最优方案设计问题

合集下载

人教版初中七年级上册数学《分段计费与最优方案问题》教案

人教版初中七年级上册数学《分段计费与最优方案问题》教案

第4课时分段计费与最优方案问题【知识与技能】学生通过旅游、选灯、用电、水费、用气、电信等问题的方案设计,弄清各类问题中的等量关系,掌握用方程来解决一些生活中的实际问题的技巧.【过程与方法】通过一个开放式的空间,放手让学生去探索,去发现,培养学生分析问题和用方程去解决实际问题的能力.【情感态度】让学生在生动活泼的问题情境中感受数学的应用价值,产生对数学的兴趣,养成认真倾听他人发言的习惯,感受与同伴交流的乐趣.【教学重点】引导学生弄清题意,设计出各类问题的最佳方案.【教学难点】把生活中的实际问题抽象出数学问题.一、情境导入,初步认识生活中,有许多问题的解决有多种多样的方案,而这些方案中有的较好、有的欠佳,这就需要我们根据实际情况从中找出最佳方案.本课时的内容就是围绕这一话题展开的,下面我们给出了几个生活中常见的问题,教师让学生分成三组进行讨论,并在10分钟后,小组选派代表交流发言.问题1 电价问题据我们调查,我市居民生活用电价格为每天7时到23时每度0.47元,每天23时到第二天7时每度0.25元.请根据你家每月用电情况,设计出用电的最佳方案.问题2水费问题我市为鼓励节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨部分按0.45元/吨收费,超过10吨而不超过20吨部分按0.8元/吨收费,超过20吨部分按1.3元/吨收费,某月甲户比乙户多交水费3.75元,已知乙户交水费3.15元.问:(1)甲、乙两户该月各用水多少吨?(自来水按整吨收费)(2)根据你家用水情况,设计出最佳用水方案.问题3用气问题某市按下列规定收取每月的煤气费:用煤气如果不超过60m3,按每立方米0.8元收费;如果超过60m3,超过部分按每立方米1.2元收费.怎样用气最节约?请设计出方案来.【教学说明】以上三个问题均是与本课时内容相关的问题,学生对于这三个问题的发言肯定有所欠缺,教师要予以鼓励并加以补充,只要学生有根据实际情况选择最佳方案这种意识并能大致说出方案即可.因为下面的栏目中将具体探讨选择方案的问题.二、思考探究,获取新知探究电话计费问题(教材第104~105页探究3)【教学说明】在和学生共同探究这个问题之前,教师应事先向学生普及一下电话计费方面的问题,如什么叫“月使用费”、“主叫”或“被叫”,电话计费目前怎么操作的,然后设计几个问题,让学生循序渐进地逐步深入.设问1:观察表格,你认为电话计费与什么有关?学生对此作出回答,教师予以点明:电话计费与主叫时间有关.设问2:当一个月内通话150分钟和350分钟时,按两种计费方法各需多少元?教师让两个学生分别作答,教师给予点拨:当t=150时,按方式一应交58元,按方式二应交88元.当t=350时,按方式一[58+0.25×(350-150)],应交108元,按方式二应交88元.【教学说明】此处讲解时,教师可画图以帮助学生理解.设问3:当t小于150、t大于150且小于350或t大于350时,按两种计费方式各需交多少元?教师可结合图进行分析,并及时与学生互动.当t小于150时,按方式一和方式二应分别交58元、88元.当t大于150且小于350时,按方式一应交58+0.25(t-150)元,按方式二应交88元.当t大于350时,按方式一应交58+0.25(t-150)元,按方式二应交88+0.19(t-350)元.设问4:有没有一个时间点,按两种方式交费都是一样的?此处教师应让学生找出这个时间点,然后解这个方程.即58+0.25(t-150)=88.解得t=270.注意如有学生认为当t大于350时交费一样,教师可让学生先解这个方程,然后从实际角度回答这是不可能的.设问5:你知道如何选择方案最省钱?教师引导学生通过设问4让学生回答:当t<270时,选择方式一省钱;当t=270时,选择方式一和方式二是一样的;当t>270时,选择方案二省钱.【教学说明】通过这个问题的探究,旨在让学生掌握解决有关按照实际问题选择最佳方案的思路,教学时,教师应注重与学生进行互动,最大限度地调动学生的积极性.三、典例精析,掌握新知例某地上网有两种收费方法,用户可以任选其一:A计时制:1元/小时,B包月制:80元/月,此外,每一种上网方式都加收通讯费0.1元/小时.(1)某用户每月上网40小时,选用哪种上网方式比较合算?(2)某用户每月有100元钱用于上网,选用哪种上网方式比较合算?(3)请你为用户设计一个方案,使用户能合理地选择上网方式.【分析】(1)分别计算出两种上网方式上网40小时的消费额,进行比较;(2)分别计算出两种方式下的上网时间,进行比较;(3)设每月上网m小时两种上网方式的消费额相等,再进行分析.解:(1)如果用户每月上网40小时,则选择A需支付40×(1+0.1)=44(元),选择B需支付80+40×0.1=84(元).因为44<84,所以选用A方式比较合算.(2)设用户选择A方式用100元可以上网x小时,选择B方式用100元可以上网y小时.由题意,得(1+0.1)x=100,80+0.1y=100.解得x=100011,y=200.因为100011≈91<200,所以选用B方式较合算.(3)设每月上网m小时两种上网方式的消费额相等.由题意,得(1+0.1)m=80+0.1m.解得m=80.故当每月上网不足80小时时,选用A上网方式比较合算;当每月上网80小时时,两种上网方式的消费额相等;当每月上网超过80小时时,选用B方式比较合算.四、运用新知,深化理解1.教材第106页练习第2题.2.甲种货车和乙种货车的载重量及每种车运费如下表所示,现有货物13吨,要求一次装完,并且每辆车要满载,探究怎样安排运费最省?需要多少钱?甲乙载重量(吨/辆) 3 2运费(元/辆)50 40【教学说明】这两道题中,第2题稍难,教师要提示学生先要用含x的式子表示出安排乙种货车要多少辆,然后根据题意列方程.【答案】1.当复印张数为60页时,两处的收费相同.2.安排3辆甲种车和2辆乙种车,运费最省,需230元.五、师生互动,课堂小结教师先对前面各小组交流的方案进行简单评价作出小结,小结过程中,注意结合问题本身.1.布置作业::从教材习题3.4中选取.2.完成练习册中本课时的练习.课程改革的目的之一是促进学生学习方式的转变,加强学生学习的主动性和探究性,本章内容涉及大量的实际问题,丰富多彩的问题情境和解决实际问题的快乐更容易激起学生对数学的兴趣.在本课时中,引导学生从身边的移动电话收费,旅游费用等问题展开探究,使学生在现实、富有挑战性的问题情境中经历多角度认识问题,多种策略思考问题,培养探索精神和创新意识.作者留言:非常感谢!您浏览到此文档。

市政道路设计存在的问题及优化方案

市政道路设计存在的问题及优化方案

市政道路设计存在的问题及优化方案摘要:近些年,城市化进程不断加快,城市规模不断扩大,市政道路逐渐成为发展过程中的重点,需要工作人员予以重视,设计阶段应充分考量多种因素,发现问题、解决问题,优化方案。

市政道路设计作为一项系统性工程,直接影响着城市未来走向,科学设计能够在一定程度上改善民生,推动经济进步。

关键词:市政道路设计;问题;措施1市政道路设计存在的问题1.1基础设计问题近年来,市政道路工程建设的数量越来越多,在技术应用和设计手段方面也开始优化,市政道路的合理设计和性能优化能够在一定程度上带动道路工程质量的提升,然而现阶段,市政道路设计工作中仍存在诸多问题,需要工作人员认真对待,及时采取具有针对性的措施,妥善应对,促进市政道路设计工作向更加规范化、系统化的方向发展。

部分设计人员在市政道路设计阶段,未按照设计规范和技术要求开展工作,并缺乏道路工程施工场地研究,促使工程施工出现许多质量问题。

还有部分工作人员缺乏专业理念和职业道德,导致基础设计工作出现问题,工程施工后期开始出现沉降、塌陷等隐患,严重影响道路交通。

1.2道路协调性问题市政道路设计过程中还存在明显的协调性不强的问题,突出表现在机动车道、非机动车道、人行道三条车道之间。

在道路设计阶段,设计人员为了更好地推进机动车辆流动,盲目增加机动车道宽度,使非机动车道、人行道既有的道路宽度不断减小,甚至出现直接拆除人行天桥的情况,影响行人的正常出行,造成诸多交通安全问题。

市政道路设计会在一定程度上直接影响交通运行,如果设计不合理、不协调,将会给交通运行带来不利影响。

如今,我国许多城市着重设计主要交通运输线路,而忽视辅助路线设计工作,导致城市交通堵塞、难以切实发挥分流功能。

13交叉口设计问题在市政道路设计过程中,交叉口设计工作十分重要,如果工作人员缺乏对市政道路的全面研究和整体分析,将会直接影响工程施工效果。

事实上,交叉口设计工作经常出现被忽视的情况,设计人员未能借助自身的专业理论和丰富经验合理规划交叉口,使道路交汇出现问题。

方案设计问题(含答案)

方案设计问题(含答案)

方案设计问题(2012北海,23,8分)1.某班有学生55人,其中男生与女生得人数之比为6:5.(1)求出该班男生与女生得人数;(2)学校要从该班选出20人参加学校得合唱团,要求:①男生人数不少于7人;②女生人数超过男生人数2人以上。

请问男、女生人数有几种选择方案?解:(1)设男生有6x人,则女生有5x人. ﻩﻩ1分依题意得:6x+5x=55 ﻩﻩﻩﻩﻩﻩﻩ2分∴x=5 ∴6x=30,5x=25 ………3‘答:该班男生有30人,女生有25人。

ﻩﻩﻩﻩ4分(2)设选出男生y人,则选出得女生为(20—y)人。

ﻩﻩﻩﻩﻩﻩﻩ5分由题意得:ﻩﻩﻩﻩﻩﻩﻩﻩ6分解之得:7≤y〈9∴y得整数解为:7、8………、、……、、 7分当y=7时,20-y=13当y=8时,20-y=12答:有两种方案,即方案一:男生7人,女生13人;方案二:男生8人,女生12人。

8分2、(2012年广西玉林市,24,10分)一工地计划租用甲、乙两辆车清理淤泥,从运输量来估算:若租两辆车合运,10天可以完成任务;若单独租用乙车完成任务则比单独租用甲车完成任务多用15天.(1)甲、乙两车单独完成任务分别需要多少天?(2)已知两车合运共需租金65000元,甲车每天得租金比乙车每天得租金多1500元。

试问:租甲乙车两车、单独租甲车、单独租乙车这三种方案中,哪一种租金最少?请说明理由。

解:(1)设甲车单独完成任务需要x天,乙单独完成需要y天,由题意可得:,解得:即甲车单独完成需要15天,乙车单独完成需要30天;(2)设甲车租金为a,乙车租金为b,则根据两车合运共需租金65000元,甲车每天得租金比乙车每天得租金多1500元可得:,解得:、①租甲乙两车需要费用为:65000元;②单独租甲车得费用为:15×4000=60000元;③单独租乙车需要得费用为:30×2500=75000元;综上可得,单独租甲车租金最少.3.(2012黑龙江省绥化市,27,10分)在实施“中小学校舍安全工程”之际,某县计划对A、B两类学校得校舍进行改造.根据预测,改造一所A类学校与三所B类学校得校舍共需资金480万元,改造三所A类学校与一所B类学校得校舍共需资金400万元.⑴改造一所A类学校与一所B类学校得校舍所需资金分别就是多少万元?⑵该县A、B两类学校共有8所需要改造.改造资金由国家财政与地方财政共同承担,若国家财政拨付资金不超过770万元,地方财政投入得资金不少于210万元,其中地方财政投入到A、B两类学校得改造资金分别为每所20万元与30万元,请您通过计算求出有几种改造方案,每个方案中A、B两类学校各有几所。

中考题中“方案设计型”问题的解法

中考题中“方案设计型”问题的解法

中考题中“方案设计型”问题的解法2001年各地中考试题中出现了许多高质量的方案设计型题目,以激励学生运用数学知识和思想方法去解决现实生活中的问题,现介绍这类中考题的几种解法,供同学们毕业复习时参考。

一、用一元一次方程来解例1:我省某地生产的一种绿色蔬菜,在市场上若直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元。

当地一家农工商公司收获这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季节等条件限制,公司必须用15天的时间将这批蔬菜全部销售加工完毕。

为此,公司研制了在种可行方案:方案一:将蔬菜全部进行粗加工。

方案二:尽可能多的对蔬菜进行精加工,没来得及进行加工的蔬菜,在市场上直接出售。

方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好用15天完成。

你认为哪种方案获利最多?为什么?二、用一元一次不等式来解例2:某园林的门票每张10元,一次使用,考虑到人们的不同需求,也为了吸引更多的游客,该园林除了保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年),年票分为A、B、C三类:A类年票每张120元,持票者进入园林时,无需再购买门票:B类门票每张60元,持票者进入该园林时,需再购买门票,每次2元,C类门票每张40元,持票者进入该园林时,需再购买门票,每次3元。

(1)如果你只选择一种购买门票的方法,并且你计划在一年中用80元在该园林的门票上,试通过计算,找出可使进入该园林的次数最多的购票方式。

(2)求一年中进入该园林至少超过多少次时,购买A类年票比较合算?三、用方程与不等式混合组来解例3:在双休日,某公司决定组织48名员工到附近一水上公园坐船游园,公司先派四、用分式方程来解例4:“丽园”开发公司生产的960件新产品,需要精加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完这批产品比乙工厂单独加工完这批产品多用20天,而乙工厂每天比甲工厂多加工8件产品,公司需付甲工厂加工费用每天80元,乙工厂加工费用每天120元。

浅谈桩筏基础设计方案优化中的几个问题

浅谈桩筏基础设计方案优化中的几个问题

浅谈桩筏基础设计方案优化中的几个问题摘要:从优化设计的角度出发,探讨了桩筏基础的设计思路、布桩方式、桩土共同作用等一系列问题到了一些有益的结论。

还提出了一些对设计进行优化的思路和具体方法供读者参考。

关键词:桩筏基础;设计思想;布桩方式;优化设汁1 引言随着经济建设的发展,高层建筑越来越多,桩筏、桩箱基础由于其在控制沉降和满足承载力要求方面的可靠性而受到了越来越多的重视。

目前设计通常采用“均匀布桩”或“等承载力布桩”等传统布桩方式。

不少学者、专家及工程设计人员对此提出了质疑,并进行了一系列比较深入的探讨和研究。

2设计思路采用桩筏基础一是控制建筑物的沉降和不均匀沉降,二是提高地基的承载力。

但对一具体工程而言,这两个要求的重要性并不是完全等同的。

桩群属于端承桩时,显然沉降量不是主控要素,因此本文讨论指的是摩擦群桩和端承摩擦群桩的桩筏基础。

由于岩土工程问题的复杂性,特别是由于桩筏基础沉降计算的复杂性和不精确性,不少工程设计人员不顾地质条件的差异,一味倾向于将桩基直接嵌入基岩,嵌岩深度有越来越深的趋势。

导致这种设计倾向的一个根由是,根本不考虑地基土参与承担荷载的可能性,以及忽略了建筑物可以承受一定沉降量的可能性。

事实上,不管是以承载力控制设计的思路,还是以沉降控制设计的思路,都必须满足建筑物对地基的沉降和承载力要求。

因为不管采用哪一方面作为主控要素,其另一方面的要求都必然是前提条件。

这两种设计思想主要是侧重点不同,设计的着手点不同而已。

图1投资与沉降在深厚软土地基上建筑物的沉降量与工程投资是成比例的,但不是线性关系,大致如图1所示。

3布桩方式布桩方式与实际设计息息相关,且意见不一,因此倍受关注。

本文就下述几个问题进行探讨。

3.1 “外强内弱”还是“内强外弱”对这个问题产生不同的意见,主要是基于以下两种不同认识:一是筏基沉降呈现“盆底型”的沉降衄线,即中间大,周边小;二是桩顶反力呈现“倒盆底型”的分布规律,即角桩反力大于边桩,边桩反力太于内部桩。

方案设计与方案优化

方案设计与方案优化

方案设计与方案优化方案设计是指通过分析问题、确定目标和约束条件的基础上,制定出一个实现目标的方案或计划的过程。

方案优化则是在方案设计的基础上,通过对方案进行逐步改进和优化,以提高方案的效果和效率。

本文将对方案设计与方案优化进行详细探讨,并以实际案例加以说明。

方案设计的步骤一般包括以下几个方面:问题分析、目标设定、方案制定、方案实施、效果评估。

在问题分析阶段,需要对问题进行深入分析,了解问题的性质、影响因素及现状。

目标设定阶段,确定解决问题的目标,并制定相应的指标和约束条件。

方案制定阶段,提出解决问题的方案,并进行可行性分析、风险评估等。

方案实施阶段,具体实施方案,并把握好实施过程中的关键环节。

效果评估阶段,对方案实施后的效果进行评估和反馈,进一步完善和优化方案。

方案优化的基本原则是以效果为导向,通过改进和优化方案的各个环节,以提高方案的效果和效率。

常用的优化方法包括:降低成本、提高生产力、缩短周期、减少风险、提高质量等。

优化方案的关键是要有创新思维和灵活应变的能力,及时调整和优化方案,以适应环境的变化。

下面以一个实际案例说明方案设计与方案优化的具体过程。

假设公司的目标是提高产品的销售量,现状是营销活动效果不佳,产品销售量低下。

经过问题分析,发现问题主要是市场竞争激烈、产品特点不明显、品牌知名度低等。

在目标设定阶段,确定目标是提高销售量50%。

方案制定阶段,提出以下方案:通过改进产品特点,增加产品的独特性和吸引力;加大营销活动力度,提升品牌知名度;优化销售渠道,提高产品的可获得性。

在方案实施阶段,具体实施上述方案,并监控实施效果。

在效果评估阶段,对方案实施后的销售量进行评估和反馈。

如果目标尚未达成,可以进一步优化方案,如加大营销力度、改进产品特点等。

在方案优化阶段,可以进一步考虑如何降低成本、提高生产力、缩短周期、减少风险、提高质量等,以优化方案。

比如,在产品特点改进方面,可以通过研发新产品或改进现有产品的形式、功能、材料等方面来提高产品的独特性和吸引力;在营销活动方面,可以通过更有创意的广告宣传、独特的促销策划等方式来提升品牌知名度;在销售渠道方面,可以通过线上线下渠道的整合和创新,提高产品的可获得性。

3最优方案问题

3最优方案问题

二、方程+不等式型例2.学校为了奖励初三优秀毕业生,计划购买一批平板电脑和一批学习机,经投标,购买1台平板电脑比购买3台学习机多600元,购买2台平板电脑和3台学习机共需8400元.(1)求购买1台平板电脑和1台学习机各需多少元?(2)学校根据实际情况,决定购买平板电脑和学习机共100台,要求购买的总费用不超过168000元,且购买学习机的台数不超过购买平板电脑台数的1.7倍.请问有哪几种购买方案?哪种方案最省钱?练习2:某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元。

(1)A、B两种商品的单价分别是多少元。

(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案。

二、图像型例3.某游泳馆普通票价为20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费;②银卡售价150元/张,每次凭卡另收10元.暑期普通票正常出售,两种优惠卡仅限暑期使用,不限次数,设游泳x次时,所需总费用为y元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数解析式.(2)在同一个平面直角坐标系中,若三种消费方式对应的函数图像如图所示,请求出点A、B、C的坐标.(3)请根据函数图像,直接写出选择哪种消费方式最合算.2.我市某风景区门票价格如图所示,黄冈赤壁旅游公司有甲、乙两个旅游团队,计划在“五一”小黄金周期间到该景点游玩.两团队游客人数之和为120人,乙团队人数不超过50人,设甲团队人数为x人.如果甲、乙两团队分别购买门票,两团队门票款之和为W元.(1)求W关于x的函数关系式,并写出自变量x的取值范围;(2)若甲团队人数不超过100人,请说明甲、乙两团队联合购票比分别购票最多可可节约多少钱;(3)“五一”小黄金周之后,该风景区对门票价格作了如下调整:人数不超过50人时,门票价格不变;人数超过50人但不超过100人时,每张门票额外降价a元;人数超过100人时,每张门票降价额外2a元,在(2)的条件下,若甲、乙两个旅行团队“五一”小黄金周之后去游玩,最多可节约3400元,求a的值.3.在机器调试过程中,生产甲、乙两种产品的效率分别为y1、y2(单位:件/时),y1、y2与工作时间x(小时)之间大致满足如图所示的函数关系,y1的图象为折线OABC,y2的图象是过O、B、C三点的抛物线一部分.(1)根据图象回答:•调试过程中,生产乙的效率高于甲的效率的时间x(小时)的取值范围是; 说明线段AB的实际意义是_____________.(2)求出调试过程中,当6≤x≤8(3)时,生产甲种产品的效率y1(件/时)与工作时间x(小时)之间的函数关系式.(3)调试结束后,一台机器先以图中甲的最大效率生产甲产品m小时,再以图中乙的最大效率生产乙产品,两种产品共生产6小时,求甲、乙两种产品的生产总量Z(件)与生产甲所用时间m(小时)之间的函数关系式.。

初中数学方案设计型问题(word版+详解答案)

初中数学方案设计型问题(word版+详解答案)

方案设计型问题【考题研究】方案设计型问题,是指根据问题所提供的信息,运用学过的技能和方法,进行设计和操作,然后通过分析、计算、证明等,确定出最佳方案的一类数学问题。

随着新课程改革的不断深入,一些新颖、灵活、密切联系实际的方案设计问题正越来越受到中考命题人员的喜爱,这些问题主要考查学生动手操作能力和创新能力,这也是新课程所要求的核心内容之一。

【解题攻略】(1)方程或不等式解决方案设计问题:首先要了解问题取材的生活背景;其次要弄清题意,根据题意建构恰当的方程模型或不等式模型,求出所求未知数的取值范围;最后再结合实际问题确定方案设计的种数.(2)择优型方案设计问题:这类问题一般方案已经给出,要求综合运用数学知识比较确定哪种方案合理.此类问题要注意两点:一是要符合问题描述的要求,二是要具有代表性.(3)操作型问题:大体可分为三类,即图案设计类、图形拼接类、图形分割类等.对于图案设计类,一般运用中心对称、轴对称或旋转等几何知识去解决;对于图形拼接类,关键是抓住需要拼接的图形与所给图形之间的内在关系,然后逐一组合;对于图形分割类,一般遵循由特殊到一般、由简单到复杂的动手操作过程.【解题类型及其思路】方案设计型问题涉及生产生活的方方面面,如:测量、购物、生产配料、汽车调配、图形拼接等。

所用到的数学知识有方程、不等式、函数、解直角三角形、概率和统计等知识。

这类问题的应用性非常突出,题目一般较长,做题之前要认真读题,理解题意,选择和构造合适的数学模型,通过数学求解,最终解决问题。

解答此类问题必须具有扎实的基础知识和灵活运用知识的能力,另外,解题时还要注重综合运用转化思想、数形结合的思想、方程函数思想及分类讨论等各种数学思想。

【典例指引】类型一【利用不等式(组)设计方案】【典例指引1】光明小区房屋外墙美化工程工地有大量货物需要运输,某车队有载重量为8吨和10吨的卡车共15辆,所有车辆运输一次能运输128吨货物.(1)求该车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的扩大,车队需要一次运输货物170吨以上,为了完成任务,车队准备增购这两种卡车共5辆(两种车都购买),请写出所有可能的购车方案.【举一反三】如果第一次租用2辆A型车和1辆B型车装运水果,一次运货10吨;第二次租用1辆A型车和2辆B型车装水果,一次运货11吨(两次运货都是满载)①求每辆A型车和B型车满载时各装水果多少吨?②现有31吨水果需运出,计划同时租用A型车和B型车一次运完,且每辆车都恰好装满,请设计出有哪几种租车方案?③若A型车每辆租金200元,B型车每辆租金300元,问哪种租车方案最省钱,最省钱的方案总共租金多少钱?类型二【利用方程(组)设计方案】【典例指引2】星光橱具店购进电饭煲和电压锅两种电器进行销售,其进价与售价如表:进价(元/台)售价(元/台)电饭煲200250电压锅160200(1)一季度,橱具店购进这两种电器共30台,用去了5600元,并且全部售完,问橱具店在该买卖中赚了多少钱?(2)为了满足市场需求,二季度橱具店决定用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的56,问橱具店有哪几种进货方案?并说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案橱具店赚钱最多?【举一反三】为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A 型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?类型三【利用一次函数的性质与不等式(组)设计方案】【典例指引3】某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的35,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?【举一反三】1.新农村社区改造中,有一部分楼盘要对外销售.某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套房面积均为120米2.若购买者一次性付清所有房款,开发商有两种优惠方案:(方案一)降价8%,另外每套房赠送a元装修基金;(方案二)降价10%,没有其他赠送.(1)请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数表达式;(2)老王要购买第十六层的一套房,若他一次性付清所有房款,请帮他计算哪种优惠方案更加合算.2.某市A,B两个蔬菜基地得知四川C,D两个灾民安置点分别急需蔬菜240t和260t的消息后,决定调运蔬菜支援灾区,已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,现将这些蔬菜全部调运C,D两个灾区安置点.从A地运往C,D两处的费用分别为每吨20元和25元,从B地运往C,D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.(1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;(2)设A,B两个蔬菜基地的总运费为w元,求出w与x之间的函数关系式,并求总运费最小的调运方案;(3)经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m元(m>0),其余线路的运费不变,试讨论总运费最小的调动方案.【新题训练】1.某化妆品店老板到厂家购A、B两种品牌店化妆品,若购进A品牌的化妆品5套,B品牌的化妆品6套,需要950元;若购进A品牌的化妆品3套,B品牌的化妆品2套,需要450元.(1)求A、B两种品牌的化妆品每套进价分别为多少元?(2)若销售1套A品牌的化妆品可获利30元,销售1套B品牌的化妆品可获利20元,根据市场需求,化妆品店老板决定,购进B品牌化妆品的数量比购进A品牌的化妆品数量的2倍还多4套,且B品牌化妆品最多可购进40套,这样化妆品全部售出后,可使总的获利不少于1200元,问有几种进货方案?如何进货?2.学校准备租用一批汽车去韶山研学,现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人.已知1辆甲种客车和3辆乙种客车需租金1320元,3辆甲种客车和2辆乙种客车共需租金1860元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,送330名师生集体外出活动,总费用不超过3360元,则共有哪几种租车方案?3.5.1劳动节,某校决定组织甲乙两队参加义务劳动,并购买队服.下面是服装厂给出的服装的价格表:经调查:两个队共75人(甲队人数不少于40人),如果分别各自购买队服,两队共需花费5600元,请回答以下问题:(1)如果甲、乙两队联合起来购买服装,那么比各自购买服装最多可以节省_________.(2)甲、乙两队各有多少名学生?(3)到了现场,因工作分配需要,临时决定从甲队抽调a人,从乙队抽调b人,组成丙队(要求从每队抽调的人数不少于10人),现已知重新组队后,甲队平均每人需植树1棵;乙队平均每人需植树4棵;丙队平均每人需植树6棵,甲乙丙三队共需植树265棵,请写出所有的抽调方案.4.每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元.(1)求甲、乙两种型号设备的价格;(2)该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有几种购买方案;(3)在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.5.某手机经销商计划同时购进一批甲、乙两种型号的手机,已知每部甲种型号的手机进价比每部乙种型号的手机进价多200元,且购进3部甲型号手机和2部乙型号手机,共需要资金9600元;(1)求甲、乙型号手机每部进价为多少元?(2)该店计划购进甲、乙两种型号的手机共20台进行销售,现已有顾客预定了8台甲种型号手机,且该店投入购进手机的资金不多于3.8万元,请求出有几种进货方案?并请写出进货方案.(3)售出一部甲种型号手机,利润率为30%,乙种型号手机的售价为2520元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m元充话费,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m的值.6.某电器超市销售每台进价分别为160元、120元的A、B两种型号的电风扇,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.7.某公司要将本公司100吨货物运往某地销售,经与运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨,已知租用1辆甲型汽车和2辆乙型汽车共需费用2600元;租用2辆甲型汽车和1辆乙型汽车共需费用2500元,且同一型号汽车每辆租车费用相同.(1)求租用辆甲型汽车、一辆乙型汽车的费用分别是多少元?(2)若这个公司计划此次租车费用不超过5200元,通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用,8.今年义乌市准备争创全国卫生城市,某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?9.2019年暑假期间,某学校计划租用8辆客车送280名师生参加社会实践活动,现有甲、乙两种客车,它们的载客量和租金如表,设租用甲种客车x辆,租车总费用为w元.甲种客车乙种客车载客量(人/辆)30 40租金(元/辆)270 320(1)求出w(元)与x(辆)之间函数关系式,并直接写出....自变量x的取值范围;(2)选择怎样的租车方案所需的费用最低?最低费用多少元?10.随着春节临近,某儿童游乐场推出了甲、乙两种消费卡,设消费次数为x时,所需费用为y元,且y与x的函数关系如图所示. 根据图中信息,解答下列问题;(1)分别求出选择这两种卡消费时,y关于x的函数表达式.(2)求出B点坐标.(3)洋洋爸爸准备240元钱用于洋洋在该游乐场消费,请问选择哪种消费卡划算?11.甲、乙两家商场以同样价格出售相同的商品,在同一促销期间两家商场都让利酬宾,让利方式如下:甲商场所有商品都按原价的8.5折出售,乙商场只对一次购物中超过200元后的价格部分按原价的7.5折出售.某顾客打算在促销期间到这两家商场中的一家去购物,设该顾客在一次购物中的购物金额的原价为x (x>0)元,让利后的购物金额为y元.(1)分别就甲、乙两家商场写出y关于x的函数解析式;(2)该顾客应如何选择这两家商场去购物会更省钱?并说明理由.12.我区注重城市绿化提高市民生活质量,新建林荫公园计划购买甲、乙两种树苗共800株,甲种树苗每株12元,乙种树苗每株15元.相关资料表明:甲、乙两种树苗的成活率分别为85%、90%.(1)若购买这两种树苗共用去10500元,则甲、乙两种树苗各购买多少株?(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.13.某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费.②银卡售价150元/张,每次凭卡另收10元.暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.14.随着人民生活水平不断提高,家庭轿车的拥有量逐年增加,据统计,某小区16年底拥有家庭轿车640辆,到18年底家庭轿车拥有量达到了1000辆.(1)若该小区家庭轿车的年平均增长量都相同,请求出这个增长率;(2)为了缓解停车矛盾,该小区计划投入15万元用于再建若干个停车位,若室内每个车位0.4万元,露天车位每个0.1万元,考虑到实际因素,计划露天车位数量大于室内车位数量的2倍,但小于室内数量的3.5倍,求出所有可能的方案.15.为奖励在演讲比赛中获奖的同学,班主任派学习委员小明为获奖同学买奖品,要求每人一件.小明到文具店看了商品后,决定奖品在钢笔和笔记本中选择.如果买4个笔记本和2支钢笔,则需86元;如果买3个笔记本和1支钢笔,则需57元.(1)求购买每个笔记本和钢笔分别为多少元?(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受8折优惠,若买x(x>0)支钢笔需要花y元,请你求出y与x的函数关系式;(3)在(2)的条件下,小明决定买同一种奖品,数量超过10个,请帮小明判断买哪种奖品省钱.16.某农产品生产基地收获红薯192吨,准备运给甲、乙两地的承包商进行包销.该基地用大、小两种货车共18辆恰好能一次性运完这批红薯,已知这两种货车的载重量分别为14吨/吨和8吨/辆,运往甲、乙两地的运费如下表:(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,总运费为w元,求w关于a的函数关系式;(3)在(2)的条件下,若甲地的承包商包销的红薯不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最低总运费.17.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买A、B两种商品共30件,要求购买B商品的数量不高于A商品数量的2倍,且该商店购买的A、B两种商品的总费用不超过276元,那么该商店有几种购买方案?(3)若购买A种商品m件,实际购买时A种商品下降了a(a>0)元,B种商品上涨了3a元,在(2)的条件下,此时购买这两种商品所需的最少费用为1076元,求m的值.18.为了迎接“六•一”儿童节.某儿童运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?该专卖店要获得最大利润应如何进货?方案设计型问题【考题研究】方案设计型问题,是指根据问题所提供的信息,运用学过的技能和方法,进行设计和操作,然后通过分析、计算、证明等,确定出最佳方案的一类数学问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问:①此人两次购物,若物品不打ห้องสมุดไป่ตู้,则需分别支付多少钱?
03
解:因为200×0.9=180,134<180,所以够134元的商品未优

又500×0.9=450<466,故购466的商品有两项优惠
设其售价为x元,依题意得 500×0.9+(500-x)×0.8=466
解得x=520
故如果不打折,则需分别支付134元和520元
甲、乙两班学生到集市上购买苹果,苹果的价格如下:
购苹果数 每千克价格
不超过30千 克
3元
30千克以上 但不超过50 千克
2.5元
50千克以上 2元
05
甲班分两次共购买苹果70kg(第二次多于第一次),共付
出189元,而乙班则一次购买苹果70kg。
(1)乙班比甲班少付出多少元?
(2)甲班第一次、第二次分别购买苹果多少千克?
谢谢聆听!
敬请批评指正
04
例2:某商场在2015年元旦期间搞促销活动,一次性购物不超过200元不优惠;超过200元, 但不超过500元,全部按9折优惠,超过500元,超过部分按8折优惠,其中的500元仍按9折优惠 某人两次购物分别用了134元和466元。
②此人两次购物共省多少钱?
解:134+520-(134+466)=54(元)
购票人数/人 每人门票价
1~50人 12元
51~100人 10元
100人以上 8元
某校七年级(1)、(2)两个班计划去游览该景点,其中
(1)班人数少于50人,(2)班人数多于50人且少于100人.
如果两班都以班为单位分别购票,那么一共应付1 118元;
02
如果两班联合起来作为一个团体购票,那么只需花费816钱 元。
③若将两次购物的钱合起来,一次购买相同的商品,是否更节省?说明 理由。
解:因为134+520=654,
所以654元的商品优惠价为500×0.9+(654-500)×0.8=573.2(元) 故节省(134+466)-573.2=26.8(元) 故若将两次购物合为一次购物,则更省钱,节省26.8元
点拨:本题中条件较复杂,要分别进行讨论,才能判断,分类讨 论是一种重要且常用的数学思想方法
教学重难点
理解题意,将实际问题转化为数学问题 分析问题中的数量关系和等量关系,从 而列出一元一次方程。
例1:某景点的门票价格规定如下表:
购票人数/ 1~50人 人
51~100人
100人以上
每人门票价 12元
10元
8元
某校七年级(1)、(2)两个班计划去游览该景点,其中
(1)班人数少于50人,(2)班人数多于50人且少于100人.
(2)团体购票与单独购票相比较,两个班各节约了多少钱?
解:七年级(1)班节省的费用为(12—8)×49=196(元)
七年级(2)班节省的费用为(10—8)×53=106(元)
例2:某商场在2015年元旦期间搞促销活动,一次性 购物不超过200元不优惠;超过200元,但不超过500 元,全部按9折优惠,超过500元,超过部分按8折优惠, 其中的500元仍按9折优惠。某人两次购物分别用 了134元和466元。
最优方案问题
地位 教学目标
一元一次方程解应用问题是本章的重点和难点,一直也 是中考的热门题型之一.
1、通过用一元一次方程解决实际问题,体会一 元一次方程是解决实际问题的有效的教学模式;
2、让学生将实际问题转化为数学问题分析问题中 的数量关系和等量关系,从而列出一元一次方程。
3、通过小组合作讨论交流,树立学好数学的信心!
如果两班都以班为单位分别购票,那么一共应付1 118元;
01
如果两班联合起来作为一个团体购票,那么只需花费816钱
元。
(1)两个班各有多少名学生? 解:两班共有816÷8=102(人)
设七年级(1)班有x人,则
12x+10(102-x)=1118 则102-x=102-49=53
解得x=49
例1:某景点的门票价格规定如下表:
相关文档
最新文档