材料力学I-第4章_弯曲应力_课后答案
简明材料力学第二版课后答案

简明材料力学第二版课后答案1. 第一章。
1.1 选择题。
1. A。
2. B。
3. C。
4. D。
5. A。
1.2 填空题。
1. 应力。
2. 变形。
3. 弹性模量。
4. 泊松比。
5. 线弹性。
1.3 简答题。
1. 什么是应力?应力是单位面积上的内力。
2. 什么是应变?应变是材料单位长度上的变形量。
3. 弹性模量的意义是什么?弹性模量是材料在弹性阶段的应力和应变之比,代表了材料的刚度。
4. 什么是泊松比?泊松比是材料在拉伸时横向收缩的比例。
5. 什么是线弹性?线弹性是指材料在应力小于屈服强度时,应力和应变成正比。
2. 第二章。
2.1 选择题。
1. C。
2. A。
3. D。
4. B。
5. C。
2.2 填空题。
1. 弹性极限。
2. 屈服强度。
3. 断裂强度。
4. 韧性。
5. 脆性。
2.3 简答题。
1. 什么是弹性极限?弹性极限是材料在拉伸时,超过该极限会发生塑性变形。
2. 什么是屈服强度?屈服强度是材料在拉伸时开始发生塑性变形的应力值。
3. 断裂强度和韧性有何区别?断裂强度是材料在拉伸时发生断裂的最大应力值,而韧性是材料吸收能量的能力。
4. 什么是脆性?脆性是指材料在受力时发生突然断裂的性质。
3. 第三章。
3.1 计算题。
1. 根据公式σ=F/A,计算出应力值。
2. 利用杨氏模量公式计算材料的弹性模量。
3. 根据泊松比公式计算材料的泊松比值。
3.2 简答题。
1. 什么是拉伸?拉伸是指材料在受力时发生长度增加的现象。
2. 什么是压缩?压缩是指材料在受力时发生长度减小的现象。
3. 什么是剪切?剪切是指材料在受力时发生形状变化但体积不变的现象。
4. 第四章。
4.1 计算题。
1. 根据应变-位移曲线计算出材料的弹性模量。
2. 根据拉伸试验数据计算出材料的屈服强度。
3. 利用断裂强度公式计算出材料的断裂强度值。
4.2 简答题。
1. 什么是应力-应变曲线?应力-应变曲线是材料在受力时应力和应变之间的关系曲线。
2. 什么是屈服点?屈服点是应力-应变曲线上的一个特殊点,表示材料开始发生塑性变形的位置。
材料力学-第四章弯曲应力教学

FS
x
dx
0
FS
x
dM x
dx
qx
dM 2x
dx 2
注:q(x)向上为正,反之为负。
●简易法作剪力图和弯矩图
①梁上无分布荷载作用:q(x)=0
qx dFS x 0
dx
FS x cont
剪力图斜率为零,FS(x)图为平行于x轴的直线。
dM x
B 1kN
A FAx
FB
FAy
FAx=-3kN FAy=3kN
FB=5kN
2)剪力图: 简易法 BC杆:取一点(水平线) DC杆:取两点(水平线) DA杆:取两点(斜直线)
D 3kN
C
1kN E
5kN
1kN B
3kN A
q=1kN/m 4m 3m
8kN
1m D
2m C
E
B 1kN
A FAx
A
A
ydA Sz 0 中性轴z必通过截面形心
A
横截面对z轴的静矩
My
z dA 0
A
zE
A
y dA
E
A
zydA
0
zydA I yz 0
A
截面对yz轴的惯性积
*由于y为对称轴, 上式自然满足。
M z
y dA
A
M
例5.作外伸梁的内力图
q
FA
ql 8
A
FB
5ql 8
FA
FS
B
lC
l
FB 2
ql / 2
孙训方第五版材料力学(I)第四章

第四章 弯曲应力
Ⅱ. 剪力方程和弯矩方程· 剪力图和弯矩图 剪力方程和弯矩方程实际上是表示梁的横截面上的剪 力和弯矩随截面位置变化的函数式,它们分别表示剪力和 弯矩随截面位置的变化规律。显示这种变化规律的图形则
分别称为剪力图和弯矩图。
27
五邑大学土木建筑系:材料力学
第四章 弯曲应力
例题4-4
图a所示悬臂梁受集度为q的满布均布荷载
15
五邑大学土木建筑系:材料力学
第四章 弯曲应力
2. 此梁的约束力亦可将梁在中间铰C处拆开,先利用
CB段梁作为分离体求约束力FBy和AC段梁在中间铰C处作用
在CB段梁上的FCx和FCy,然后利用AC段梁作为分离体邑大学土木建筑系:材料力学
第四章 弯曲应力
3. 显然可见,作用在此梁CB段上的荷载是要通过中
9
五邑大学土木建筑系:材料力学
第四章 弯曲应力
(2) 梁的基本形式 悬臂梁
简支梁
外伸梁
10
五邑大学土木建筑系:材料力学
第四章 弯曲应力
(3) 静定梁和超静定梁
在竖直荷载作用下,图a,b,c所示梁的约束力均可由
平面力系的三个独立的平衡方程求出,称为静定梁。
图d,e所示梁及其约束力不能单独利用平衡方程确定,
36
Fa FB l
五邑大学土木建筑系:材料力学
第四章 弯曲应力
2. 列剪力方程和弯矩方程 此梁上的集中荷载将梁分隔成AC和CB两段,两段内
任意横截面同一侧梁段上的外力显然不同,可见这两段梁
的剪力方程和弯矩方程均不相同,因此需分段列出。
F
AC段梁
FS(x)
M x
37
Fb 0 x a FS x FA l Fb M x FA x x 0 x a l
材料力学网上作业题参考答案

东北农业大学网络教育学院材料力学网上作业题(2015更新版)绪论一、名词解释1.强度2. 刚度3. 稳定性4. 变形5. 杆件6.板或壳7.块体二、简答题1.构件有哪些分类?2. 材料力学的研究对象是什么?3. 材料力学的任务是什么?4. 可变形固体有哪些基本假设?5. 杆件变形有哪些基本形式?6. 杆件的几何基本特征?7.载荷的分类?8. 设计构件时首先应考虑什么问题?设计过程中存在哪些矛盾?第一章轴向拉伸和压缩一、名词解释1.内力2. 轴力3.应力4.应变5.正应力6.切应力7.伸长率8.断面收缩率9. 许用应力 10.轴向拉伸 11.冷作硬化二、简答题1.杆件轴向拉伸或压缩时,外力特点是什么?2.杆件轴向拉伸或压缩时,变形特点是什么?3. 截面法求解杆件内力时,有哪些步骤?4.内力与应力有什么区别?5.极限应力与许用应力有什么区别?6.变形与应变有什么区别?7.什么是名义屈服应力?8.低碳钢和铸铁在轴向拉伸时,有什么样的力学特性?9.强度计算时,一般有哪学步骤?10.什么是胡克定律?11.表示材料的强度指标有哪些?12.表示材料的刚度指标有哪些?13.什么是泊松比?14. 表示材料的塑性指标有哪些?15.拉压杆横截面正应力公式适用范围是什么?16.直杆轴向拉伸或压缩变形时,在推导横截面正应力公式时,进行什么假设?三、计算题1. 试用截面法求下列各杆指定截面的轴力。
2. 试用截面法求下列各杆指定截面的轴力。
3. 试用截面法求下列各杆指定截面的轴力。
4. 试用截面法求下列各杆指定截面的轴力。
5. 试用截面法求下列各杆指定截面的轴力。
6. 试用截面法求下列各杆指定截面的轴力。
7 高炉装料器中的大钟拉杆如图a所示,拉杆下端以连接楔与大钟连接,连接处拉杆的横截面如图b所示;拉杆上端螺纹的小径d = 175 mm。
已知作用于拉杆上的静拉力F=850 kN,试计算大钟拉杆横截面上的最大静应力。
8 一桅杆起重机如图所示,起重杆AB为一钢管,其外径D = 20 mm,内径d≈18 mm;钢绳CB的横截面面积为10 mm2。
材料力学 第四章_5

于是有:
6
Pa 8.6 MPa
和最大切应力相差不大。
第四章 弯曲应力
3. 薄壁环形截面梁 薄壁环形截面梁在竖直平面 内弯曲时,其横截面上切应力 的特征如图a所示: (1) 由于d <<r0,故认为切应 力 的大小和方向沿壁厚 无变 化; (2) 由于梁的内、外壁上无切 应力,故根据切应力互等定理 知,横截面上切应力的方向与 圆周相切;
梁的正应力强度条件
对于中性轴为横截面对称轴的梁,上述强度条件 可写作 M max Wz
由拉、压许用应力[t]和[c]不相等的铸铁等脆 性材料制成的梁 t,max ≤[t] c,max ≤[c] 。
第四章 弯曲应力
例题 4-11
图a所示为槽形截面铸铁梁,横截面尺寸和形心 C的位置,如图b所示。已知横截面对于中性轴z 的 惯性矩Iz=5493×104 mm4,b=2 m。铸铁的许用拉 应力[t]=30 MPa,许用压应力[c]=90 MPa 。试求 梁的许用荷载[F]。
例题 4-13
第四章 弯曲应力
解: 1. 求max 梁的剪力图如图c所示,由图可见FS,max=75kN。 由型钢表查得56a号工字钢截面的尺寸如图b所示, Iz=65 586 cm4和Iz/S * z,max=47.73cm。d=12.5mm
第四章 弯曲应力
max
* FS ,max S z ,max FS ,max 75 103 N 47.73 102 m 12.5 103 m I zd Iz * d S z ,max
第四章 弯曲应力
d FS b d x
得
* * d M S z FS S z d x I zb I zb
材料力学习题册1-14概念答案

第一章绪论一、是非判断题材料力学的研究方法与理论力学的研究方法完全相同。
( × ) 内力只作用在杆件截面的形心处。
( × )杆件某截面上的内力是该截面上应力的代数和。
( × )确定截面内力的截面法,适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普遍情况。
( ∨ )根据各向同性假设,可认为材料的弹性常数在各方向都相同。
( ∨ )根据均匀性假设,可认为构件的弹性常数在各点处都相同。
( ∨ )同一截面上正应力σ与切应力τ必相互垂直。
( ∨ )同一截面上各点的正应力σ必定大小相等,方向相同。
( × )同一截面上各点的切应力τ必相互平行。
( × )应变分为正应变ε和切应变γ。
( ∨ )应变为无量纲量。
( ∨ )若物体各部分均无变形,则物体内各点的应变均为零。
( ∨ )若物体内各点的应变均为零,则物体无位移。
( × )平衡状态弹性体的任意部分的内力都与外力保持平衡。
( ∨ )题图所示结构中,AD杆发生的变形为弯曲与压缩的组合变形。
( ∨ )题图所示结构中,AB杆将发生弯曲与压缩的组合变形。
( × )B题图题图二、填空题材料力学主要研究 受力后发生的,以及由此产生的 。
拉伸或压缩的受力特征是 ,变形特征是 。
剪切的受力特征是 ,变形特征是。
扭转的受力特征是 ,变形特征是 。
弯曲的受力特征是 ,变形特征是 。
组合受力与变形是指 。
构件的承载能力包括 , 和 三个方面。
所谓 ,是指材料或构件抵抗破坏的能力。
所谓 ,是指构件抵抗变形的能力。
所谓 ,是指材料或构件保持其原有平衡形式的能力。
根据固体材料的性能作如下三个基本假设 , , 。
认为固体在其整个几何空间内无间隙地充满了组成该物体的物质,这样的假设称为 。
根据这一假设构件的 、 和 就可以用坐标的连续函数来表示。
填题图所示结构中,杆1发生 变形, 杆2发生 变形,杆3发生 变形。
材料力学考研复习资料第4章弯曲内力

M eb l
发生在C截面右侧
思考:对称性与反对称性
FA
F
FB
A
B C
l/2
l/2
Fs
F/2
x
F/2
x
M
Fl/4
FA
Me
FB
A
B C
l/2
l/2
Fs
Me l
x
Me/2
M
Me/2
x
结论:
• 结构对称、外力对称时,弯矩图为正对称, 剪力图为反对称
• 结构对称、外力反对称时,弯矩图为反对称, 剪力图为正对称
34
A1 2
34
Bx
内力
FS M
1—1 -P -Pa
2—2 2P -Pa
3—3 2P Pa
4—4 2P -2Pa
3、在集中力作用处,剪力值发生突变,突变值= 集中力大小;
在集中力偶作用处,弯矩值发生突变,突变值= 集中力偶矩大小。
例 图示简支梁受到三角形分布荷载的作用,最大荷
载集度为q0,试求截面C上的内力。
1 FS1
M1 Fa ( 顺 )
截面2—2
Fy 0 FS2 FA F 0
F
C2 2 M2
FA 2 FS2
FS2 FA F 2F MC2 0 M2 F a 0
M 2 Fa ( 顺 )
y
Me =3Fa
F
1A2 3 4
B
1 2 34
x
a
a
FA
2a
FB
截面3—3 F
C33 M3
1 8
ql
FSB左
1 ql 8
剪力方程为常数,剪力图为
水平线。
M图:
材料力学第五版课后习题答案详解

Microsoft Corporation材料力学课后答案[键入文档副标题]lenovo[选取日期]第二章轴向拉伸和压缩2-12-22-32-42-52-62-72-82-9下页2-1试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a)解:;;(b)解:;;(c)解:;。
(d)解:。
返回2-2 试求图示等直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。
若横截面面积,试求各横截面上的应力。
解:返回2-3试求图示阶梯状直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。
若横截面面积,,,并求各横截面上的应力。
解:返回2-4 图示一混合屋架结构的计算简图。
屋架的上弦用钢筋混凝土制成。
下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个75mm×8mm的等边角钢。
已知屋面承受集度为的竖直均布荷载。
试求拉杆AE和EG横截面上的应力。
解:=1)求内力取I-I分离体得(拉)取节点E为分离体,故(拉)2)求应力75×8等边角钢的面积A=11.5 cm2(拉)(拉)2-5(2-6)图示拉杆承受轴向拉力,杆的横截面面积。
如以表示斜截面与横截面的夹角,试求当,30,45,60,90时各斜截面上的正应力和切应力,并用图表示其方向。
解:2-6(2-8) 一木桩柱受力如图所示。
柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E=10 GPa。
如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形。
解:(压)(压)。