时间序列分析期末大作业 GNP平减指数的季度序列分析

合集下载

经济统计学中的时间序列分析

经济统计学中的时间序列分析

经济统计学中的时间序列分析时间序列分析是经济统计学中一种重要的分析方法,它通过对一系列按时间顺序排列的数据进行观察和分析,以揭示数据背后的规律和趋势。

时间序列分析在经济学、金融学、市场营销等领域都有着广泛的应用。

一、时间序列的特点时间序列数据是指按照时间顺序排列的一系列观测值。

与横截面数据相比,时间序列数据具有以下几个特点:1. 趋势性:时间序列数据常常呈现出明显的趋势性,即数据在长期内呈现出逐渐增长或逐渐下降的趋势。

2. 季节性:时间序列数据中常常存在季节性的波动,即数据在一年内呈现出周期性的变动。

3. 周期性:时间序列数据有时还会呈现出较长周期的波动,如经济周期的波动。

4. 随机性:时间序列数据中还包含了一定的随机成分,这些随机成分往往是由于不可预测的外部因素引起的。

二、时间序列分析的方法时间序列分析主要包括描述性分析、平稳性检验、模型识别、参数估计和模型检验等步骤。

1. 描述性分析:描述性分析是对时间序列数据的基本特征进行总结和描述,包括计算均值、方差、自相关系数等。

2. 平稳性检验:平稳性是时间序列分析的前提条件,它要求数据的均值和方差在时间上保持不变。

平稳性检验常用的方法有单位根检验和ADF检验等。

3. 模型识别:模型识别是选择适合的时间序列模型的过程,常用的模型有AR模型、MA模型、ARMA模型和ARIMA模型等。

4. 参数估计:参数估计是利用已有的时间序列数据,通过最大似然估计等方法,对模型的参数进行估计。

5. 模型检验:模型检验是对已估计的模型进行检验,以判断模型是否能够很好地拟合数据。

常用的检验方法有残差分析、模型预测等。

三、时间序列分析的应用时间序列分析在经济学和金融学中有着广泛的应用,可以用于预测经济指标、分析金融市场等。

1. 经济预测:时间序列分析可以用来预测经济指标的未来走势,如GDP增长率、通货膨胀率等。

通过对历史数据的分析,可以建立合适的模型,从而对未来经济的发展趋势进行预测。

统计学时间序列分析

统计学时间序列分析

统计学时间序列分析时间序列是经济学、金融学和其他社会科学领域中的一个重要分析对象。

通过对时间序列数据的分析,我们可以揭示数据之间的关系、趋势和周期性,从而为决策提供有力的支持和预测。

统计学时间序列分析是一种应用数学方法的工具,用于对时间序列数据进行建模和预测。

一、时间序列的基本概念时间序列是按时间顺序排列的一系列观测值的集合。

在时间序列分析中,我们关注数据之间的内在关系,而忽略其他因素的影响。

时间序列数据通常具有以下特征:1. 趋势性:时间序列数据的长期变化趋势。

2. 季节性:时间序列数据在一年内固定时间段内的重复模式。

3. 循环性:时间序列数据中存在的多重周期性波动。

4. 随机性:时间序列数据中的不规则、无法预测的波动。

二、时间序列分析的方法在进行时间序列分析时,我们可以采用以下方法来揭示数据的内在规律:1. 描述性统计分析:通过计算数据的均值、方差、相关系数等指标,对数据的整体特征进行描述。

2. 图表分析:通过绘制折线图、柱状图等图表,展示时间序列数据的变化趋势和周期性。

3. 分解模型:将时间序列数据分解为趋势项、季节性项和残差项,以揭示数据的内在结构。

4. 平滑法:通过移动平均法、指数平滑法等方法,消除时间序列数据的随机波动,从而揭示趋势和季节性成分。

5. 自回归移动平均模型(ARIMA):ARIMA模型是一种常用的时间序列分析方法,可以对数据进行预测和建模。

它综合考虑了自回归、移动平均和差分的影响因素。

三、时间序列分析的应用领域时间序列分析广泛应用于经济学、金融学、市场调研等领域,具体应用包括:1. 经济预测:通过对经济数据进行时间序列分析,可以预测未来的经济发展趋势,为政府决策提供参考。

2. 股票市场分析:时间序列分析可以帮助分析师预测股票市场的走势,制定投资策略。

3. 需求预测:通过对销售数据进行时间序列分析,可以预测产品的需求量,为企业的生产和供应链管理提供指导。

4. 天气预测:通过对气象数据进行时间序列分析,可以预测未来的天气状况,为农业、旅游等行业提供参考。

季节性时间序列分析方法

季节性时间序列分析方法

季节性时间序列分析方法1. 引言季节性时间序列是指一系列数据在一年中呈现出周期性的模式变化,例如销售量、气温、人口等。

对于这样的时间序列数据,我们需要利用适当的方法进行分析,以便更好地了解和预测未来的趋势和模式。

本文将介绍几种常见的季节性时间序列分析方法,包括季节性平均法、季节指数法、季节性趋势法以及季节分解法。

2. 季节性平均法季节性平均法是一种简单直观的方法,它将每个季节中的数据取平均值,然后用这些季节性平均值来表示整个时间序列的趋势。

具体步骤如下:1.收集时间序列数据,将数据按照季节分组。

2.对每个季节的数据进行平均计算,得到季节性平均值。

3.用季节性平均值来表示整个时间序列的趋势。

季节性平均法的优点是简单易操作,缺点是无法考虑趋势的变化和异常值的影响。

3. 季节指数法季节指数法是一种常用的季节性时间序列分析方法,它通过计算每个季节的指数来表示季节性的影响。

具体步骤如下:1.收集时间序列数据,将数据按照季节分组。

2.对每个季节的数据计算平均值。

3.计算每个季节的指数,即该季节的平均值除以整个时间序列的平均值,并乘以一个常数,通常取100。

4.用季节指数来表示整个时间序列的趋势,可以通过季节指数与相应季节的实际数据相乘得到预测值。

季节指数法的优点是能够较好地考虑季节性的影响,缺点是对于季节性的变化不敏感。

4. 季节性趋势法季节性趋势法是一种综合考虑趋势和季节性的时间序列分析方法,它通过拟合趋势曲线和季节指数来预测未来的趋势。

具体步骤如下:1.收集时间序列数据,将数据按照季节分组。

2.对每个季节的数据计算平均值。

3.计算季节指数,同季节指数法中的步骤。

4.拟合趋势曲线,可以使用线性回归、移动平均等方法。

5.将趋势曲线与季节指数相乘,得到预测值。

季节性趋势法的优点是能够较好地处理季节性和趋势的影响,缺点是计算比较复杂,对于异常值的影响较大。

5. 季节分解法季节分解法是一种常用的季节性时间序列分析方法,它将整个时间序列分解为趋势、季节性和随机成分三个部分,对每个部分进行分析和预测。

时间序列分析

时间序列分析

时间序列分析随着大数据时代的到来,时间序列分析在许多领域中变得越来越重要和有用。

时间序列是同一个变量随时间变化的观察值的集合,通常是按照固定的时间间隔收集的。

时间序列分析的目的是通过了解过去的数据来预测未来的趋势和行为,并且可以用于决策制定、政策制定、生产计划和成本预测等。

时间序列分析的方法主要包括描述性分析、时间序列分解、移动平均、指数平滑法、自回归移动平均模型(ARMA)、季节性自回归移动平均模型(SARIMA)等。

1. 描述性分析描述性分析是时间序列分析中最简单的方法。

它主要是通过绘制时间序列图来展示时间序列的趋势和周期性。

通过这些图标,我们可以看到序列的长期趋势、季节性变化以及随机波动。

2. 时间序列分解时间序列分解是将时间序列分解成趋势、季节性和随机波动成分的方法。

趋势是指随时间变化而出现的长期变化趋势。

季节性是指在固定时间内,随时间变化而出现的周期性变化。

随机波动是由于随机因素引起的不规则波动。

时间序列分解不仅可以帮助我们理解时间序列的结构,还可以提供有关未来趋势和季节性变化的预测。

3. 移动平均移动平均是一种常见的平滑时间序列的方法。

它可以用于减少随机波动并减轻季节性变化的影响。

移动平均是指在一段时间内,将所有观察值的平均值作为一个预测值。

较短时间的移动平均可以更好地反映季节性变化,而较长时间的移动平均可以更好地反映趋势。

4. 指数平滑法指数平滑法通过对过去的观察值进行加权平均来预测未来的值。

这种方法适用于数据中存在随机波动和季节性变化的情况。

指数平滑法中的系数反映了过去观察值的重要性,离当前预测时间越近的观察值的重要性越大。

5. 自回归移动平均模型(ARMA)自回归移动平均模型是一种常见的时间序列模型。

它将时间序列的值分解为自回归和移动平均成分。

自回归成分取决于序列的过去值,移动平均成分取决于序列以前的误差和随机波动。

ARMA模型的参数可以通过拟合时间序列来得到,然后可以用于预测未来值。

时间序列分析期末大作业GNP平减指数的季度序列分析

时间序列分析期末大作业GNP平减指数的季度序列分析

20XX级XX专业时间序列分析大作业20XX年X月X日某国佃60年第一季度-佃93年第四季度GNP平减指数的季度序列分析摘要附录中给出了某国1960年第一季度-1993年第四季度GNP平减指数的季度序列,本文旨在利用时间序列分析并结合Eviews来研究该时间序列,并给出该国GNP平减指数的时间序列方程式,从而对该国的GNP平减指数进行定性分析。

在进行时间序列分析时,先对数据进行平稳性检测,发现这个序列不平稳且具有季节性,故要用差分进行平稳化操作。

经过4阶普通差分,周期为4的季节差分后序列达到平稳。

平稳化后进行模型的识别。

首先要进行模型的识别与定阶,通过平稳后的序列的自相关系数和偏自相关系数图初步判定模型的种类,当模型都可以通过检验时,通过AIC准则进行模型的拟合度检验,模型的AIC值较小的拟合度较高。

拟合度检验后发现AR(4)SAR(4)的模型拟合度最高,故此序列的模型为AR(4)SAR(4)模型。

当模型定阶后,就要对模型参数T T: 」,;2,山p ,二- *狂,川入进行估计,这一步可以得到模型表达式。

定阶与参数估计完成后,还要对模型进行检验,即要检验弋是否为平稳白噪声,这里我们用检验法进行模型检验。

关键字:时间序列分析,Eviews,乘积季节模型1、平稳性和季节性检测1.1从序列的时序图可以初步判断样本序列是否平稳:根据平稳时间序列均值、方差为常数的性质,平稳时间序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界的特点。

如果观察序列的时序图显示出该序列有明显的趋势性或者周期性,则时间序列通常不是平稳的时间序列。

该时间序列的时序图如下图所示:该时序图存在明显的上升趋势,故可判定该时间序列非平稳。

1.2从序列的自相关系数和偏自相关系数图判断样本序列是否平稳:样本自相关函数与样本偏相关函数如果是截尾的或者是拖尾的 (即被负指数控制的),说明已服从ARMA 模型。

若自相关函数与偏相关函数至少有1个不是截尾的或拖尾的,说明序列不是平稳的,可以作1阶差分,并求其样本自相关函数与样本偏相关函数,再用上述方法讨论。

经济学毕业论文中的时间序列分析方法

经济学毕业论文中的时间序列分析方法

经济学毕业论文中的时间序列分析方法时间序列分析是经济学研究中常用的一种方法,用于分析经济数据中的时间变化趋势和周期性。

在经济学毕业论文中,时间序列分析方法被广泛应用于研究经济变量的发展趋势、预测未来趋势以及评估政策的效果。

本文将介绍几种常用的时间序列分析方法,并以一个具体的经济学例子来说明其应用。

一、移动平均法移动平均法是一种常见的时间序列分析方法,常用于平滑并展示时间序列的趋势。

该方法通过对观测值进行平均计算,得到移动平均值,从而消除随机波动和短期波动对趋势分析的干扰。

移动平均法可以分为简单移动平均和加权移动平均两种。

简单移动平均是对一定时间段内的数据进行求和平均,例如我们可以计算过去5年的简单移动平均来观察某个经济变量的长期趋势。

加权移动平均则是对不同时间段内的数据进行加权平均,常用于对近期数据赋予更高的权重。

二、指数平滑法指数平滑法也是常用的时间序列分析方法,用于对时间序列的趋势进行预测。

该方法基于历史数据赋予不同权重,通过不断调整权重来预测未来的趋势。

简单指数平滑是最常见的一种指数平滑法,它通过对观测值进行加权平均来估计下一个时期的值。

简单指数平滑法的核心公式如下:\[\hat{Y}_{t}=\alpha Y_{t-1}+(1-\alpha)\hat{Y}_{t-1}\]其中,\(\hat{Y}_{t}\)表示预测值, \(Y_{t-1}\)表示上一个观测值,\(\hat{Y}_{t-1}\)表示上一个时期的预测值,\(\alpha\)表示平滑系数。

三、自回归移动平均模型(ARMA)自回归移动平均模型是一种更为复杂的时间序列分析方法,用于描述时间序列变量的动态特征。

ARMA模型结合了自回归模型(AR)和移动平均模型(MA),可以更准确地描述时间序列的变化。

AR模型是指时间序列变量与其自身的滞后值之间存在相关性。

MA模型是指时间序列变量与其滞后的随机误差之间存在相关性。

ARMA模型的核心思想是通过计算滞后值和误差来建立预测模型。

经济统计数据的时间序列分析方法

经济统计数据的时间序列分析方法

经济统计数据的时间序列分析方法时间序列分析是一种研究随时间变化的数据的方法,它在经济学领域中被广泛应用。

经济统计数据的时间序列分析方法可以帮助我们理解经济现象的演变趋势,预测未来的发展方向,并为政府和企业的决策提供依据。

本文将介绍一些常用的经济统计数据的时间序列分析方法。

首先,趋势分析是时间序列分析的基本方法之一。

趋势分析可以帮助我们了解经济现象的长期变化趋势。

常见的趋势分析方法包括移动平均法和指数平滑法。

移动平均法是通过计算一定时间段内的平均值来平滑数据,消除季节性和随机波动的影响,从而反映出数据的趋势变化。

指数平滑法则是通过给予最近观测值更大的权重,使得较早观测值的权重逐渐减小,从而反映出数据的趋势变化。

这两种方法都可以帮助我们确定经济现象的长期趋势,从而为决策提供参考。

其次,周期分析也是一种常用的时间序列分析方法。

周期分析可以帮助我们了解经济现象的短期波动。

常见的周期分析方法包括季节性调整和周期性分解。

季节性调整是通过消除季节性因素的影响,使得数据更加平稳,从而更好地分析趋势和周期性变化。

周期性分解则是将数据分解为趋势、周期和随机成分,以便更好地理解经济现象的周期性变化。

这些方法可以帮助我们确定经济现象的周期性波动,从而更好地制定政策和规划经营策略。

此外,相关分析也是一种常用的时间序列分析方法。

相关分析可以帮助我们了解经济现象之间的关系。

常见的相关分析方法包括相关系数和回归分析。

相关系数可以衡量两个变量之间的线性关系的强度和方向。

回归分析则可以帮助我们建立经济现象之间的数学模型,从而预测未来的发展趋势。

这些方法可以帮助我们了解经济现象之间的相互影响,从而更好地制定政策和规划经营策略。

最后,时间序列分析还可以结合其他方法进行综合分析。

例如,可以将时间序列分析与因果分析相结合,以探索经济现象之间的因果关系。

也可以将时间序列分析与空间分析相结合,以探索经济现象在不同地区的差异和联系。

这些综合分析方法可以帮助我们更全面地理解经济现象,从而更好地制定决策。

时间序列期末试题及答案

时间序列期末试题及答案

时间序列期末试题及答案1. 试题考试时间:3小时考试形式:闭卷注意:请将答案写在答题纸上,不要在试卷上直接作答。

题目一:简答题(每题10分)1. 什么是时间序列分析?时间序列分析具有哪些应用领域?2. 请解释平稳时间序列的概念,并提供一个平稳时间序列的例子。

3. 什么是季节性、趋势性和周期性?请分别举一个例子。

4. 时间序列分析的步骤是什么?5. 请解释自相关函数(ACF)和偏自相关函数(PACF)的概念,并说明它们在时间序列分析中的作用。

题目二:计算题(每题20分)1. 从某超市取得了一组销售额数据,包括2004年到2019年的年度销售额。

请计算该时间序列的移动平均值,并绘制移动平均图。

2. 下表是某公司2005年到2019年每个季度的销售额数据,请利用季节性指数法预测2020年第一季度的销售额。

| 年份 | 第一季度销售额 ||-------|--------------|| 2005 | 100 || 2006 | 120 || 2007 | 140 || 2008 | 160 || 2009 | 180 || 2010 | 200 || 2011 | 220 || 2012 | 240 || 2013 | 260 || 2014 | 280 || 2015 | 300 || 2016 | 320 || 2017 | 340 || 2018 | 360 || 2019 | 380 |3. 通过对某股票每周收益率进行分析,发现其自相关系数和偏自相关系数都在95%置信区间之外。

该时间序列数据是否呈现ARCH效应?请解释原因。

4. 将某商品销售额数据建模为自回归移动平均模型(ARMA),请给出该模型的阶数,并解释原因。

2. 答案题目一:简答题1. 时间序列分析是一种研究时间相关数据的统计方法,通过对时间序列的特征进行分析,揭示其随时间变化的规律和趋势。

时间序列分析广泛应用于经济学、金融学、气象学、社会学等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20XX级XX专业时间序列分析大作业20XX年X月X日某国1960年第一季度-1993年第四季度GNP平减指数的季度序列分析摘要附录中给出了某国1960年第一季度-1993年第四季度GNP平减指数的季度序列,本文旨在利用时间序列分析并结合Eviews来研究该时间序列,并给出该国GNP平减指数的时间序列方程式,从而对该国的GNP平减指数进行定性分析。

在进行时间序列分析时,先对数据进行平稳性检测,发现这个序列不平稳且具有季节性,故要用差分进行平稳化操作。

经过4阶普通差分,周期为4的季节差分后序列达到平稳。

平稳化后进行模型的识别。

首先要进行模型的识别与定阶,通过平稳后的序列的自相关系数和偏自相关系数图初步判定模型的种类,当模型都可以通过检验时,通过AIC准则进行模型的拟合度检验,模型的AIC值较小的拟合度较高。

拟合度检验后发现AR(4)SAR(4)的模型拟合度最高,故此序列的模型为AR(4)SAR(4)模型。

当模型定阶后,就要对模型参数()12,,Tp ϕϕϕϕ=,()12,,Tq θθθθ=进行估计,这一步可以得到模型表达式。

定阶与参数估计完成后,还要对模型进行检验,即要检验t ε是否为平稳白噪声,这里我们用2χ检验法进行模型检验。

关键字:时间序列分析,Eviews ,乘积季节模型1、平稳性和季节性检测1.1 从序列的时序图可以初步判断样本序列是否平稳:根据平稳时间序列均值、方差为常数的性质,平稳时间序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界的特点。

如果观察序列的时序图显示出该序列有明显的趋势性或者周期性,则时间序列通常不是平稳的时间序列。

该时间序列的时序图如下图所示:该时序图存在明显的上升趋势,故可判定该时间序列非平稳。

1.2 从序列的自相关系数和偏自相关系数图判断样本序列是否平稳:样本自相关函数与样本偏相关函数如果是截尾的或者是拖尾的(即被负指数控制的),说明已服从ARMA 模型。

若自相关函数与偏相关函数至少有1个不是截尾的或拖尾的,说明序列不是平稳的,可以作1阶差分,并求其样本自相关函数与样本偏相关函数,再用上述方法讨论。

这样,直至判断为平稳序列为止。

在实际计算中,若遇到样本自相关函数或样本偏相关函数的图形虽然下降,但下降很慢,应认为是非平稳序列,需作差分运算。

该时间序列的自相关系数和偏自相关系数图:上图显示该国1960年第一季度-1993年第四季度GNP 平减指数的季度序列的自相关系数缓慢下降,说明该时间序列是一个既有趋势又有季节变动的序列,由于该序列不是一个平稳的时间序列,所以我们不能由其偏自相关系数简单建立一个自回归模型,该序列模型必须将序列进行差分变化,使其平稳化。

2、 差分该序列为某国1960年第一季度-1993年第四季度GNP 平减指数的季度序列,由此我们可以判定该序列季节周期为4。

下面通过对普通差分的确定来使序列达到平稳,序列是否平稳采用的是单位根检验。

考虑()..21,0,i i dt t t tX X N φεεσ-=+平稳 。

单位根检验就是来检验是否存在单位根。

这里: 检验的统计量为DF 统计量:可以证明:当 时, 的极限分布为N(0,1) 当 时, 的极限分布不是正态分布,此时的极限分布为:其中 是标准的Winner 过程。

极限分布的分位数可由随机模拟产生,记临界值为 ,则: 若 ,则拒绝 ,即认为 平稳; 若 ,则接受 ,即认为 有单位根(不平稳)。

在本题中,对原序列进行4次普通差分,季节差分的周期为4,得到平稳的新序列,其时序图如下:⇔||1φ<01:1(),:||1H H φφ=<有单位根,非平稳(无单位根,平稳)()()()()2221212ˆ1ˆˆˆˆ,LSE ˆ1ˆ1ˆˆˆ=,=n tt t t t nt t t s s n s n X X X φφφφφφφεφεφ=--=-=--∑∑其中,为的,为的标准误这里为样本容量,为残差||1φ<()ˆt φ1φ=()ˆt φ()()()()()021011ˆ12ˆˆH L w t t s w t dt φφφ--=→⎰()w t DF αDF DF α<0H {}t X DF DF α>0H {}t X自相关系数和偏自相关系数图:单位根检验:序列达到平稳。

3、 模型定阶通过上面的自相关系数和偏自相关系数图,可以初步判定该序列的模型为:AR(1),AR(2),AR(3),AR(4),MA(1), AR(1) SAR(4), AR(2)SAR(4) ,AR(3)SAR(4), AR(4)SAR(4), MA(1)SMA(4),下面用AIC 准则进行进一步的判定。

3.1 模型定阶的AIC 准则设X 是随机变量,它的概率密度是f (x ),其中含有k 个未知参数,设未知参数向24.83119ADF ADF α=-<量为 ()00012,,Tkββββ=f (x )属于分布族()|g x β,其中 ()00012,,Tkββββ=。

显然f (x ) =g (x | β 0 )K -L 信息量可以用来刻画g (x | β )与 f (x )的接近程度,其定义为:()()()()()()f ,g | ln|f x I f x g x ββ⋅⋅=⎰则有()()()f ,g | 0I β⋅⋅≥,且有()()()0f ,g | |0I βββ-⋅⋅= 。

K -L 信息量是寻求最接近于 f (x )的参数概率密度g (x | β ),使得I ( f (⋅), g (⋅ |β )) = min 经过理论分析,当给定样本观测值()12,,n x x x x =(它是容量为n 的样本),设()ˆm k β是模型参数()12,,Tk ββββ=(未知参数个数是k ,k 未知)的最大似然估计,这里标出左足标“ k ”是为了强调未知参数个数k 是未知的,是需要估计的。

设ln(L (β ))是其对数似然函数,AIC 信息准则是:使得式(115)中的k (k 确定后,()ˆm kβ就确定)满足()()()()ˆ2ln 2min m kAIC k Lkβ=-+=设t X 是ARMA( p , q )序列,其中未知参数的个数是1k p q =++个,包括自回归参数()12,,Tp ϕϕϕϕ=,移动平均参数 ()12,,Tq θθθθ=及 2εσ。

结合最大似然估计法得到平方和估计对应的对数似然估计函数()()222,|ln 22S nL x εεεββσσσ'=--又2εσ的最大似然估计为()21ˆS nεσβ=代入上式,得()22,|ln 22nnL x εεβσσ'=--因此,ARMA( p , q )序列 AIC 定阶准则为:选 p , q ,使得:()()2ln 22min AIC n p q εσ=+++=其中,n 是样本容量,2εσ与 p 和q 有关。

若当ˆ,?p p q q ==时,上式达到最小值,则认为序列是()ˆ,?ARMA pq 。

当()ˆ,?ARMApq 序列含有未知均值参数μ 时,模型为 ()()()t t B X B ϕμθε-=这时,未知参数个数为k = p + q + 2,AIC 准则为:选取 p , q ,使得()()2ln 22min ˆAIC n p q εσ=+++=3.2 2χ检验验证模型的合理性2χ检验法::给定显著性水平α,查表得上α分位数()2m r αχ-,则当()22m r αχχ>-时拒绝0H ,即认为t ε非白噪声,模型检验未通过;而当()22m r αχχ≤-时,接受0H ,认为t ε是白噪声,模型通过检验。

3.3 Eviews 中的判定过程:AR(1):AR(2):AR(3):AR(4):MA(1):AR(1)SAR(4):AR(2)SAR(4) :不通过检验。

AR(3)SAR(4):AR(4)SAR(4): MA(1)SMA(4):比较上面各模型的AIC 值,发现AR(4)SAR(4)模型的AIC 值最小,即此模型的拟合度更高。

且常数项c 对应的P 值大于0.05,故省去c ,得到的结果为:得到的模型的表达式为:这是一个乘积季节模型。

附录某国1960年第一季度-1993年第四季度GNP 平减指数的季度序列56.4 59.58 66.17 71.08 78.27 95.7 126.68 168.05 56.21 59.45 66.47 71.41 78.53 96.52 128.99 171.94 56.41 59.77 67.04 71.46 79.28 97.39 130.12 176.46 56.67 60.27 67.55 71.66 80.13 98.72 131.3 180.24 56.77 60.65 67.81 72.17 81.15 99.42 132.89 185.13 57.01 61.03 68 72.36 82.14 100.25 134.99 190.01 56.99 61.4 68.44 72.57 82.84 101.54 136.8 193.03 57.58 61.91 68.56 72.97 83.99 102.95 139.01 197.7()()()()()2344234421 1.682397 1.805311 1.0180440.3511910.51802711~0,t t t B B B B B B B B B B X WN εεσ+++++-----=57.58 62.43 68.86 73.16 84.97 104.75 141.03 201.6957.57 63.13 68.96 73.77 86.1 106.53 143.24 203.9857.92 63.69 68.88 74.13 87.49 108.74 145.12 206.7758.58 64.4 69.22 74.56 88.62 110.72 148.89 208.5358.76 64.65 69.54 74.96 89.89 113.48 152.02 210.2758.8 65.28 69.65 75.71 91.07 116.42 155.38 212.8759 65.37 70.23 76.58 91.79 119.79 158.6 214.2558.74 65.63 70.48 76.99 93.03 122.88 161.85 215.8959.38 65.79 70.62 77.75 94.4 124.44 165.12 218.21 列数据。

相关文档
最新文档