伸缩梁焊接变形控制123
焊接变形的控制与矫正方案

焊接结构生产与管理(焊接应力与变形) 12
焊接残余变形
4)焊缝对称布置的结构,应由偶数焊工对称地施焊。
圆筒体对接焊缝焊接顺序
焊接结构生产与管理(焊接应力与变形) 13
焊接残余变形
• 5)长焊缝(1m以上)焊接时,可采用下图所示的 方向和顺序进行焊接,以减小其焊后的收缩变形。
焊接结构生产与管理(焊接应力与变形) 14
只要允许,多采用型材、 冲压件;焊缝多且密集处,可 以采用铸—焊联合结构,就可 以减少焊缝数量。此外,适当 增加壁板厚度,以减少肋板数 量,或者采用压型结构代替肋 板结构,都对防止薄板结构的 变形有利。
焊接结构生产与管理(焊接应力与变形) 3
焊接残余变形
(3)合理地安排焊缝 的位置
•
安排焊缝尽可能
焊接残余变形
(5)合理地选择焊接方法和焊接工艺参数
非对称截面结构的焊接
焊接结构生产与管理(焊接应力与变形) 15
焊接残余变形
(6)热平衡法
采用热平衡法防止焊接变形
焊接结构生产与管理(焊接应力与变形) 16
焊接残余变形
• (7)散热法
散热法示意图
焊接结构生产与管理(焊接应力与变形) 17
焊接残余变形
焊接结构生产与管理(焊接应力与变形) 1
焊接残余变形
二、控制焊接变形的措施
控制变形及减小消除焊接应力的方法

控制变形及减小消除焊接应力的方法一、控制焊接变形的方法1、设计措施(1)选择合理的焊缝尺寸:焊缝尺寸增加,变形随之增大,但是过小的焊缝尺寸将降低结构的承载能力,并使焊接接头的冷却速度加快,热影响区硬度增高,容易产生裂纹等缺陷,因此应在满足结构承载能力和保证焊接质量的前提下,随着板的厚度来选取工艺上可能选用的最小的焊缝尺寸。
(2)尽量减少焊缝数量;适当选择板的厚度,减少肋板数量,从而可减少焊缝和焊接后变形的校正量,如薄板结构件,可用压型结构代替肋板结构,以减少焊缝数量,防止或减少焊后变形。
(3)合理安排焊缝位置:焊缝对称于焊件截面的中性轴或使焊缝接近中性轴均可减少弯曲变形。
(4)预留收缩余量:焊件焊后纵向横向收缩变形可通过对焊缝收缩量的估算,在设计时预先留出收缩余量进行控制。
(5)留出装焊卡具的位置:在结构上留有可装焊夹具的位置,以便在焊接过程中可利用夹具来控制技术变形。
2、反变形法(1)板厚8~12mm钢板单边V型坡口对接焊,装配时反变形1.5°焊接后几乎无角变形。
(2)工字梁焊后因横向收缩引起的角变形,若采用焊前预先把上、下盖板压成反变形(塑性变形),然后装配后进行焊接,即可消除上、下盖板的焊后角变形。
但是上下盖板反变形量的大小主要与该板的厚度和宽度有关,同时还与腹板厚度和热输入有关。
(3)锅炉、集装箱的管接头都集中在上部,焊后引起弯曲变形所以要借用强制反变形夹紧装置,并配以对称均匀加热的痕迹顺序,交替跳焊法这样采用了在外力作用下的弹性反变形再配合以合理的受热的施焊顺序,焊后基本上可消除弯曲变形。
(4)桥式起重机的两根主梁是由左、右腹板和上、下盖板组成的箱型结构的为提高该梁的刚性,梁内设计有大、小肋板,且这些肋板角焊缝大多集中在梁的上部,焊后会引起下桡弯曲变形。
但桥式起重机技术要求规定,主梁焊后应有一定的上拱度,为解决焊后变形与技术要求的矛盾,常采用预制腹板上拱度的方法,即在备料时,预先使两块腹板留出上拱度。
焊接变形控制措施

焊接变形控制措施1焊接变形的控制措施全面分析各因素对焊接变形的影响,掌握其影响规律,即可采取合理的控制措施。
1.1焊缝截面积的影响焊缝截面积是指熔合线范围内的金属面积。
焊缝面积越大,冷却时收缩引起的塑性变形量越大,焊缝面积对纵向、横向及角变形的影响趋势是一致的,而且是起主要的影响,因此,在板厚相同时,坡口尺寸越大,收缩变形越大。
1.2焊接热输入的影响一般情况下,热输入大时,加热的高温区范围大,冷却速度慢,使接头塑性变形区增大。
1.3焊接方法的影响多种焊接方法的热输入差别较大,在建筑钢结构焊接常用的几种焊接方法中,除电渣以外,埋弧焊热输入最大,在其他条件如焊缝断面积等相同情况下,收缩变形最大,手工电弧焊居中,CO2气体保护焊最小。
1.4接头形式的影响在焊接热输入、焊缝截面积、焊接方面等因素条件相同时,不同的接头形式对纵向、横向、角变形量有不同的影响。
常用的焊缝形式有堆焊、角焊、对接焊。
1)表面堆焊时,焊缝金属的横向变形不但受到纵横向母材的约束,而且加热只限于工件表面一定深度而使焊缝的收缩同时受到板厚、深度、母材方面的约束,因此,变形相对较小。
2) T形角接接头和搭接接头时,其焊缝横向收缩情况与堆焊相似,其横向收缩值与角焊缝面积成正比,与板厚成反比。
3) 对接接头在单道(层)焊的情况下,其焊缝横向收缩比堆焊和角焊大,在单面焊时坡口角度大,板厚上、下收缩量差别大,因而角变形较大。
双面焊时情况有所不同,随着坡口角度和间隙的减小,横向收缩减小,同时角变形也减小。
1.5焊接层数的影响1)横向收缩:在对接接头多层焊接时,第一层焊缝的横向收缩符合对接焊的一般条件和变形规律,第一层以后相当于无间隙对接焊,接近于盖面焊道时与堆焊的条件和变形规律相似,因此,收缩变形相对较小。
2)纵向收缩:多层焊接时,每层焊缝的热输入比一次完成的单层焊时的热输入小得多,加热范围窄,冷却快,产生的收缩变形小得多,而且前层焊缝焊成后都对下层焊缝形成约束,因此,多层焊时的纵向收缩变形比单层焊时小得多,而且焊的层数越多,纵向变形越小。
控制焊接变形的方法

控制焊接变形的方法焊接变形真让人头疼!那有啥办法控制呢?嘿,办法还不少呢!先说说预留收缩余量法。
就好比你买衣服稍微买大一点,等瘦了还能穿。
焊接前预估好会变形的量,提前多准备点材料,等焊接完变形了也不怕。
这招简单吧?但得算准了,不然留多留少都麻烦。
反变形法也超棒!就像你提前知道要摔跤,故意歪一下身子保持平衡。
在焊接前给焊件一个相反方向的变形,等焊接的时候,变形就相互抵消啦。
这得多有经验才能用好呀!刚性固定法呢,就像给调皮的孩子戴上紧箍咒。
把焊件固定得死死的,让它没法随便变形。
不过固定的时候可得注意力度,别把焊件弄伤了。
合理选择焊接方法和参数也很重要。
这就跟做饭掌握火候似的,火候不对,饭就不好吃。
焊接方法和参数选得好,变形就小。
那可得好好研究研究。
焊接过程中的安全性和稳定性咋保证呢?那得小心操作呀!像走钢丝一样,一点都不能马虎。
做好防护措施,别让自己受伤。
焊件固定好了,也能增加稳定性。
那这些方法都啥应用场景呢?大型钢结构焊接的时候,预留收缩余量法和反变形法就很管用。
精密仪器焊接就得用刚性固定法,保证精度。
不同场景各有优势,选对方法事半功倍。
咱来看看实际案例。
有个大工程,用了预留收缩余量法,焊接完效果那叫一个好。
变形控制得死死的,质量杠杠的。
这就说明方法用对了,效果就是不一样。
控制焊接变形的方法真的很重要。
用对了方法,焊接质量有保障,安全性稳定性也高。
大家在焊接的时候一定要根据实际情况选择合适的方法,让焊接变得轻松又高效。
焊接变形控制措施

焊接变形控制措施1. 引言焊接是常见的金属连接工艺,它在制造业中起着重要的作用。
然而,焊接过程中会产生热量,导致工件变形。
焊接变形不仅会影响工件的外观,还可能导致尺寸偏差、失配和应力集中等问题。
因此,为了控制焊接变形,需要采取一系列措施来减少其影响。
本文将介绍焊接变形的控制措施,包括减少焊接热输入、优化焊接顺序和采用辅助支撑等方法。
这些措施可以帮助工程师在焊接过程中有效控制变形,提高焊接质量。
2. 减少焊接热输入焊接热输入是导致焊接变形的主要原因之一。
当焊接电流和电压较高时,焊接过程中产生的热量也较大,会使焊接接头局部加热,导致热膨胀引起变形。
因此,减少焊接热输入是一种常用的焊接变形控制措施。
以下是减少焊接热输入的方法:•降低焊接电流和电压:通过调节焊接电流和电压的大小,可以控制焊接热输入的大小。
降低电流和电压可以减少焊接过程中的热量产生,从而减少变形的可能性。
•采用脉冲焊接技术:脉冲焊接技术可以使焊接电流周期性变化,从而降低焊接热输入。
这种技术可以减少焊接热量和热膨胀,有效控制焊接变形。
•使用预热和间歇焊接:在焊接之前,可以对焊接接头进行预热,以提高材料的可塑性和焊接质量。
间歇焊接是指在焊接过程中,将焊接接头暂停冷却一段时间,再继续焊接。
这种方法可以有效控制焊接热输入,减少变形。
3. 优化焊接顺序焊接顺序是影响焊接变形的另一个重要因素。
不同焊接顺序会导致不同的温度梯度和热应力,进而影响变形的大小和方向。
因此,优化焊接顺序是控制焊接变形的一项重要措施。
以下是优化焊接顺序的方法:•从焊接应力较小的区域开始焊接:焊接过程中,焊接接头会受到热应力的影响,从而引起变形。
通过从焊接应力较小的区域开始焊接,可以减少焊接接头受力不均匀引起的变形。
•分割大尺寸焊接接头:对于大尺寸的焊接接头,可以将其分割成若干个小接头进行焊接。
这样可以减少焊接接头的热输入,降低焊接变形的风险。
•控制焊接速度和温度:在焊接过程中,合适的焊接速度和温度可以减少焊接接头的热输入,进而减少焊接变形。
控制焊接变形的工艺措施

控制焊接变形的工艺措施焊接变形是焊接过程中普遍存在的问题,它可能导致焊接件的尺寸、形状和性能不符合要求。
为了控制焊接变形,可以采取一系列的工艺措施。
首先,选择合适的焊接方法和工艺参数是控制焊接变形的关键。
不同的焊接方法有不同的热输入和热效应,因此应根据具体情况选择合适的焊接方法。
此外,在确定焊接方法后,还需要合理选择焊接电流、电压、焊接速度等参数,以控制焊接热量的输入和分布,从而减少变形的产生。
其次,采用适当的预热和焊后热处理是控制焊接变形的有效手段之一。
预热可以提高焊接零件的温度,减轻热应力,从而降低变形的风险。
而焊后热处理则可以通过控制钢材的组织状态和应力分布,减少焊接件的变形。
预热和焊后热处理需要根据材料的特性以及焊接情况,制定相应的温度和时间控制方案。
此外,合理安排焊接顺序和焊接顺序也是控制焊接变形的重要措施。
将焊接分为多道次进行,可以减少热应力的积累,并且逐渐平衡焊接件的应力分布,降低变形的程度。
此外,在进行多道次焊接时,还可以通过合理的交替焊接顺序,进一步控制热应力的分布,减小变形的尺寸。
最后,选择适当的夹具和支撑方式也能有效控制焊接变形。
夹具和支撑物可以稳定焊接件,固定其形状,减少变形的风险。
通过合理设计夹具和选择适当的支撑方式,可以提供足够的支撑和约束,使焊接件在焊接过程中保持稳定和正确的位置。
综上所述,控制焊接变形的工艺措施包括选择合适的焊接方法和工艺参数、采用预热和焊后热处理、合理安排焊接顺序和焊接顺序,以及选择适当的夹具和支撑方式。
通过综合应用这些措施,可以有效地减小焊接变形,提高焊接件的质量和性能。
焊接变形的控制措施

焊接变形的控制措施
(1)在焊接过程中,厚板对接焊后的变形主要是角变形。
实践中为控制变形,往往先焊正面的一部分焊道,翻转工件,碳刨清根后焊反面的焊道,再翻转工件,这样如此往复,一般来说,每次翻身焊接三至五道后即可翻身,直至焊满正面的各道焊缝。
同时在施焊时要随时进行观察其角变形情况,注意随时准备翻身焊接,以尽可能的减少焊接变形及焊缝内应力。
另外,设置胎夹具,对构件进行约束来控制变形,此类方法一般适用于异形厚板结构,由于厚板异形结构造型奇特、断面、截面尺寸各异,在自由状态下,尺寸精度难以保证,这就需要根据构件的形状,制作胎模夹具,将构件处于固定的状态下进行装配、定位,焊接,进而来控制焊接变形。
(2)采取合理的焊接顺序。
选择与控制合理的焊接顺序,即是防止焊接应力的有效措施,亦是防止焊接变形的最有效的方法之一。
根据不同的焊接方法,制定不同的焊接顺序,埋弧焊一般采用逆向法、退步法;CO2气体保护焊及手工焊采用对称法、分散均匀法;编制合理的焊接顺序的方针是“分散、对称、均匀、减小拘束度”。
梁焊接变形的控制

梁焊接变形的控制一、箱型梁焊接变形的控制焊接变形的控制,要从下料开始,对下料、组装、焊接等一系列工艺过程加以控制。
1、板件下料控制:⑴、下料前抛丸、矫平,接板后再一次矫平,以便消除应力。
⑵、通过梁的焊接变形计算,预算出梁在制造过程中每道工序的变形量。
根据计算或经验,确定合理的腹板下料拱度值。
⑶、保证筋板的直角,其偏差不大于H/1000。
2、组装焊接控制:⑴、水平弯曲的控制对于正轨箱型梁,根据JB1036-82《通用桥式起重机技术条件》的规定,其水平弯曲要向有走台的一侧弯曲。
为此,上盖板要预制水平弯,筋板与上盖板的焊缝应采取同方向、从无走台的一侧向有走台的方向焊接,并有规律地分散进行。
⑵、盖板水平偏斜度、腹板垂直倾斜度及主梁上拱度的控制根据JB1036-82《通用桥式起重机技术条件》的规定,箱型主梁上盖板水平偏斜的允许偏差b≤B/200,腹板垂直倾斜的允许偏差≤H/200,桥架组装后主梁上拱度为:F = 0.9L/1000~1.4L/1000将下盖板组装在п形梁上组成箱型梁后应进行检测,如果超差,应进行矫正,矫正时可利用螺栓拉紧器或千斤顶配合。
矫正的幅度必须考虑到后续焊接的变形方向及大小,避免过量、不足、甚至反向。
为了给后续的焊接和桥架组装留有余地,单根主梁的精度应严格控制。
例如上盖板水平偏斜度应按b≤B/250交检,腹板垂直倾斜度应按h≤H/250交检。
⑶、箱型梁焊接顺序的选择组装好的箱型梁经过矫正,应力释放后,焊接四条长焊缝。
如果主梁上拱度不足,可焊接下盖板与腹板连接的两条焊缝,然后再焊上盖板与腹板连接的焊缝。
否则相反。
另外,左右两条焊缝要同时、同方向、同规范进行施焊。
如果两侧不能同时焊,要先焊无走台侧,后焊有走台侧。
焊接变形量的大小与焊接方法也有关系,埋弧焊的变形量大,气体保护焊的变形量小。
二、桥架组装时变形的控制桥架组装焊接工序,包括主梁与端梁的组装焊接、走台的组装焊接、轨道及轨道压板的组装焊接等。