()()0x ϕϕ∴≥=.综上e a -≤.解法二:(变量分离)整理得:e1l e n xx x a x--≤只需m e in 1()l e n xx x a x --≤,先证明:e 1x x ≥+,构造()e 1x g x x =--,()e 1x g x '=-,当0x >时,()0g x '≥,()g x 单调递增()(0)0g x g ≥=,从而证明得e 1x x ≥+e ln e 11l e e e e n 11ln xx x x x x x x x x---=--≥-+--=- ,当仅且当n 0el x x -=即e x =处取得等号.e 1ln ln e e e ln xx x x x x ---∴≥=-,∴e a -≤.,解法三:(不分离)l e e n ()ln 1ln 10(ln )10e e x x x f x x a x x a x x a x x-≥++⇒---≥⇒-+-≥eln (ln )1e e e ln 1(ln )10x x x x x x x a x --+-≥-+-+-≥得ea -≤下面证明当e a -≤时,e ln 10e xx a x x---≥e a ≤ e e ln 1l 1e n e e x x x a x x x x x∴---≥-+-∴只需证明e e eln 10x x x x-+-≥设e ()n 1e el x x x x xϕ=-+-,则e e 1e e e e 11()()()1()e x x x x x x x x x x ϕ+⎛⎫'=---=⋅-⋅- ⎪⎝⎭由(1)得e e 10x x-≥且只在e x =取等号∴当0e x <<时,()0x ϕ'<,()ϕx 单调递减∴当e x >时,()0x ϕ'>,()ϕx 单调递增e ()()0x ϕϕ∴≥=.综上e a -≤.29.已知函数2213()ln ,()224f x x ax x g x x ax ⎛⎫=-=- ⎪⎝⎭.(1)若1a =,求曲线()y f x =在点(1,(1))f 处的切线方程;(2)若当1≥x 时,()()f x g x ≥恒成立,求a 的取值范围.【解析】(1)因为1()(1)ln 12f x x x x =-'+-,所以1(1)2'=-f ,又(1)0f =,所以切线方程为1(1)2y x =--,即210x y +-=(2)由()()f x g x ≥知2213ln 2024x ax x x ax ⎛⎫--+≥ ⎪⎝⎭,因为1≥x 所以13ln (ln 2)24x x x a x -≥-,当2e x =时,R a ∈,当2e x >时,13ln 24ln 2x x x a x -≤-,当21e x ≤<时,13ln 24ln 2x x x a x -≥-构造函数13ln 24()ln 2x x x h x x -=-,2(2ln 5)(ln 1)()4(ln 2)x x h x x --'=-当1e x <<时,()0h x '>,()h x 单调递增,当2e <e x <时,()0h x '<,()h x 单调递减,故21e x ≤<时,max e ()(e)4h x h ==,因此e 4a ≥当522e e ,()0x h x '<<<,()h x 单调递减,当52e x >时,()0h x '>,()h x 单调递增,故2e x >时,5522min ()e e h x h ⎛⎫= ⎪⎭=⎝,因此52e a ≤,综上:52e ,e 4a ⎡⎤∈⎢⎥⎣⎦30.已知函数()2ln ,f x x ax a R =-∈.(1)当0a =时,求曲线()y f x =在()()1,1f 处的切线方程;(2)设函数()()ln 21g x f x x x =--+,若()0g x ≤在其定义域内恒成立,求实数a 的最小值;(3)若关于x 的方程()2ln f x x x =+恰有两个相异的实根12,x x ,求实数a 的取值范围,并证明121x x >.【解析】(1)当0a =时,()2ln f x x =,所以()2l 01n1=f =,()2f x x'=,所以()12f '=,所以曲线()y f x =在()()1,1f 处的切线方程为:()021y x -=-,即22y x =-(2)由题意得,()ln 21g x x ax x =--+,因为()0g x ≤在其定义域内恒成立,所以ln 210x ax x --+≤在()0,∞+恒成立,即ln 12x a x++≥在()0,∞+恒成立,等价于ln 12maxx a x +⎛⎫+≥ ⎪⎝⎭,令(ln 1x h x x +=()0,∞+,所以()2ln x h x x -'=,令()0h x '>解得01x <<,令()0h x '<解得1x >,所以函数()h x 在()0,1单调递增,在()1,+∞单调递减,所以()()1=1h x h ≤,所以21a +≥,即1a ≥-,故a 的最小值为1-.(3)先证明必要性:由()2ln f x x x =+得2ln x ax x -=,即ln 0x x a x--=,令()()ln 0x m x x a x x =-->,则()221ln x x m x x --'=,设()21ln t x x x =--,则()12t x x x'=--,因为0x >,所以()0t x '<恒成立,函数()t x 在()0,∞+单调递减,而()10t =,故在()0,1上()0t x >,()0m x '>,()m x 单调递增,在()1,+∞上()0t x <,()0m x '<,()m x 单调递减,所以()()11max m x m a ==--.故方程()2ln f x x x =+恰有两个相异的实根只需:10a -->,所以实数a 的取值范围是(),1-∞-;再证明充分性:当(),1a ∞∈--时,方程()2ln f x x x =+恰有两个相异的实根,条件等价于2ln x ax x -=,即ln x x a x -=,即y a =与ln x y x x=-,当1a <-,0x >时有两个不同的交点,所以221ln x x y x --'=,由上面必要性的证明可知函数在()0,1单调递增,在()1,+∞单调递减,所以ln x y x x =-在0x >时的最大值为:ln11=11y =--,最小值趋近于负无穷,所以当(),1a ∞∈--时,程()2ln f x x x =+恰有两个相异的实根,即充分性成立.下证:121x x >,不妨设12x x <,则1201x x <<<,2101x <<,所以()121122111x x x m x m x x ⎛⎫>⇔>⇔> ⎪⎝⎭,因为()()120m x m x ==,所以()()22122222221ln ln 1111x x m x m m x m x a a x x x x x ⎛⎫ ⎪⎛⎫⎛⎫⎛⎫ ⎪-=-=----- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⎪⎝⎭2222222222221ln ln ln 11ln 1x x x x x x x x x x x x =--+=-++2222211ln x x x x x ⎛⎫=+-+ ⎪⎝⎭,令()()11ln 1x x x x x x x ϕ⎛⎫=+-+> ⎪⎝⎭,则()211ln 0x x x ϕ⎛⎫'=-> ⎪⎝⎭,所以()x ϕ在()1,+∞上单调递增,所以当1x >时,()()10x ϕϕ>=,即2222211ln 0x x x x x ⎛⎫+-+> ⎪⎝⎭,所以()121m x m x ⎛⎫> ⎪⎝⎭,所以121x x >.。
(完整版)高一数学之分离参数法(含答案),推荐文档

高中重要解题方法——分离变量法分离变量法是近年来发展较快的思想方法之一.高考数学试题中,求参数的范围常常与分类讨论、方程的根与零点等基本思想方法相联系.其中与二次函数相关的充分体现数形结合及分类思想方法的题目最为常见.与二次函数有关的求解参数的题目, 相当一部分题目都可以避开二次函数,使用分离变量,使得做题的正确率大大提高.随着分离变量的广泛使用,越来越多的压轴题都需要使用该思想方法.分离变量法:是通过将两个变量构成的不等式(方程)变形到不等号(等号)两端,使两端变量各自相同,解决有关不等式恒成立、不等式存在(有)解和方程有解中参数取值范围的一种方法.两个变量,其中一个范围已知,另一个范围未知.解决问题的关键: 分离变量之后将问题转化为求函数的最值或值域的问题.分离变量后,对于不同问题我们有不同的理论依据可以遵循.以下定理均为已知的范围,求的范围:x a 定理1 不等式恒成立(求解的最小值);不()()f x g a ≥⇔[]min ()()f x g a ≥()f x 等式恒成立(求解的最大值).()()f x g a ≤⇔[]max ()()f x g a ≤()f x 定理2 不等式存在解(求解的最大值);不()()f x g a ≥⇔[]max ()()f x g a ≥()f x 等式存在解(即求解的最小值).()()f x g a ≤⇔[]min ()()f x g a ≤()f x 定理3 方程有解的范围的值域(求解的值域).()()f x g a =⇔()g a =()f x ()f x 解决问题时需要注意:(1)确定问题是恒成立、存在、方程有解中的哪一个;(2)确定是求最大值、最小值还是值域.再现性题组:1、已知当x R 时,不等式恒成立,求实数a 的取值范围。
∈224sin cos sin 5x x x a +-<-+2.若f(x)=在上有恒成立,求a 的取值范围。
233x x --[1,4]x ∈-()21f x x a ≥+-3,、若f(x)=在上有恒成立,求a 的取值范围。
数理方程-分离变量法

第八章 分离变量法⎪⎪⎩⎪⎪⎨⎧≤≤=∂∂=>==><<∂∂=∂∂l x x t x u x x u t t l u t u t l x x u a t u 0)()0,(),()0,(00),(,0),0(0,022222ψϕ 对于这样的定解问题,我们将介绍分离变量法求解,首先回忆高数中我们如何处理的求解的,高数中处理微分或重积分是把函数分成单元函数分离变量法的思路:对于二阶线性微分方程变换成单元函数来求解,也就是通过分离变量法把x 、t 两个变量分开来,即把常微分方程变化为两个偏微分方程来求解。
分离变量法的思想:先求出具有分离形式且满足边界条件的特解,然后由叠加原理做出这些解的线性组合,最后由其余的定解条件确定叠加系数(叠加后这些特解满足边界条件不满足初始条件,再由初始条件确定通解中的未知的数)。
叠加原理:线性偏微分方程的解的线性组合仍是这个方程的解。
特点:(1)数学上 解的唯一性来做作保证。
(2)物理上 由叠加原理作保证。
例:有界弦的自由振动1.求两端固定的弦的自由振动的规律⎪⎪⎩⎪⎪⎨⎧≤≤=∂∂=>==><<∂∂=∂∂l x x t x u x x u t t l u t u t l x x u a t u 0)()0,(),()0,(00),(,0),0(0,022222ψϕ 第一步:分离变量(建立常微分方程定解问题) 令)()(),(t T x X t x u =这个思想可从实际的物理现象可抽象出来,比如我现在说话的声音,它的振幅肯定随时间变化,但到达每个同学的位置不同,振幅又是随位置变化,可把声音分成两部分,一部分认为它随时间变化,一部分随位置变化。
第二步:代入方程(偏微分就可写成微分的形式,对于u 有两个变量,但对于X 、T 都只有一个变量))()()()(2t T x X a t T x X ''=''变形得)()()()(2t T a t T x X x X ''=''= λ- 左边与t 无关,右边与x 无关,左右两边相互独立,要想相等,必定等于一个常数。
高中数学解题常用方法:分离变量

分离变量一、填空题1. 已知函数,若在上有解,则实数的取值范围为.2. 已知函数,若对区间上的任意,,且,都有成立,则实数的取值范围是.3. 已知实数,满足条件若不等式恒成立,则实数的最大值是.4. 当时,不等式恒成立,则的取值范围是.5. 若不等式对于一切成立,则的范围是.6. 已知是递增数列,且对任意都有恒成立,则实数的取值范围是.7. 若不等式对任意实数,都成立,则实数的取值范围是.8. 已知函数,若函数在上有极值,则实数的取值范围为.9. 若对于任意的,恒成立,则实数的取值范围是.10. 已知方程在上有解,则实数的取值范围为.11. 若曲线通过点(),则的取值范围是.12. 设函数.若函数在区间内有零点,则实数的取值范围为.13. 关于的不等式的解集为,则实数的取值范围是.14. 定义:若存在常数,使得对定义域内的任意两个,均有成立,则称函数在定义域上满足利普希茨条件.若函数满足利普希茨条件,则常数的最小值为.15. 若不等式对一切恒成立,则实数的取值范围是.16. 设,若函数存在整数零点,则的取值集合为.17. 三个同学对问题"关于的不等式在上恒成立,求实数的取值范围"提出各自的解题思路.甲说:"只须不等式左边的最小值不小于右边的最大值".乙说:"把不等式变形为左边含变量的函数,右边仅含常数,求函数的最值".丙说:"把不等式两边看成关于的函数,作出函数图象".参考上述解题思路,你认为他们所讨论的问题的正确结论,即的取值范围是.18. 已知为上的偶函数,当时,.若存在实数,对任意的,都有成立,则满足条件的最小的整数的值是.19. 关于的不等式在上恒成立,则实数范围为.20. 对任意,函数的值恒大于零,则的取值范围为.二、解答题21. 若函数的值恒大于,求实数的取值范围.22. 已知集合,函数的定义域为.(1)若,求实数的取值范围;(2)若,求实数的取值范围.23. 已知点,是函数图象上的两个动点,轴,点在轴的右侧,点是线段的中点.(1)设点的横坐标为,的面积为,求关于的函数解析式;(2)若(1)中的满足对所有,恒成立,求实数的取值范围.24. 若,恒成立,求实数的取值范围.25. 已知函数,.(1)当时,求的最小值;(2)若,求的取值范围.26. 若关于的方程有解,求实数的取值范围.27. 已知函数,.(1)当时,求函数的值域;(2)如果对任意的,不等式恒成立,求实数的取值范围.28. 已知命题:函数的定义域为;:不等式对一切正实数均成立.若和都是假命题,求实数的取值范围.29. 已知函数.(1)当时,求不等式的解集;(2)若对于任意恒成立,求实数的取值范围.30. 已知函数,其中,.若对任意恒有,试确定的取值范围.31. 已知函数.(1)当时,求函数的单调递增区间;(2)若在区间上是减函数,求实数的取值范围.32. 若关于的方程有实数根,试确定实数的取值范围.33. 已知函数,(1)若,求的值;(2)若对于恒成立,求实数的取值范围.34. 设,且,.(1)求的解析式;(2)判断在上的单调性并用定义证明;(3)设方程在上有两个不同的解,求集合.35. 已知函数.(1)当时,求函数的单调区间;(2)若在上是单调函数,求实数的取值范围.36. 已知函数,,其中.(1)若曲线与在处的切线相互平行,求两平行直线间的距离;(2)若对任意恒成立,求实数的值;(3)当时,对于函数,记在图象上任意两点,连线的斜率为,若恒成立,求的取值范围.37. 已知函数.设,且.(1)试将函数表示成关于的函数,并写出的范围;(2)若恒成立,求实数的取值范围;(3)若关于的方程有四个不同的实数根,求的取值范围.38. 已知函数.(1)当时,求在最小值;(2)若在上单调递增,求的取值范围;(3)若存在单调递减区间,求的取值范围.39. 设函数,方程有唯一解,数列满足,且,数列满足.(1)求证:数列是等差数列;(2)数列满足,其前项和为,若存在,使成立,求的最小值;(3)若对任意,使不等式成立,求实数的最大值.40. 已知函数.(1)是否存在实数,使得函数在区间上单调递减?若存在,求出的取值范围;若不存在,请说明理由.(2)当时,讨论函数的零点个数.答案第一部分1234567891011121314151617181920第二部分21 由题意对恒成立,即对恒成立,即对恒成立,因为函数的最大值为,所以,即或.22 (1) 若,则,使.即.令,由上,易知.从而.(2) 若,则,都有,即.由(1)可知,此时.23 (1) 设,,,则,所以.(2) 由得,的对称轴为,因为,所以,所以在上的最大值为,所以恒成立,所以恒成立,即恒成立,因为当且仅当时成立,所以.24 原不等式,则有①因为由得.从而有在上最大值为.代入①得,,解得.故实数的取值范围为.25 (1) 当时,.当时,;当时,.所以的极小值为,又因为的定义域为,所以的最小值为.(2) ,即.因为,所以等价于.令,则.当时,;当时,.所以有极小值,且为最小值,为.故,所以的取值范围是.26 法一:因为当且仅当时,等号成立.所以,解得.法二:令,则方程变成.原方程有解即此方程有正根,又两根之积为,所以有解得.27 (1) ,因为,所以,故函数的值域为.(2) 由,得,令,因为,所以,所以对一切恒成立,①当时,;②当时,恒成立,即,因为,当且仅当,即时取等号,所以的最小值为,综上,.28 当为真时,有,成立,所以,且,解得.所以为假时,.当为真时,对一切正实数均成立,即.又因为在上是减函数,所以,即,因此只需.所以为假时,有.综上,,都假时,有.29 (1) 或(2)30 对任意恒有,即对恒成立.即对恒成立.记,,则只需.而在上是减函数.所以,故.31 (1) 当时,,所以.由题意得,即,解得,所以函数的单调递增区间是.(2) 求导得,因为在上为减函数,所以在上恒成立,即在上恒成立,易知,当且仅当,即时,等号成立.所以的最小值为,所以的取值范围是.32 由,原方程可化为即其中.当时,有最小值;当时,有最大值.由此,因此,所求的取值范围是.33 (1) 当时,;当时,;由条件可知,即解得,.(2) 当时,即,,,,故的取值范围是.34 (1) ,且,,.,.(2) 在上单调递减,证明如下:设,.,,,,,,,在上单调递减.(3) 方程为,令,,则.方程在内有两个不同的解,.由图知时,方程有两个不同解,.35 (1) 求导函数可得,令,则或,,;令,则或,,;函数的单调递增区间是,单调递减区间是.(2) 由题意得,①若函数为上的单调增函数,则在上恒成立,即在上恒成立,设,在上单调递减,,.②若函数在上的单调减函数,则在上恒成立,不可能.实数的取值范围.36 (1) ,,依题意得:,曲线在处的切线为,曲线在处的切线方程为.两直线间的距离为.(2) 令,则当时,注意到,所以,所以在单调递减,又,故时,,即,与题设矛盾.当时,,当,,当时,.所以在上是增函数,在上是减函数,所以.因为,又当时,,与不符.所以.(3) 当时,由(2)知,所以在上是减函数,不妨设,则,,所以.等价于,即,令,在上是减函数,因为,所以在时恒成立,所以.又时,,所以.又,所以的取值范围是.37 (1) 由,得.由,得.又所以(2) 因为对于任意的恒成立,所以对于任意的上恒成立.令,则.由解得;由,解得.所以在上单调递减,在上单调递增,所以.由此,的取值范围是.(3) 方程有四个不同的解,等价于在上有两个不相等的实根,等价于函数在上有两个零点,于是解得.故的取值范围是.38 (1) ,定义域为.因为所以在上是增函数..(2) 由题在上恒成立即因为,而当且仅当时取等号所以所以.(3) 解法1:因为因为存在单调递减区间,所以有正数解,即有正实数解.①当时,明显成立.②当时,开口向下的抛物线,总有的解;③当时,开口向上的抛物线,即方程有正根.因为,所以方程有两正根.当时,;,解得.综合①②③知:.解法2:存在,使得即存在,使得由⑵得:.39 (1) 因为,方程有唯一解,所以,即有唯一解,所以,解得,所以,所以,所以,所以,所以,因为,所以,所以,所以数列首项为,公差为的等差数列.(2) 由(1)得,所以.因为,所以,所以,所以因为,所以,所以,当且仅当,即时,等号成立,所以的最小值是.(3) 因为,所以.令.因为,所以,所以所以是递增数列,所以,所以,所以的最大值是.40 (1) 因为在上单调递减,所以对任意的上恒成立,即对任意的上恒成立.而.当且仅当,即时,上式等号成立.于是故满足题意的实数的取值范围为.(2) 由,得.令,得.列表如下:极小值所以.(i)当时,,所以在定义域内无零点.(ii)当时,,所以在定义域内有唯一的零点.(iii)当时,.①因为,所以在增区间内有唯一的零点.②.设,则,所以在上单调递增,从而,即,于是在减区间内有唯一的零点.所以当时,在定义域内有两个零点.综上所述,当时,在定义域内无零点;当时,在定义域内有唯一的零点;当时,在定义域内有两个零点.。
数学物理方程--- 2 分离变量法

n1
n1
比较系数有
Tn(t) a2nTn (t) fn (t)
由
u(x,t)
Tn (t) X n (x)
n1
Tn (t)sin
n1
n
l
x
(5)
令t=0,有
u(x,0)
(x)
Tn (0) X n (x)
n1
n
n1
sin
n
l
x
比较系数,有
Tn (0) n , n 1
同理
ut (x,0)
下面讨论二阶
线性微分算子
A
d2 dx2
的特征值问题。边界条件 X (0) X (l) 0 ,设 X (x) 是A
的特征函数,即 X (x) 0 且满足
AX (x) X (x)
等价于
X (x) X (x) 0,0 x l
X
(0)
X
(l)
0
(7)
对此特征值问题求解。
首先 非负。
Tn(t) a2nTn (t) 0
其通解为
Tn
(t
)
c1
cos
n
l
a
t
c2
sin
n
l
a
t
c1 y1 c2 y2
对应的非齐次方程
Tn(t) a2nTn (t) fn (t)
利用常数变易法,其解具有这样的形式
Tn (t) c1y1 c2 y2 y1
t 0
y2 y1
fn ( )
y2
d
证因明 为
X (x)X (x) X 2(x) 0
积分得
l
X (x) X (x)dx
l X 2 (x)dx 0
新教材高一数学典型问题解题策略专题10 分离变量与分式函数-(含答案)

新教材高一数学典型问题解题策略专题10 分离变量与分式函数【方法点拨】1. 部分分式-------将假分式化为一个整式与一个真分式的和称作部分分式,其实质就是通分的逆过程.部分分式的常用方法有凑配法、换元法、长除法等.2. 分离变量-------求参数的取值范围问题是高中数学常见的基本问题,一般来说遇含参问题应“能分则分”,目的是避免参数参与运算,从而避免分类讨论.而分离参数,又可以进行“全分”、“半分”,即将参数完全分离和不完全分离.3. 分离函数-------遇到函数的零点个数判断、零点所在区间等,常需要通过分离函数,如函数()()()F x f x g x =-的零点就是函数()y f x =与函数()y g x =交点的横坐标,通过分离函数的方法,转化为两函数图象交点的个数、交点横坐标所在区间问题.上述三种方法在解题中应用广泛,用法灵活多变,需在用中不断体会其“妙”、“神”,逐步提高自身的解题能力.【典型例题】例1 函数2710(1)1x x y x x ++=>-+的最小值是 . A.2; B. 7; C. 9; D. 10. 【答案】C【分析】直接部分分式,再使用基本不等式. 【解析一】(换元法)令1(0)x t t +=>,则1x t =-则()()22171105445t t t t y t t t t-+-+++===++由基本不等式得44t t +≥=,当且仅当4t t=,2t =,即1x =,等号成立 所以当1x =时,函数27101x x y x ++=+的最小值是9,选C.【解法二】(凑配法)()()22117111071011x x x x y x x +-++-+⎡⎤⎡⎤++⎣⎦⎣⎦==++()()()2151441511x x x x x ++++==+++++(下略). 【解法三】(长除法)同数的长除法,如图226171010x x x x x xx x +++++++6 6 6 4则()27101(6)4x x x x ++=+++,即271044(6)(1)5111x x x x x x x ++=++=++++++(下略). 例2 (多选题)(2020-2021·江苏徐州高一上学期期中名校联考)关于x 的一元二次方程21+(+1)0()2x m x m Z +=∈有两个根12x x 、,且满足12013x x <<<<,则实数m 的值是( ). A .-2; B .-3; C .-4; D .-5. 【答案】BC【分析】分离参数得1(+1)+2m x x -=,转化为1()+2f x x x=与()(+1)g x m =-有两个交点,其横坐标为【答案】【分析】题中已知为超越方程,解方程的根是不可能的,应分离函数,转化为两函数图象有两个不同交点问题.种情况讨论,结合图象找出关键点得出关于a 的不等式(组)求解,可得出实数a 的取值范围. 【解析】()()()()2222log 2log log 11log 11aa a a a f x x x x x a x x x x =-+=-+--=----, 则不等式()()2log 11a x x ->-对任意的31,2x ⎛⎫∈ ⎪⎝⎭恒成立. 当1a >时,312x <<,则1012x <-<,此时()1log 1log log 102a a a x -<<=,则不等式()()2log 11a x x ->-对任意的31,2x ⎛⎫∈ ⎪⎝⎭不成立;当01a <<时,如下图所示:由图象可知,若不等式()()2log 11a x x ->-对任意的31,2x ⎛⎫∈ ⎪⎝⎭恒成立,则20113log 122a a <<⎧⎪⎨⎛⎫≥- ⎪⎪⎝⎭⎩,解得1116a ≤<. 因此,实数a 的取值范围是1,116⎡⎫⎪⎢⎣⎭. 故答案为1,116⎡⎫⎪⎢⎣⎭. 【巩固练习】1. 函数()2211x y x x +=>-的最小值是( )+2-2D. 22. 若关于x 的方程220x mx -+=在区间()1,4内有两个解,则实数m 的取值范围是_________.3. 已知二次函数24y x x m =-+, m 为实数.(1)若此函数有两个不同的零点,一个在(,1)-∞内,另一个在(2,)+∞内,则m 的取值范围是_____________ (2)若此函数的两个不同零点都在区间()1,+∞内,则m 的取值范围是____________.4.已知关于x 的方程2x kx x =-有三个不同的实数解,则实数k 的取值范围是______5.若关于x 的不等式2log 0m x x -< 在区间10,2⎡⎤⎢⎥⎣⎦上恒成立,则实数m 的取值范围是______.A .10,16⎛⎤ ⎥⎝⎦; B .1,116⎡⎫⎪⎢⎣⎭; C .10,16⎛⎫ ⎪⎝⎭; D .1,116⎛⎫⎪⎝⎭.【答案与提示】1.【答案】A【分析】先将函数变形可得y=221xx+-=(x﹣1)+31x-+2,再利用基本不等式可得结论.【解析】y=221xx+-=(x﹣1)+31x-+2∵x>1,∴x﹣1>0∴(x﹣1)+31x-x+1时,取等号)∴y=221 xx+ -故选A.2.【答案】)⎡⎣3.【答案】(,3)-∞,(3,4)4.【答案】1 02k<<【提示】1,021,02,0xxk xxR x⎧>⎪-⎪⎪=-<⎨-⎪=⎪⎪⎩,画图得出k的取值范围.5.【答案】B.。
高考数学常用的解题技巧第05讲分离参数法(含答案)

第05讲:分离参数法【知识要点】一、参数在数学问题中经常出现,特别是在最值、值域、取值范围、恒成立和存在性等问题中,经常出现,这时可以考虑是否可以利用分离参数法来解答,即整理成()()k f x k f x 或的形式,再解答.二、分离参数时,一定要判断清楚参数的系数的符号,再除以其系数,如果不能确定其符号,可以分类讨论,也可以寻找其它方法.【方法讲评】【例1】已知函数xx x f ln 1)((1)求曲线)(x f y 在点))2(,2(f 处的切线方程;(2)求函数)(x f 的极值;(3)对(0,),()2x f x bx 恒成立,求实数b 的取值范围.列表:x )1,0(1),1()('x f - 0 +)(x f ↘0↗函数)(x f y 的极小值为0)1(f , 无极大值。
(3)依题意对(0,),()2x f x bx 恒成立等价于2ln 1bx x x 在(0,)上恒成立可得x xx b ln 11在(0,)上恒成立,令21ln ln 2()1()xx g x g x x x x【点评】本题第(2)问是恒成立问题,刚好b 的系数x 是一个正数,知道参数的系数的符号,分离参数很方便,所以可以分离参数求最值,比较简洁. 【反馈检测1】已知函数()ln a f x x x . (1)若0a ,试判断()f x 在定义域内的单调性;(2)若()f x 在1,e 上的最小值为32,求a 的值;(3)若2()f x x 在1,上恒成立,求a 的取值范围.【反馈检测2】已知函数()sin cos f x a x b x (,a b R,且0)的部分图象如图所示.(1) 求,,a b 的值;(2) 若方程23()()0f x f x m 在2(,)33x 内有两个不同的解,求实数m 的取值范围.高中数学常用解题技巧第05讲:分离参数法参考答案【反馈检测1答案】(1) f x 在0,上是单调递增函数;(2)a=-e ;(3)1a .【反馈检测1详细解析】(1)由题意知f x 的定义域为0,,且221f '(x)=+=, a>0,a xax x x ,x2376yO 1。
含参数函数解题方法—参变分离法

含参数函数解题方法—参变分离法题型一:全分离【例1】函数2()ln f x x a x =-在[1,2]上为增函数,求a 的取值范围. 【解析】函数2()ln f x x a x =-在[1,2]上为增函数,则()20af x x x'=-≥在[1,2]上恒成立,(问题转化) 因为2()2022a af x x x a x x x'=-≥⇒≥⇒≤,(分离变量,把x 与a 放在式子的两边, 一边只含有一个字母,叫做全分离)所以2min (2)a x ≤(这里把a 看成不变的量,不变的量小于变化的量,就小于变化量的最小值) 当x ∈[1,2]时,2min (2)x =2,所以2a ≤.【例2】已知函数()ln f x ax x =-,若f (x )>1在区间[1,)+∞内恒成立,求实数a 的取值范围. 【解析】因为1ln ()ln 11ln x f x ax x ax x a x +=->⇒>+⇒>,(分离变量)则有max 1ln x a x +⎛⎫> ⎪⎝⎭设1ln ()x g x x +=,x ∈[1,)+∞(由于1ln xx+的最值不能直接看出来,所以要构造函数来求,这种方法经常考查)由于2ln ()xg x x '=-,且1x >时,ln 0x >,20x >,所以x ∈[1,)+∞时,()0g x '<, 所以1ln ()xg x x+=在[1,)+∞上单调递减,故max ()(1)1g x g ==,故1a >.【例3】若函数12()(0)()2ln (0)x x f x xx x a x ⎧+<⎪=⎨⎪->⎩恰有三个零点,则a 的取值范围为( D ) A .1[,0]e- B .1(0,)e)C .1[0,]eD . 1(,0)e-【解析】当0x <时,12()()2x f x x=+为减函数,且(1)0f -=,所以在(,0)-∞上()f x 只有一个根, 所以只需有0x >时,()ln f x x x a =-有两个零点即可,由于()ln 0ln f x x x a a x x =-=⇒=,令()ln g x x x =,()h x a =,则问题转化为函数()g x 与()h x 的图象有两个交点.(()h x 的图像为平行于x 轴的一条直线,由于a 未定,所以可以上下平移,()g x 为非基本函数,故需要通过导函数来研究)()ln 1g x x '=+,令()0g x '=,则有1x =,在同一坐标系中作出函数()g x 与()h x 的简图如图所示,(在这里画的只是简图,只具备关键信息,并不是标准图像,标准图像只能通过画图软件来画)根据图可得10a e-<<,故选D . 【练习】已知函数()ln ()xxf x e x ae a R =-∈,若f (x )在(0,+∞)上是单调函数,求实数a 的取值范围.【解析】1()(ln )x f x a x e x'=-+(1)若f (x )为单调递减函数,则f ′(x )≤0,在x >0时恒成立.(问题转化1) 即1x-a +ln x ≤0,在x >0时恒成立.(问题转化2) 所以a ≥1x+ln x ,在x >0时恒成立.(分离变量)(注意下面的解答格式)(2)若f (x )为单调递增函数,则f ′(x )≥0,在x >0时恒成立,即1x -a +ln x ≥0,在x >0时恒成立,所以a ≤1x +ln x ,在x >0时恒成立,由上述推理可知此时a ≤1.故实数a 的取值范围是(-∞,1]. 题型二:半分离【例4】已知函数()()ln 224(0)f x x a x a a =+--+>,若有且只有两个整数1x ,2x 使得()10f x >,且()20f x >,则a 的取值范围是( C )A . ()ln3,2B . [)2ln3,2-C . (]0,2ln3- D . ()0,2ln3-【解析】由题意可知, ()0f x >,即()()ln 2240,0x a x a a +--+>>,()()ln 224022ln 40x a x a ax a x x a +--+>⇒->-->,(这里如果把2x -除到右边,会面临两个问题,一是2x -不清楚正负要分类讨论,二是很显然,式子的结构会很复杂,到这里可以看出左边是一个一次函数,右边是一个简单的复合函数,所以我们就不进一步分离了,这种方式叫半分离变量.) 设()()2ln 4,2g x x x h x ax a =--=-, 由()121'2x g x x x -=-=,令可知()'0g x =,则12x =, 所以,()g x 在10,2⎛⎫ ⎪⎝⎭上为减函数,在1,2⎛⎫+∞⎪⎝⎭上为增函数,且1()ln 2302g =-<.(由于本题是关于整数的问题,所以对函数的关键点要做进一步计算(2)ln 20g =-<,(3)2ln30g =->,且有0x →时,()g x →+∞,x →+∞时,()g x →+∞)()2h x ax a =-的图象恒过点()2,0, 在同一坐标系中作出()(),g x h x 的图象如下:若有且只有两个整数12,x x ,使得()10f x >,且()20f x >,(也就是说有且只有两个整数,使得()h x 的图像在()g x 的上方.)(因为x=2符合条件,下面就分两种情况:一是x=1符合,x=3不符合,由左图可知,矛盾;二是x=1不符合,x=3符合由左图可知成立)则()()()()01133a h g h g ⎧>⎪>⎨⎪≤⎩,即0223a a a ln >⎧⎪->-⎨⎪≤-⎩,解得02ln3a <≤-,故选C .【例5】若对任意的[1,1]x ∈- 都有3310kx x -+≥成立,求实数k 的取值范围.【解析1】全分离3331031kx x kx x -+≥⇒≥-(这里很多同学会把3x 直接除到右边,为什么不能这样呢?是因为3x 的正负不确定,涉及到除过去要不要变号的问题,还有3x 可能等于0,此时就不能除了,所以要分类讨论)(1)当01x <≤时,3331310x kx x k x --+≥⇒≥;(x 正负不同,式子要变号,可以看到式子的形式是一样的,所以可以放在后面一起研究) (2)当0x =时,331010kx x -+≥⇒≥,成立; (3)当10x -≤<时,3331310x kx x k x --+≥⇒≤ 设331()(0)x f x x x -=≠(这里没有采用原来的区间范围,研究函数整体,再看部分) 43(21)()x f x x --'=,令()0f x '=,则12x =, 所以,当12x >时,()0f x '<,()f x 单调递减,当102x <<或0x <时,()0f x '>,()f x 单调递增.(这里的单调区间是两个, 不能看成连续的,否则画图时就会出错.这里还有一个问题,在0x =附近函数的走向趋势问题)当0x >且0→时,()f x →-∞,当0x <且0→时,()f x →+∞, (这一步对学生来说难度不小,不采用一定的手段很难解释,可以告诉学生: 当0x >且0→时,310()31()x f x x =→→--一直是正,所以()f x →-∞当0x <且0→时,,310()31()x f x x =→→--一直是负,所以()f x →+∞) 当x →+∞时,()0f x →,当x →-∞时,()0f x →. (这一步可以告诉学生: 当x →+∞时,33())1(x f x x =→+→+∞-∞速度比分子快,一直是正,所以()0f x →,反映在图像上是向右在x 轴上方,无限靠近x 轴 当x →-∞时,33())1(x f x x =→-→-∞-∞速度比分子快,所以()0f x →,反映在图像上是向左在x 轴上方,无限靠近x 轴)又1()42f =,故可作出函数草图如下:所以,当01x <≤时,max331()4x k x -≥=,当10x -≤<时,min 331()4x k x -≤=, 综上,4k =. 【解析2】半分离(1)当0k =时,显然不成立;(2)当0k ≠时,333131031(31)kx x kx x x x k-+≥⇒≥-⇒≥-(左边3x 是一个三次函数,右边31x -是一个一次函数(前面一个可变的系数可以让直线绕着1(,0)3旋转),图像大家都可以搞定)设31(),()(31)f x x g x x k==-,在同一个坐标系内画出图像如下,考察[1,1]x ∈-时,()f x 的图像(红色)要在()g x (黑色)的上方:由图像可以看出,()f x 与()g x 在第一象限相切时,4k =,1()(31)4g x x =-,(为保证红线要在黑线的上方,()g x 应该顺时针旋转),此时,第三象限,()g x 恰好过(-1,-1)点,为与()f x 的公共点.(为保证红线要在黑线的上方,()g x 应该逆时针旋转,最好只能不旋转了) 综上,4k =.说明:在3331031kx x kx x -+≥⇒≥-这一步,如果左边保留3x ,右边是31x -,也可以处理,一般直线的变化较为简单,所以大部分我们选择把参数留在一次函数这边.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分离变量法分离变量法是近年来发展较快的思想方法之一.高考数学试题中,求参数的范围常常与分类讨论、方程的根与零点等基本思想方法相联系.其中与二次函数相关的充分体现数形结合及分类思想方法的题目最为常见.与二次函数有关的求解参数的题目, 相当一部分题目都可以避开二次函数,使用分离变量,使得做题的正确率大大提高.随着分离变量的广泛使用,越来越多的压轴题都需要使用该思想方法.分离变量法:是通过将两个变量构成的不等式(方程)变形到不等号(等号)两端,使两端变量各自相同,解决有关不等式恒成立、不等式存在(有)解和方程有解中参数取值范围的一种方法.两个变量,其中一个范围已知,另一个范围未知.解决问题的关键: 分离变量之后将问题转化为求函数的最值或值域的问题.分离变量后,对于不同问题我们有不同的理论依据可以遵循.以下定理均为已知x 的范围,求a 的范围:定理1 不等式()()f x g a ≥恒成立⇔[]min ()()f x g a ≥(求解()f x 的最小值);不等式()()f x g a ≤恒成立⇔[]max ()()f x g a ≤(求解()f x 的最大值).定理2 不等式()()f x g a ≥存在解⇔[]max ()()f x g a ≥(求解()f x 的最大值);不等式()()f x g a ≤存在解⇔[]min ()()f x g a ≤(即求解()f x 的最小值).定理3 方程()()f x g a =有解⇔()g a 的范围=()f x 的值域(求解()f x 的值域). 解决问题时需要注意:(1)确定问题是恒成立、存在、方程有解中的哪一个;(2)确定是求最大值、最小值还是值域.再现性题组:1、已知当x ∈R 时,不等式a+cos2x<5-4sinx 恒成立,求实数a 的取值范围。
2、若f(x)=233x x --在[1,4]x ∈-上有()21f x x a ≥+-恒成立,求a 的取值范围。
3、若f(x)=233x x --在[1,4]x ∈-上有2()251f x x a a ≥+--恒成立,求a 的取值范围。
4、若方程42210x xa -+=有解,请求a 的取值范围 5、已知3211132y x ax x =-++是(0,)+∞上的单调递增函数,则a 的取值范围是( ) .0A a <.22B a -≤≤.2C a <.2D a ≤6、求使不等式],0[,cos sin π∈->x x x a 恒成立的实数a 的范围。
再现性题组答案:1、解:原不等式4sin cos 25x x a ⇔+<-+当x ∈R 时,不等式a+cos2x<5-4sinx恒成立max a+5>(4sinx+cos2x)⇔-,设f(x)=4sinx+cos2x 则22f(x)= 4sinx+cos2x=2sin x+4sinx+1=2(sinx 1)+3 --- ∴a+5>3a<2-∴2、解:23321x x x a --≥+-恒成立,即2242a x x ≤--在[1,4]x ∈-上恒成立, 只需2min 2(42)a x x ≤--,解得3a ≤-3、解:2233251x x x a a --≥+--在[1,4]x ∈-上恒成立⇒222542a a x x -≤-- 在[1,4]x ∈-上恒成立⇒2325312a a a -≤-⇒≤≤4、解:令2xt = (t>0),则21210221t at a t a t-+=⇒=+≥⇒≥5、解:2'10y x ax =-+≥在(0,)+∞上恒成立⇒1a x x≤+在(0,)+∞上恒成立2a ⇒≤ 6、解:由于函]43,4[4),4sin(2cos sin ππππ-∈--=->x x x x a ,显然函数有最大值2,2>∴a 。
示范性题组:例1. 已知函数()21,(0,1]f x x ax x =++∈,且()||3f x ≤恒成立,求a 的取值范围.【分析】法一(二次函数):问题转化为不等式组2213,(0,1]13x ax x x ax ⎧++≤⎪∈⎨++≥-⎪⎩恒成立 →2()1f x x ax =++在(0,1]x ∈上的最大值与最小值 → 以对称轴与定义域端点进行比较分类,研究单调性.正确率较低.法二(分离变量):问题转化为2242x x a x x---≤≤在(0,1]x ∈上恒成立(除x 时注意符号), → 由定理1得22max min42x x a x x ⎡⎤⎡⎤---≤≤⎢⎥⎢⎥⎣⎦⎣⎦.求相应函数最值,正确率较高. 例2.已知函数.ln )(),0(221)(2x x g a x ax x f =≠+=若)()()(x g x f x h -=存在单调递增区间,求a 的取值范围.【分析】问题转化为221'()0ax x h x x+-=≥在0x >上有解,即2210ax x +-≥在0x >上有解. 解:法一(二次函数):此题(0)10f =-<,分类是只需注意开后和轴,较为简捷.正确率不高,原因在于没有注意特殊点,将问题分为1解,2解,想得过于复杂. 法二(分离变量):问题转化为212xa x-≥在0x >上有(存在)解 → 由定理 1.2得2min12x a x -⎡⎤≥⎢⎥⎣⎦.求解相应范围上的最小值,正确率较高.例3.已知a 是实数,函数2()223.f x ax x a =+--如果函数()y f x =在区间[1,1]-上有零点,求a 的取值范围. 【分析】方法一(根的分布):这个题目是一个标准的根的分布问题,解题时需要考虑: 开口方向,判别式,对称轴,特殊点的函数值.解题时需要分为大3类,小5类.学生能够部分得分,很难列出所有不等式组.方法二(分离变量):问题转化为22230ax x a +--=在[1,1]x ∈-上恒有解 → 分离变量得23221x a x -=-,222[1,(,)(,1]x ∈--有解 → 由定理1.3得只需求函数232()21x g x x -=-在222[1,(,)(,1]2222x ∈---上的值域即可,2±单独考虑.此法思维两较小,运算量较二次函数略大,得分率略有增加.通过对上述三道题目解答过程中出现的两种做法的比较,不难体会到,分离变方法的优越性:思维量小,过程简捷明快,思维严谨性的要求有所降低.不足之处:个别时候,分离后产生的函数,在求解其最值或值域时运算量较大.总体来说,多数时候,应优先使用分离变量法。
例4、已知函数3()31f x x ax =+-的导函数为/()f x ,/()()3g x f x ax =--. (1)若/()60x g x ⋅+>对一切2x ≥恒成立,求实数a 的取值范围; (2)若对满足01a ≤≤的一切a 的值,都有()0g x <,求实数x 的取值范围. 解:(1)/22()33()333f x x a g x x a ax =+∴=+--/()6g x x a ∴=-即2660x ax -+>对一切2x ≥恒成立⇒即66a x x <+对一切2x ≥恒成立 记6()6h x x x =+,则在2x ≥上()a h x <恒成立,/26()6h x x=-在2x ≥上恒大于0,∴6()6h x x x=+在2x ≥上单调递增,min ()(2)15h x h ∴==15a ∴<(2)即2()333g x x a ax =+--对一切01a ≤≤恒成立若3x =,则2()333240g x x a ax =+--=<不满足 x φ∴∈若3x <,则2333x a x -<-对一切01a ≤≤恒成立23311033x x x -⇒>⇒<<- 若3x >,则2333x a x ->-对一切01a ≤≤恒成立223303303x x x -⇒<⇒->- 11x ⇒-<<x φ∴∈综上所述:103x << 巩固性题组:1、已知函数()lg 2a f x x x ⎛⎫=+- ⎪⎝⎭,若对任意[)2,x ∈+∞恒有()0f x >,试确定a 的取值范围。
2、已知(],1x ∈-∞时,不等式()21240x xa a ++-⋅>恒成立,求a 的取值范围。
3、已知函数32()24f x x x x =++-,2()7g x x ax =+-.若对任意的[0,)x ∈+∞都有'()()f x g x ≥,求实数a 的取值范围.4、设函数321()(1)4243f x x a x ax a =-+++,其中常数a R ∈. (1)当1a >时,求函数()f x 的单调区间;(2)若3x ≥时,'()0f x >恒成立,求实数a 的取值范围。
5、在∆ABC 中,已知2|)(|,2cos )24(sin sin 4)(2<-++=m B f B BB B f 且π恒成立,求实数m 的范围。
6、求使不等式3sin cos ,(,)44a x x x ππ>-∈恒成立的实数a 的范围。
7、设124()lg,3x xa f x ++=其中a R ∈,如果(.1)x ∈-∞时,()f x 恒有意义,求a 的取值范围。
8、设函数是定义在(,)-∞+∞上的增函数,如果不等式2(1)(2)f ax x f a --<-对于任意[0,1]x ∈恒成立,求实数a 的取值范围。
分离变量法巩固训练题答案:1、解:根据题意得:21ax x+->在[)2,x ∈+∞上恒成立, 即:23a x x >-+在[)2,x ∈+∞上恒成立,设()23f x x x =-+,则()23924f x x ⎛⎫=--+ ⎪⎝⎭当2x =时,()max 2f x = 所以2a > 2、解:令2xt =,(],1x ∈-∞(]0,2t ∴∈ 所以原不等式可化为:221t a a t+-<, 要使上式在(]0,2t ∈上恒成立,只须求出()21t f t t +=在(]0,2t ∈上的最小值即可。
()22211111124t f t t t t t +⎛⎫⎛⎫==+=+-⎪ ⎪⎝⎭⎝⎭11,2t ⎡⎫∈+∞⎪⎢⎣⎭()()min 324f t f ∴==2313422a a a ∴-<⇒-<< 3、解:'()()f x g x ≥即223417x x x ax ++≥+-2248ax x x ∴≤++若0x =,则08≤恒成立, a R ∴∈若0x >,则824a x x ≤++,824412x x ++≥=又,12a ∴≤综上所述:12a ∴≤ 4、解:(1)2()2(1)4(2)(2)f x x a x a x x a '=-++=--,又1a >,由()0f x '>得:(,2)(2,)x a ∈-∞+∞,由()0f x '<得22x a <<,因此()f x 的单调增区间有(,2)-∞与(2,)a +∞,()f x 的单调减区间有(2,2)a(2)3x ≥时,'()0f x >恒成立⇔3x ≥时,22(1)40x a x a -++>恒成立。