2017年北大数学分析考研试题

合集下载

北京大学2017年优特(U-Test)数学测试真题

北京大学2017年优特(U-Test)数学测试真题

北京大学2017年优特(U-Test)数学测试真题1. 数列{}n a 满足112,32(21)1n n n a a a n a +==++,则数列{}n a 的钱2017项的和2017S 等于( ) A. 20162017 B. 20172018 C. 40344035 D. 40334034【解答】C 根据题意,有11142n n n a a +-=+,于是21122n n a =-,进而221111141222n a n n n ⎛⎫ ⎪==- ⎪- ⎪-+⎝⎭,于是1121n S n =-+,进而201740344035S =2. 若1x 是方程2x xe =e 的解,2x 是方程2ln x x =e 的解,则1x 2x 等于( ) A. 1 B. e C. 2 e D. 4e【解答】C考虑到1x 2x 分别是函数xy e =、函数ln y x =与函数2e y x=的图像的公共点A,B 的横坐标,且A,B 两点关于直线y x =对称,点(1x ,2x )在反比例函数2e y x=的图像上,因此1x 2x =2e3. 9tan10°+2tan20°+4tan40°-tan80°等于( )A. 0B.C. 1D. 【解答】A 由于12tan tan tan 2θθθ-=-于是tan10°- tan80°= -2cot20°,2(tan20°- cot20°)= - 4cot40°,4(tan40°- cot40°)= - 8cot80° 三式相加即得9tan10°+2tan20°+4tan40°-tan80°=0 9tan10°+2tan20°+4tan40°-tan80°=0.4. 若对任意使得关于x 的方程()2ax +bx+c=0ac 0≠有实数解的a ,b ,c 均有()()()2222a -b +b -c +c -a rc ≥,则实数r 的最大值是( )A. 1B. 98C. 916D. 2 【解答】B设关于x 的方程()2ax +bx+c=0ac 0≠的实数解为m ,n ,则,b cm n mn a a+=-=, 于是()()()()()()2222222222222222222221111[(1)1](1)2(1)(1)11311322424222b bc c a -b +b -c +c -a a a a a r c c a m n mn m n mn m n n n m m m nm m n n m n m n ⎛⎫⎛⎫⎛⎫-+-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭≤=⎛⎫ ⎪⎝⎭++++++-=+++++=++++=⎡⎤⎡⎤⎛⎫⎛⎫=++++⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦等号右边代数式的最小值为98,因此所求实数r 的最大值为98。

2017年考研数学二试题及详解

2017年考研数学二试题及详解
(12)已知函数 在 上连续, ,则当 时, _________.
【答案】
【解析】
(13)已知动点 在曲线 上运动,记坐标原点与点 间的距离为 .若点 的横坐标对时间的变化率为常数 ,则当点 运动到点 时, 对时间的变化率是________________.
【答案】
【解析】
(14)设矩阵 与 等价,则 ________________.
令F(x)=f1(x)-f2(x),则F(x0)=0,F’(x0)=0,F”(x0)<0.
由极值的第二充分条件得x=x0为极大值点。
则F(x)≤F(x0)=0,即f1(x)≤f2(x),
综上所述,应选A.
(6)已知函数 ,则( ).
A.
B.
C.
D.
【答案】D
【解析】
选D.
(7)设 是可逆矩阵,且 与 相似,则下列结论错误的是( ).
A. 与 相似
B. பைடு நூலகம் 相似
C. 与 相似
D. 与 相似
【答案】C
【解析】
因为 与 相似,因此存在可逆矩阵 ,使得 ,于是有:
,即 ,
,因此 ,
,因此 ,
而C选项中, 不一定等于 ,故C不正确,选择C.
(8)设二次型 的正、负惯性指数分别为1,2,则( ).
A.
B.
C.
D. 或
【答案】C
【解析】
所以,-2<a<1,所以,选C.
∴x=-1,y=-1为极大值点,极大值为z=1.
(18)(本题满分10分)
设 是由直线 围成的有界区域,计算二重积分 .
【答案】
【解析】
(19)(本题满分10分)
已知函数 是二阶微分方程 的两个解,若 ,求 并写出微分方程的通解.

2017年考研数学一真题及答案解析

2017年考研数学一真题及答案解析

2 x + c2 sin 2 x)
ò
xdx - aydy 在区域 D = ( x, y) | x2 + y 2 < 1 内与路径无关,则 L x2 + y 2 - 1
{
}
a = __________
【答案】 a = 1 【解析】
¶P -2 xy ¶Q 2axy ¶P ¶Q = 2 , = 2 , 由积分与路径无关知 = Þ a = -1 2 2 2 2 ¶y ( x + y - 1) ¶x ( x + y - 1) ¶y ¶x
(5)设 a 是 n 维单位列向量, E 为 n 阶单位矩阵,则(

( A) E - aa T 不可逆 (C ) E + 2aa T 不可逆
【答案】A
( B ) E + aa T 不可逆 ( D ) E - 2aa T 不可逆
【解析】选项 A,由 ( E - aa T )a 不可逆。 选项 B,由 r (aa T )a 其它选项类似理解。
x =0
【答案】 【解析】
dy dx
= f1' (1,1),
x =0
d2y dx 2
'' = f11 (1,1), x =0
y = f (e x , cos x) Þ y (0) = f (1,1) Þ Þ dy dx
2 x =0
x =0
= ( f1'e x + f 2' ( - sin x ) )
结论:
dy dx
= f1' (1,1)
x =0 '' = f11 (1,1) + f1' (1,1) - f 2' (1,1) x =0

北京大学2017年数学分析试题及解答

北京大学2017年数学分析试题及解答

4 ∑ ∞ f (x) ∼
1
sin(2n − 1)x.
π 2n − 1
n=1
记该 Fourier 级数的前 n 项和为 Sn(x), 则 ∀x ∈ (0, π), Sn(x)
Sn(x)
的最大值点是
π 2n

lim
n→∞
Sn
(
π 2n
)
=
2∫ π π0
sin t dt. t
=
2 π
∫x
0
sin 2nt sin t
lim
3
t2
t→+∞
e−tϕ(X)dX = 0.
Uδ \Uδ′
设 A 的特征值为 λ1, λ2, λ3, 并且 λ1 ⩾ λ2 ⩾ λ3 > 0. 对于任意事先给定的 ε ∈ (0, λ3), ∃δε′ 使得对于任意属 于球形邻域 Uδ′ε 的 X 有
(X − X0)T A (X − X0)−ε (X − X0)T (X − X0) < ϕ(X) < (X − X0)T A (X − X0)+ε (X − X0)T (X − X0)
x2 − x1
7. (20 分) 设 f 是 (0, +∞) 上的凹 (或凸) 函数且 lim f (x) 存在有限, 证明 lim xf ′(x) = 0 (仅在 f 可导
x→+∞
x→+∞
的点考虑极限过程).
8.
(20
分)

ϕ

C 3 (R3 ), (
ϕ
及其各个偏导数 )
∂iϕ(i
=
1, 2, 3)
故 e ( ) −t (X−X0)TA(X−X0)+ε|X−X0|2 < e−tϕ(X) < e ( ) −t (X−X0)TA(X−X0)−ε|X−X0|2

北大考硏高数试题及答案

北大考硏高数试题及答案

北大考硏高数试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪个不是周期函数?A. y = sin(x)B. y = e^xC. y = |x|D. y = cos(x)答案:B2. 函数f(x) = x^2在区间(-1, 1)上的最大值是:A. 0B. 1C. 4D. -1答案:B3. 以下哪个选项是微分方程dy/dx = x^2 + y^2的解?A. y = CxB. y = x^2 + CC. y = C/xD. y = C * e^x答案:B4. 定积分∫₀^π/2 sin(x)dx的值是:A. 1B. 2C. π/2D. π答案:A5. 以下哪个级数是收敛的?A. ∑(-1)^n / √nB. ∑n^2C. ∑(1/n)^2D. ∑(1/n)答案:C6. 函数f(x) = ln(x)在x=1处的导数是:A. 0B. 1C. -1D. 2答案:B7. 方程x^2 - 4x + 4 = 0的根是:A. 2, 2B. -2, 2C. -2, -2D. 1, 3答案:A8. 以下哪个选项是函数f(x) = e^x的泰勒级数展开?A. ∑x^nB. ∑(-1)^n * x^nC. ∑(1/n!) * x^nD. ∑(1/n) * x^n答案:C9. 以下哪个选项是多元函数f(x, y) = x^2 + y^2的梯度?A. (2x, 2y)B. (x, y)C. (2y, 2x)D. (y, x)答案:A10. 以下哪个选项是格林公式的数学表达式?A. ∬D (∂Q/∂x - ∂P/∂y) dxdy = ∮C (Pdx + Qdy)B. ∬D (∂P/∂x - ∂Q/∂y) dxdy = ∮C (Pdx + Qdy)C. ∬D (∂P/∂y - ∂Q/∂x) dxdy = ∮C (Pdx + Qdy)D. ∬D (∂Q/∂x + ∂P/∂y) dxdy = ∮C (Pdx + Qdy)答案:B二、填空题(每题4分,共20分)11. 极限lim (x→0) [x - sin(x)] / (x^3) 的值是 _______。

2017年北大自主招生数学试题及答案

2017年北大自主招生数学试题及答案

5
13

A. 锐角三角形
B. 钝角三角形
C. 无法确定
D. 前三个答案都不对
答案 A.
5
B.
20 5,
Å3 ã
3
C.
20 , 20
D. 前三个答案都不对
3
解析 C.
13. 正方形 ABCD 与点 P 在同一平面内,已知该正方形的边长为 1 ,且 |P A|2 + |P B|2 = |P C|2 ,则 |P D|
的最大值为( ) √
A. 2 + 22 2 D. 前三个答案都不对
答案 A.
) B. −1.5 D. 前三个答案都不对
19. 动圆与两圆 x2 + y2 = 1 和 x2 + y2 − 6x + 7 = 0 都外切,则动圆的圆心轨迹是( )
A. 双曲线
B. 双曲线的一支
C. 抛物线
D. 前三个答案都不对
答案 B.
4
20.

△ABC
中, sin A = 4 , cos B = 4 ,则该三角形是(
√ B. 2 6 D. 前三个答案都不对
答案 D.
6. 已知三角形三条中线长度分别为 9, 12, 15 ,则该三角形面积为( )
A. 64
B. 72
C. 90
D. 前三个答案都不对
答案 B.
7. 已知 x 为实数,使得 2, x, x2 互不相同,且其中有一个数恰为另一个数的 2 倍,则这样的实数 x 的个

ã
的值为(

5
5
A.
1 1+ √
5
C.
1+
1 √

2017年考研数学一真题及答案解析

2017年考研数学一真题及答案解析

2017年考研数学一真题及答案解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若函数10(),0x f x axb x ⎧->⎪=⎨⎪≤⎩在0x =处连续,则( ) ()()11()22()02A abB abC abD ab ==-==【答案】A【解析】001112lim lim ,()2x x xf x ax ax a++→→-==在0x =处连续11.22b ab a ∴=⇒=选A.(2)设函数()f x 可导,且'()()0f x f x >,则( )()()()(1)(1)(1)(1)()(1)(1)(1)(1)A f fB f fC f fD f f >-<->-<-【答案】C 【解析】'()0()()0,(1)'()0f x f x f x f x >⎧>∴⎨>⎩或()0(2)'()0f x f x <⎧⎨<⎩,只有C 选项满足(1)且满足(2),所以选C 。

(3)函数22(,,)f x y z x y z =+在点(1,2,0)处沿向量()1,2,2u =的方向导数为( )()12()6()4()2A B C D【答案】D 【解析】2(1,2,0)122{2,,2},{4,1,0}{4,1,0}{,,} 2.|u |333f u gradf xy x z gradfgradf u ∂=⇒=⇒=⋅=⋅=∂ 选D.(4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中实线表示甲的速度曲线1()v v t =(单位:/m s ),虚线表示乙的速度曲线2()v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则( )()s0000()10()1520()25()25A t B t C t D t =<<=>【答案】B【解析】从0到0t 这段时间内甲乙的位移分别为120(t),(t),t t v dt v dt ⎰⎰则乙要追上甲,则210(t)v (t)10t v dt -=⎰,当025t =时满足,故选C.(5)设α是n 维单位列向量,E 为n 阶单位矩阵,则( )()()()()22T T TT A E B E C E D E αααααααα-++-不可逆不可逆不可逆不可逆【答案】A【解析】选项A,由()0ααααα-=-=T E 得()0αα-=TE x 有非零解,故0αα-=TE 。

考研数学真题答案2017

考研数学真题答案2017

考研数学真题答案2017考研数学真题答案2017年的详细解析如下:开头:2017年的考研数学真题涵盖了高等数学、线性代数和概率论与数理统计三个部分,题目难度适中,考查了考生对基础概念的理解和运用能力。

以下是对2017年考研数学真题的答案解析。

高等数学部分:1. 选择题:- 第1题考查了极限的运算,答案为A。

- 第2题考查了导数的几何意义,答案为C。

- 第3题考查了微分中值定理,答案为B。

- ...(此处省略其他题目的解析)2. 填空题:- 第1题考查了定积分的计算,答案为:\(\frac{1}{2}\)。

- 第2题考查了微分方程的解法,答案为:\(y = e^x - 1\)。

3. 解答题:- 第1题要求证明级数的收敛性,通过比较判别法可以得出结论。

- 第2题是关于多元函数极值的问题,需要利用拉格朗日乘数法求解。

线性代数部分:1. 选择题:- 第1题考查了矩阵的秩,答案为B。

- 第2题考查了特征值与特征向量,答案为D。

2. 填空题:- 第1题考查了行列式的计算,答案为3。

- 第2题考查了向量空间的基,答案为:\(\{v_1, v_2\}\)。

3. 解答题:- 第1题是关于线性方程组解的讨论,需要判断系数矩阵的秩。

- 第2题要求证明线性变换的不变子空间,需要运用线性代数的基本定理。

概率论与数理统计部分:1. 选择题:- 第1题考查了随机变量的分布,答案为A。

- 第2题考查了大数定律,答案为C。

2. 填空题:- 第1题考查了期望的计算,答案为2。

- 第2题考查了二维随机变量的联合分布,答案为:\(P(X=x,Y=y)\)。

3. 解答题:- 第1题是关于概率分布的求解,需要运用全概率公式。

- 第2题要求计算统计量的分布,需要运用中心极限定理。

结尾:2017年的考研数学真题答案解析到此结束。

希望这些解析能帮助考生更好地理解题目,提高解题技巧。

考生在复习时应注意基础知识的掌握,同时通过大量练习来提高解题速度和准确率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

= f (x2) x2
f (x1) . x1
f (1) . 1
证明:
8
2
7.
(20 分) 设 f

(0;
+1)
上的凹
(或凸)
函数且
lim
x!+1
xf
0(x)
=
0
(仅在
f
可导的点考虑
极限过程).
8. (20 分) 设 2 C 3(R3), 及其各个偏导数 @i (Ái = 1; 2; 3) 在点 X0 2 R3 处取值都是 0.
北京大学 2017 年硕士研究生招生考试试题
(启封并使用完毕前按国家机密级事项管理) 考试科目:数学基础考试 1 (数学分析) 考试时间: 2016 年 12 月 25 日上午
专业:数学学院各专业 (除金融学和应用统计专业) 方向:数学学院各方向 (除金融学和应用统计方向)
———————————————————————————————————————— 说明:答题一律写在答题纸上 (含填空题、选择题等客观题), 写在此试卷上无效.
5.
(20 Â
分) Ã
假设
x0
=
1;
xn
=
xn
1 + cos xn
1(n = 1; 2;
), 证明: 当 x ! 1 时, xn
= 2
o
1 nn
.
6. (20 分) 假如 f
2
C [0; 1]; lim
x!0+
f (x) x
f (0)
=
˛
<
ˇ
=
lim
x!1
f (x) x
(˛; ˇ); 9x1; x2 2 [0; 1] 使得
X0 点的 ı 邻域记为 Uı (ı > 0). 如果
@2ij
(X0) 是严格正定的, 则当 ı 充分小时, 证
33
明如下极限存在并求之:

lim
3
t2
t !+1
e t (x1;x2;x3) dx1dx2dx3:

9. (30 分) 将 (0; ) 上常值函数 f (x) = 1 进行周期 2 奇延拓并展为正弦级数:
dt,
0t

考试科目:数学分析
整理:Xiongge,2px4第1页 共1页 Nhomakorabeaf (x)
4 X 1 1 sin(2n 1)x: n=1 2n 1
该 Fourier
lim
n!1
Sn(x
)
级数的前 = 1. 证明
n 项和记为 Sn(x), 则 8x Sn(x) 的最大值点是 2n 且
2 (0; ); Sn(x) =
lim
n!1
Sn
Á2 =
2n
2 Z
Z x sin 2nt 0 sin t sin t dt .
1. (10 分) 证明
lim
Z 2
sinn x
p
dx = 0.
n!+1 0
2x
2.
(10
分)
证明
X 1 1 n=1 1 + nx2
sin
x n˛
在任何有限区间上一致收敛的充要条件是
˛>
1. 2
X 1
X 1
X 1
3. (10 分) 设 an 收敛. 证明 lim ann s = an.
n=1
s!0+ n=1
n=1
4. (10 分) 称 (t ) = (x(t ); y(t )), (t 2 属于某个区间 I ) 是 R2 上 C 1 向量场 (P (x; y); Q(x; y)) 的积分曲线, 若 x0(t ) = P ( (t )),y0(t ) = Q( (t )); 8t 2 I , 设 Px + Qy 在 R2 上处处非 0, 证明向量场 (P; Q) 的积分曲线不可能封闭 (单点情形除外).
相关文档
最新文档