高二数学选修2-2导数的计算
人教A版高中数学选修2-2课件1.2导数的计算(3).pptx

例4 求下列函数的导数
(1) y (2x 3)2
解:(1)函数y (2x 3)2可以看作 函数y u2和u 2x 3的复合函数。 根据复合函数求导法则有
yx ' yu '• ux ' (u 2 ) '• (2x 3) '
2ug2 4u 8x 12.
(2) y e0.05x1
x, 则f
'( x)
1 (a x ln a
0, 且a
1);
公式8.若f (x) ln x,则f '(x) 1 ; x
导数运算法则
1. f ( x) g ( x) f ( x) g ( x)
2 . f ( x ) • g ( x ) f ( x ) g ( x ) f ( x ) g ( x )
例设 y ln x x2 a2 a 0 求 y
解
y ln x
x2 a2
1
1
2x
1
x x2 a2 2 x2 a2 x2 a2
例设 y求 ln tan 2 x
y
解 y ln tan 2x 1 tan 2x
tan 2x
1 tan 2x
1 cos2
2x
2 x
解 (1) y 2u ,u x 1. (2) y sin u,u v 1, v ln x.
3.复合函数的求导法则 (1) y f [g(x)] y f (u),u g(x). 那么
yx yu ux .
(2) y f (u),u g(v), v h(x). 那么
yx yu uv vx' .
2. c f (x) c f (x)
3.
f g
(x) (x)
高中数学选修2-2(人教B版)第一章导数及其应用1.2知识点总结含同步练习题及答案

′
解:(1)y ′ = (e3x+2 ) = e3x+2 ⋅ (3x + 2)′ = 3e3x+2 ; (2)y ′ = (ln(2x − 1))′ =
1 2 . ⋅ (2x − 1)′ = 2x − 1 2x − 1
2.利用导数求函数的切线方程 描述: 利用导数求函数的切线方程 步骤一:求出函数 y = f (x) 在点 x0 处的导数 f ′ (x0 ) ; 步骤二:根据直线方程的点斜式,得到切线方程为 y − f (x0 ) = f ′ (x0 )(x − x0 ). 例题: 求曲线 y = ex + 1 在 (0, 2) 处的切线方程. 解:因为 y = ex + 1,所以 y ′ = ex ,故曲线 y = ex + 1在 (0, 2)处的切线斜率为
解:(1)因为 y =
所以在点 P 处的切线的斜率等于 4 .所以在点 P 处的切线方程是
y−
即
8 = 4(x − 2), 3
12x − 3y − 16 = 0.
(2)设切点为 (x 0 , y 0 ),则由(1)知切线的斜率 k = x2 ,切线方程为 y − y 0 = x2 (x − x 0 ) . 0 0 又切线过点 P (2,
8 1 ) 且 (x0 , y 0 ) 在曲线 y = x3 上,所以 3 3 ⎧ ⎪ 8 − y = x2 (2 − x0 ), 0 0 ⎨3 1 ⎪ ⎩ y = x3 , ⎪ 0 3 0 − 3x2 + 4 = 0, x3 0 0
整理得
即
(x0 − 2)2 (x0 + 1) = 0.
高中数学选修2-2第1章第2节导数的计算课件

f′(x)=__e_x_______ 1
f′(x)=___x_ln__a____(a>0 且 a≠1) 1
f′(x)=__x________
数学 选修2-2
1.指数函数与对数函数的导数公式的记忆
对于公式(logax)′=
1 xln
a
,(ax)′=axln
ห้องสมุดไป่ตู้
∴ lim Δx→0
2x+Δx+xx-+2Δx=2x-x22.
数学 选修2-2
[问题3] F(x)的导数与f(x),g(x)的导数有何关系? [提示3] F(x)的导数等于f(x),g(x)导数和.
[问题 4] [提示 4]
试说明 y=cos3x-π4如何复合的. 令 u=g(x)=3x-π4,y=f(u)=cos u,
导数几何意义的应用
已知曲线方程y=x2,求过点B(3,5)且与曲线相切 的直线方程.
[思路点拨] 解决切线问题的关键是求切点的坐标,要注 意区分是曲线在某点处的切线还是过某点的切线.
设出切点 → 函数求导 → 写出切线方程 → 条件代入 → 解出切点 → 得出答案
数学 选修2-2
设 P(x0,y0)为切点,则切线斜率
数学 选修2-2
已知 f(x)=x2,g(x)=2x. [问题 1] f(x),g(x)的导数分别是什么? [提示 1] f′(x)=2x,g′(x)=-x22.
数学 选修2-2
[问题2] 试求F(x)=f(x)+g(x)的导数.
[提示 2] ΔΔxy=x+Δx2+xΔ+2xΔx-x2+2x
=2x+Δx+xx-+2Δx,
数学 选修2-2
第一章
人教版高中数学选修2-2学案:第一章1.2第二课时导数的运算法则

第二课时导数的运算法例预习课本P15~ 18,思虑并达成以下问题(1)导数的四则运算法例是什么?在使用运算法例时的前提条件是什么?(2)复合函数的定义是什么,它的求导法例又是什么?[新知初探 ]1.导数的四则运算法例(1)条件: f(x), g(x)是可导的.(2)结论:① [f(x) ±g(x)] =′f′(x)±g′(x).② [f (x)g(x)] =′ f′(x)g(x)+ f(x)g′(x).③f x′=f xg x - f x g x(g(x) ≠ 0).g x2[g x[点睛 ]应用导数公式的注意事项(1)两个导数的和差运算只可推行到有限个函数的和差的导数运算.(2)两个函数可导,则它们的和、差、积、商(商的分母不为零 )必可导.(3)若两个函数不行导,则它们的和、差、积、商不必定不行导.(4)对于较复杂的函数式,应先进行适合的化简变形,化为较简单的函数式后再求导,可简化求导过程.2.复合函数的求导公式(1)复合函数的定义:①一般形式是 y= f(g( x)).②可分解为 y= f(u)与 u= g(x),此中 u 称为中间变量.(2)求导法例:复合函数y= f (g(x))的导数和函数y= f(u), u= g(x)的导数间的关系为:y x′= y u′·u x′.[小试身手 ]1.判断 (正确的打“√”,错误的打“×”)(1) f′(x)=2x,则 f(x)= x2 .()(2)函数 f(x)= xe x的导数是 f′(x)=e x(x+ 1). ()(3)函数 f(x)= sin(- x)的导数为 f′(x)= cos x. ()答案: (1) × (2) √ (3) ×2.函数 y = sin x ·cos xA . y ′= cos 2x + sin 2xC . y ′= 2cos x ·sin x答案: B的导数是()B . y ′= cos 2xD . y ′= cos x ·sin x3.函数 y = xcos x - sin x 的导数为 ________.答案: - xsin x4.若 f(x)= (2x + a)2,且 f ′(2)= 20,则 a = ________.答案: 1利用导数四则运算法例求导[典例 ] 求以下函数的导数:2+ log 3x ; (2)y = x 3 x(3)y = cos x(1) y = x ·e ;x .解 ′= 2+ log =′ 2 ) ′+ (log′ [ ] (1) y (x 3x)(x 3x) = 2x + 1.xln 33 x 3x3 x′′= · ) ′= ( x) ′·e+x· )(2) y(x e(e= 3x 2·e x +x 3 ·e x = e x (x 3+ 3x 2). (3) y ′= cos x ′= xx - cos x x2xx - x ·sin x - cos x xsin x + cos x= 2 =- 2. xx求函数的导数的策略(1)先划分函数的运算特色,即函数的和、差、积、商,再依据导数的运算法例求导数.(2) 对于三个以上函数的积、商的导数,挨次转变为“两个 ”函数的积、商的导数计算.[活学活用 ]求以下函数的导数:x(1) y = sin x - 2x 2; (2)y =cos x ·ln x ; (3) y = sin ex .解: (1)y ′= (sin x - 2x 2) ′= (sin x) ′- (2x 2) ′= cos x - 4x. (2) y ′= (cos x ·ln x) ′= (cos x) ′·x +ln cos x ·(ln x) ′=- sin x ·ln x + cos xx.e xxx - e x x(3) y ′= sin x ′=sin 2x = e x ·sin x - e x ·cos x e x x - cosx2 =2sin xsin x复合函数的导数运算[典例 ] 求以下函数的导数:(1) y = 1 2; (2)y = e sin(ax +b);1- 2x(3) y = sin 2 2x +π3 ; (4)y = 5log 2(2x + 1).[解 ] (1)设 y =u - 1, u = 1- 2x 2,2则 y ′= (u -12) ′ -(12x2) ′= -21u - 32 ·(- 4x)=-1 23 23.(1- 2x )-2(- 4x)= 2x(1- 2x )- 22(2) 设 y = e u , u = sin v , v = ax + b ,则 y x ′= y u ′·u v ′·v x ′= e u ·cos v ·asin(ax +b) .= acos(ax + b) ·e(3) 设 y = uπ2, u = sin v , v =2x + ,3则 y x ′= y u ′·u v ′·v x ′= 2u ·cos v ·22π= 4sin vcos v = 2sin 2v = 2sin 4x + 3 .(4) 设 y = 5log 2 u , u = 2x + 1,则 y ′= 5(log 2u) ′·x +(21) ′= 10 = 10 .uln 2 x +1. 求复合函数的导数的步骤2. 求复合函数的导数的注意点(1) 内、外层函数往常为基本初等函数.(2)求每层函数的导数时注意分清是对哪个变量求导, 这是求复合函数导数时的易错点.[活学活用 ]求以下函数的导数:(1) y = (3x - 2)2 ; (2) y = ln(6x + 4);(3) y = e 2x +1;(4)y = 2x - 1;π; (6)y = cos 2x.解: (1)y ′= 2(3x - 2) ·(3x -2) ′= 18x - 12;13;(2) y ′= 6x + 4·(6x + 4) =′3x + 2(3) y ′= e 2x + 1·(2x + 1) ′=2e 2x +1;(4) y ′= 1 ′=1. ·(2x - 1) 2x - 1 2 2x - 1π ππ(5) y ′= cos 3x - 4 ·3x - 4 ′=3cos 3x - 4 .(6) y ′= 2cos x ·(cos x) ′=- 2cos x ·sin x =- sin 2x.与切线相关的综合问题2π[典例 ]处的切线斜率为 ________.(1) 函数 y = 2cos x 在 x =12(2) 已知函数 f(x)= ax 2+ ln x 的导数为 f ′(x),①求 f(1)+ f ′(1).②若曲线 y = f (x)存在垂直于 y 轴的切线,务实数a 的取值范围.[分析 ] (1) 由函数 y = 2cos 2x = 1+ cos 2x ,得 y ′= (1+ cos 2x) ′=- 2sin 2x ,所以函数在π 2sinπ=处的切线斜率为-2 × =-1.x1212答案:-1(2) 解: ①由题意,函数的定义域为(0,+ ∞),由 f( x)= ax 2+ ln x ,得 f ′(x)= 2ax + 1,x 所以 f(1)+ f ′(1)= 3a + 1.② 因为曲线 y = f(x)存在垂直于y 轴的切线, 故此时切线斜率为0,问题转变为在 x ∈ (0,+∞)内导函数f ′(x)= 2ax + 1存在零点,x即 f ′(x)= 0?2ax + 1x = 0 有正实数解,(5) y = sin 3x - 4即 2ax 2=- 1 有正实数解,故有 a<0 ,所以实数 a 的取值范围是 (-∞, 0).对于函数导数的应用及其解决方法(1) 应用:导数应用主要有:求在某点处的切线方程,已知切线的方程或斜率求切点,以及波及切线问题的综合应用.(2) 方法:先求出函数的导数,若已知切点则求出切线斜率、切线方程﹔若切点未知,则先设出切点,用切点表示切线斜率,再依据条件求切点坐标.总之,切点在解决此类问题时起着至关重要的作用.[活学活用 ]若存在过点 (1,0) 的直线与曲线y = x 3 和 y = ax 2+15都相切,则 a 的值为 ()4 x - 92521A .- 1 或- 64B .- 1 或 4C .- 7或- 25D .-7或 74 644分析:选A 设过点 (1,0)的直线与曲线 y = x 3 相切于点 (x 0, x 03),则切线方程为y - x 03= 3x 02(x - x 0),即 y = 3x 02x - 2x 03.又点 (1,0)在切线上,代入以上方程得 3x 0= 0 或 x 0= .2当 x 0= 0 时,直线方程为 y = 0.21525由 y = 0 与 y = ax +4 x - 9 相切可得 a =- 64.当 x 0= 3时,直线方程为 y = 27x - 27.24 42727215由 y = 4 x - 4 与 y = ax + 4 x - 9 相切可得 a =- 1.层级一学业水平达标1.已知函数 f (x)= ax 2 +c ,且 f ′(1)= 2,则 a 的值为 ()A . 1B. 2C .- 1D . 0分析: 选A∵ f(x)= ax 2+ c ,∴ f ′(x)= 2ax ,又∵ f ′(1)= 2a ,∴ 2a = 2,∴ a = 1.2.函数2y = (x + 1) (x - 1)在x = 1 处的导数等于()A . 1B . 2C . 3D . 4分析:选 D y ′= [(x + 1) 2] ′(x - 1)+ (x + 1) 22= 3x 2+ 2x(x - 1) ′= 2(x + 1) ·(x - 1) + (x + 1) - 1,∴ y ′|== 4.x 13.曲线 f(x)= xln x 在点 x = 1 处的切线方程为 ( )A . y = 2x + 2B . y = 2x - 2C . y = x - 1D . y = x + 1分析:选C∵ f ′(x)= ln x + 1,∴ f ′(1)= 1,又 f(1) =0,∴在点 x = 1 处曲线 f(x)的切线方程为 y = x - 1.4. 已知物体的运动方程为s = t 2+ 3(t 是时间, s 是位移 ),则物体在时辰 t = 2 时的速度t为 ()19 17 A. 4B. 415 13C. 4D. 4分析:选D33 13∵ s ′= 2t -t ,∴ s ′|t2= 4-4=4=5.设曲线 y = ax - ln(x + 1)在点 (0,0) 处的切线方程为 y = 2x ,则 a = ()A . 0B . 1C . 2D . 3分析:选Dy ′= a - 1,由题意得 y ′|x =0= 2,即 a - 1= 2,所以 a =3.x + 13- x + 3 在点 (1,3)处的切线方程为 ________.6.曲线 y = x22分析:∵ y ′= 3x - 1,∴ y ′x1= 3×1 - 1= 2.=∴切线方程为 y - 3= 2(x -1) ,即 2x - y + 1= 0.答案: 2x - y + 1= 07.已知曲线y 1= 2- 1与 y 2= x 3- x 2+ 2x 在 x =x 0 处切线的斜率的乘积为3,则 x 0=x ________.分析: 由题知 y ′=12处切线的斜率分别为12= 3x - 2x + 2,所以两曲线在 x = x2,1x , y ′2x 02-2x 0+ 2,所以3x 02- 2x 0+ 23x 02= 3,所以 x 0= 1.x 0答案: 1ππ8.已知函数 f (x)= f ′4 cos x + sin x ,则 f 4 的值为 ________.π分析: ∵ f ′(x)=- f ′4 sin x + cos x ,ππ 2 2∴ f ′4 =- f ′4 ×2 + 2 ,π得 f ′4 = 2- 1.∴ f( x)= ( 2- 1)cos x + sin x.π∴ f 4 = 1. 答案: 19.求以下函数的导数:2e x + 1x;(1) y = xsin x ; (2)y = e - 1x + cos x(3) y = x + sin x ; (4)y = cos x ·sin 3x.22解: (1)y ′= (x) ′sinx + x(sin x) ′= sin 2 x + x ·2sin x ·(sin x) ′=sin 2x + xsin 2x.(2) y ′= e x + 1 ′ e x - 1- e x + 1e x - 1 ′x 1 2e -- 2e x .=x- 12ex + cos x ′ x + sin x - x + cos xx + sin x ′(3) y ′=x + sin x2=1- sin xx + sin x -x + cos x1+ cos xx + sin x 2- xcos x -xsin x + sin x - cos x - 1 = x + sin x 2.(4) y ′= (cos x ·sin 3x) ′= (cos x) ′sinx3+ cos x(sin 3x) ′=- sin xsin 3x + 3cos xcos 3x= 3cos xcos 3x - sin xsin 3x.10.偶函数 f(x)= ax 4+ bx 3+ cx 2+ dx + e 的图象过点 P(0,1),且在 x = 1 处的切线方程为y =x - 2,求 f(x)的分析式.解: ∵ f(x)的图象过点 P(0,1),∴ e = 1.又∵ f( x)为偶函数,∴ f(- x)= f(x).故 ax 4+ bx 3+ cx 2+ dx + e = ax 4- bx 3+ cx 2- dx + e.∴ b = 0, d = 0.∴ f(x)= ax 4+ cx 2+ 1. ∵函数 f(x)在 x = 1 处的切线方程为y = x - 2,∴切点为 (1,- 1).∴ a + c + 1=- 1.∵f′(x)|x=1= 4a+ 2c,∴ 4a+ 2c= 1.∴a=5, c=-9.225492∴函数 f(x)的分析式为 f (x)=x- x + 1.22层级二应试能力达标1.若函数 f(x)= ax4+ bx2+ c 知足 f′(1)= 2,则 f′(-1)等于 ()A.- 1B.- 2C. 2D. 0分析:选B∵ f′(x)= 4ax3+ 2bx 为奇函数,∴ f′(-1)=- f′(1)=- 2. 2.曲线 y= xe x-1在点 (1,1)处切线的斜率等于 ()A. 2e B. eC. 2D. 1分析:选C函数的导数为 f′(x)= e x-1+ xe x-1= (1+ x)e x-1,当 x= 1 时, f′(1)= 2,即曲线x-1在点 (1,1)处切线的斜率k= f′(1)= 2,应选 C. y= xe3.已知函数 f (x)的导函数为 f′(x),且知足 f(x)= 2xf ′ (e)+ ln x,则 f′ (e)= ()- 1B.- 1A. e- 1D.- eC.- e分析:选C∵ f(x)= 2xf′(e)+ ln x,∴f′(x)= 2f′(e)+1 x,∴f′(e)= 2f′(e)+1,解得 f′(e)=-1,应选 C.e e4.若 f(x)= x2- 2x- 4ln x,则 f′(x)> 0的解集为 ()A. (0,+∞ )B. (- 1,0)∪ (2,+∞) C. (2,+∞ )D. (- 1,0)分析:选C∵ f(x)= x2- 2x- 4ln x,∴f′(x)= 2x- 2-4x> 0,x+x-或 x> 2,整理得> 0,解得- 1< x< 0x又因为 f(x)的定义域为 (0,+∞),所以 x> 2.5.已知直线y= 2x- 1 与曲线 y= ln(x+ a)相切,则a 的值为 ________________.1分析:∵ y= ln(x+ a),∴ y′=,设切点为(x0,y0),1则 y0= 2x0- 1, y0= ln(x0+ a),且x0+a= 2,解之得 a=1ln 2. 2答案:1ln 22x在点 (1,1)的切 l, l 上的点到x2+ y2+ 4x+ 3= 0 上的点的6.曲 y=2x-1近来距离是 ____________.分析: y′=-1|y- 1=- (x- 1),即 x+ y- 2 2, y′x=1=- 1,∴切方程= 0,心 (- 2,0)到直的距离d= 2 2,的半径 r= 1,∴所求近来距离 2 2- 1.答案: 2 2-17.已知曲 f (x)= x3+ ax+ b 在点P(2,- 6)的切方程是13x- y- 32= 0.(1) 求a, b 的;1(2)假如曲 y= f(x)的某全部与直 l:y=-4x+ 3 垂直,求切点坐与切的方程.解: (1)∵ f(x)= x3+ ax+ b 的数 f′(x)= 3x2+ a,由意可得f′(2)= 12+ a=13, f(2)= 8+ 2a+ b=- 6,解得 a= 1, b=- 16.1(2)∵切与直 y=-4x+ 3 垂直,∴切的斜率k= 4.切点的坐(x0, y0),2f′(x0)= 3x0+ 1= 4,∴ x0=±1.由 f( x)= x3+x- 16,可得 y0= 1+ 1- 16=- 14,或 y0=- 1- 1- 16=- 18.切方程y= 4(x- 1)- 14 或 y= 4(x+ 1)- 18.即 y= 4x- 18 或 y= 4x- 14.8. f n(x)= x+ x2+⋯+ x n- 1, x≥0, n∈ N, n≥2.(1) 求 f n′ (2);明:在 0,2内有且有一个零点(a,且<12n(2)f n(x)n)a n-<n+13023.解: (1)由 f n′(x)= 1+ 2x+⋯+ nx n-1.所以 f n′ (2)= 1+ 2×2+⋯+ (n- 1)2n-2+n·2n-1,①2f n′ (2)= 2+ 2×22+⋯+ (n- 1)2n-1+ n·2n,②①-②得,- f n′ (2)= 1+ 2+ 22+⋯+ 2n-1- n·2n=1- 2n n n- n·2= (1- n) ·2- 1,1- 2所以 f n′ (2)= (n-1)n ·2+1.(2)因 f(0)=- 1< 0,22nn 231-3- 1=1-2×2n2×22> 0,f3=23≥ -3 1-13因 x≥0, n≥2.所以 f n(x)= x+ x2+⋯+ x n- 1 增函数,所以 f n(x)在 0,2内增,3所以 f n在 0,2内有且有一个零点 a n(x)3.n+ 1x- x因为 f n(x)=-1,n+1所以 0= f n(a n) =a n- a n- 1,1- a n由此可得11n+ 11,故12 a n=+a n>2< a n< .22231 1 n+112 n+1n所以 0< a n-22=2a n<2×3=3n+ 1.。
高中数学选修2-2导数--导数的运算(解析版)

高中数学选修2-2导数--导数的运算(解析版)1.若f (x )=sin π3-cos x ,则f ′(α)等于( )A .Sin αB .Cos αC .sin π3+cos αD .cos π3+sin α[答案] A[解析] ∵f (x )=sin π3-cos x ,∴f ′(x )=sin x ,∴f ′(α)=sin α,故选A.2.设函数f (x )=x m +ax 的导数为f ′(x )=2x +1,则数列{1f (n )}(n ∈N *)的前n 项和是( )A.n n +1B .n +2n +1C.nn -1 D .n +1n[答案] A[解析] ∵f (x )=x m +ax 的导数为f ′(x )=2x +1,∴m =2,a =1,∴f (x )=x 2+x , ∴f (n )=n 2+n =n (n +1),∴数列{1f (n )}(n ∈N *)的前n 项和为:S n =11×2+12×3+13×4+…+1n (n +1)=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1 =1-1n +1=nn +1,故选A.3.已知二次函数f (x )的图象如图所示,则其导函数f ′(x )的图象大致形状是( )[答案] B [解析] 依题意可设f (x )=ax 2+c (a <0,且c >0),于是f ′(x )=2ax ,显然f ′(x )的图象为直线,过原点,且斜率2a <0,故选B.4.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(e)+ln x ,则f ′(e)=( )A .e -1B .-1C .-e -1D .-e[答案] C [解析] ∵f (x )=2xf ′(e)+ln x ,∴f ′(x )=2f ′(e)+1x ,∴f ′(e)=2f ′(e)+1e ,解得f ′(e)=-1e,故选C.5.曲线y =x sin x 在点⎪⎭⎫⎝⎛22-ππ,处的切线与x 轴、直线x =π所围成的三角形的面积为( ) A.π22B .π2C .2π2D .12(2+π)2 [答案] A [解析] 曲线y =x sin x 在点⎝⎛⎭⎫-π2,π2处的切线方程为y =-x ,所围成的三角形的顶点为O (0,0),A (π,0),C (π,-π),∴三角形面积为π22.6.已知f (x )=log a x (a >1)的导函数是f ′(x ),记A =f ′(a ),B =f (a +1)-f (a ),C =f ′(a +1),则( )A .A >B >C B .A >C >B C .B >A >CD .C >B >A[答案] A [解析] 记M (a ,f (a )),N (a +1,f (a +1)),则由于B =f (a +1)-f (a )=f (a +1)-f (a )(a +1)-a,表示直线MN 的斜率,A =f ′(a )表示函数f (x )=log a x 在点M 处的切线斜率;C =f ′(a +1)表示函数f (x )=log a x 在点N 处的切线斜率.所以,A >B >C .7.设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .3[答案] D[解析] 本题考查导数的基本运算及导数的几何意义.令f (x )=ax -ln(x +1),∴f ′(x )=a -1x +1.∴f (0)=0,且f ′(0)=2.联立解得a =3,故选D.8.设f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,则f 2017(x )等于( )A .Sin xB .-sin xC .cos xD .-cos x [答案] C [解析] f 0(x )=sin x ,f 1(x )=f 0′(x )=(sin x )′=cos x ,f 2(x )=f 1′(x )=(cos x )′=-sin x , f 3(x )=f 2′(x )=(-sin x )′=-cos x ,f 4(x )=f 3′(x )=(-cos x )′=sin x ,∴4为最小正周期, ∴f 2017(x )=f 1(x )=cos x .故选C.9.已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则曲线y =f (x )在点(1,2)处的切线方程是________________.[答案] y =2x [解析] 当x >0时,-x <0,则f (-x )=e x -1+x .又f (x )为偶函数,所以f (x )=f (-x )=e xe+x ,所以当x >0时, f ′(x )=e x -1+1,则曲线y =f (x )在点(1,2)处的切线的斜率为f ′(1)=2,所以切线方程为y -2=2(x -1),即y =2x .10.设函数f (x )=cos(3x +φ)(0<φ<π),若f (x )+f ′(x )是奇函数,则φ=________.[答案] π6[解析] f ′(x )=-3sin(3x +φ),f (x )+f ′(x )=cos(3x +φ)-3sin(3x +φ)=2sin ⎝⎛⎭⎫3x +φ+5π6. 若f (x )+f ′(x )为奇函数,则f (0)+f ′(0)=0,即0=2sin ⎝⎛⎭⎫φ+5π6,∴φ+5π6=k π(k ∈Z ).又∵φ∈(0,π),∴φ=π6. 11.已知直线y =2x -1与曲线y =ln(x +a )相切,则a 的值为________.[答案] 12ln2[解析] ∵y =ln(x +a ),∴y ′=1x +a ,设切点为(x 0,y 0),则y 0=2x 0-1,y 0=ln(x 0+a ),且1x 0+a =2,解之得a =12ln2.12.设曲线y =e x 在点(0,1)处的切线与曲线y =1x(x >0)上点P 处的切线垂直,则P 的坐标为________.[答案] (1,1)[解析] 设f (x )=e x ,则f ′(x )=e x ,所以f ′(0)=1,因此曲线f (x )=e x 在点(0,1)处的切线方程为y -1=1×(x -0),即y =x +1;设g (x )=1x (x >0),则g ′(x )=-1x 2,由题意可得g ′(x P )=-1,解得x P =1,所以P (1,1).故本题正确答案为(1,1).13.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)(x -a 2)…(x -a 8),则f ′(0)=________.[答案] 212[解析] f ′(x )=x ′·[(x -a 1)(x -a 2)…(x -a 8)]+[(x -a 1)(x -a 2)…(x -a 8)]′·x =(x -a 1)(x -a 2)…(x -a 8)+[(x -a 1)(x -a 2)…(x -a 8)]′·x ,所以f ′(0)=(0-a 1)(0-a 2)…(0-a 8)+[(0-a 1)(0-a 2)…(0-a 8)]′·0=a 1a 2…a 8. 因为数列{a n }为等比数列,所以a 2a 7=a 3a 6=a 4a 5=a 1a 8=8,所以f ′(0)=84=212. 14.求下列函数的导数:(1)y =x (x 2+1x +1x 3);(2)y =(x +1)(1x -1);(3)y =sin 4x 4+cos 4x4;(4)y =1+x 1-x +1-x 1+x .[解析] (1)∵y =x ⎝⎛⎭⎫x 2+1x +1x 3=x 3+1+1x 2,∴y ′=3x 2-2x 3. (2)∵y =(x +1)⎝⎛⎭⎫1x -1=-x 12+x -12,∴y ′=-12x -12-12x -32=-12x ⎝⎛⎭⎫1+1x .(3)∵y =sin 4x 4+cos 4x 4=⎝⎛⎭⎫sin 2x 4+cos 2x 42-2sin 2x 4cos 2x 4=1-12sin 2x 2=1-12·1-cos x 2=34+14cos x , ∴y ′=-14sin x .(4)∵y =1+x 1-x +1-x 1+x =(1+x )21-x +(1-x )21-x =2+2x 1-x =41-x -2,∴y ′=⎝⎛⎭⎫41-x -2′=-4(1-x )′(1-x )2=4(1-x )2. 15.偶函数f (x )=ax 4+bx 3+cx 2+dx +e 的图象过点P (0,1),且在x =1处的切线方程为y =x -2,求y =f (x )的解析式.[解析] ∵f (x )的图象过点P (0,1),∴e =1.又∵f (x )为偶函数,∴f (-x )=f (x ). 故ax 4+bx 3+cx 2+dx +e =ax 4-bx 3+cx 2-dx +e .∴b =0,d =0.∴f (x )=ax 4+cx 2+1. ∵函数f (x )在x =1处的切线方程为y =x -2,∴切点为(1,-1).∴a +c +1=-1. ∵f ′(x )|x =1=4a +2c ,∴4a +2c =1.∴a =52,c =-92.∴函数y =f (x )的解析式为f (x )=52x 4-92x 2+1.16.已知f (x )=13x 3+bx 2+cx (b ,c ∈R ),f ′(1)=0,x ∈[-1,3]时,曲线y =f (x )的切线斜率的最小值为-1,求b ,c 的值.[解析] f ′(x )=x 2+2bx +c =(x +b )2+c -b 2, 且f ′(1)=1+2b +c =0.①(1)若-b ≤-1,即b ≥1,则f ′(x )在[-1,3]上是增函数,所以f ′(x )min =f ′(-1)=-1, 即1-2b +c =-1.②由①②解得b =14,不满足b ≥1,故舍去.(2)若-1<-b <3,即-3<b <1,则f ′(x )min =f ′(-b )=-1,即b 2-2b 2+c =-1.③ 由①③解得b =-2,c =3或b =0,c =-1.(3)若-b ≥3,即b ≤-3,则f ′(x )在[-1,3]上是减函数, 所以f ′(x )min =f ′(3)=-1,即9+6b +c =-1.④由①④解得b =-94,不满足b ≤-3,故舍去.综上可知,b =-2,c =3或b =0,c =-1.高中数学选修2-2导数--导数的运算1.若f (x )=sin π3-cos x ,则f ′(α)等于( )A .Sin αB .Cos αC .sin π3+cos αD .cos π3+sin α2.设函数f (x )=x m +ax 的导数为f ′(x )=2x +1,则数列{1f (n )}(n ∈N *)的前n 项和( )A.n n +1B .n +2n +1C.nn -1D .n +1n 3.已知二次函数f (x )的图象如图所示,则其导函数f ′(x )的图象大致形状是( )4.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(e)+ln x ,则f ′(e)=( )A .e -1B .-1C .-e -1D .-e5.曲线y =x sin x 在点⎪⎭⎫⎝⎛22-ππ,处的切线与x 轴、直线x =π所围成的三角形的面积为() A.π22B .π2C .2π2D .12(2+π)26.已知f (x )=log a x (a >1)的导函数是f ′(x ),记A =f ′(a ),B =f (a +1)-f (a ),C =f ′(a +1),则( )A .A >B >C B .A >C >B C .B >A >CD .C >B >A7.设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .38.设f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,则f 2017(x )等于( )A .Sin xB .-sin xC .Cos xD .-cos x9.已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则曲线y =f (x )在点(1,2)处的切线方程是________________.10.设函数f (x )=cos(3x +φ)(0<φ<π),若f (x )+f ′(x )是奇函数,则φ=________. 11.已知直线y =2x -1与曲线y =ln(x +a )相切,则a 的值为________.12.设曲线y =e x 在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则P 的坐标为________.13.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)(x -a 2)…(x -a 8),则f ′(0)=______. 14.求下列函数的导数:(1)y =x (x 2+1x +1x 3);(2)y =(x +1)(1x -1);(3)y =sin 4x4+cos 4x4;(4)y =1+x 1-x +1-x1+x.15.偶函数f (x )=ax 4+bx 3+cx 2+dx +e 的图象过点P (0,1),且在x =1处的切线方程为y =x -2,求y =f (x )的解析式.16.已知f (x )=13x 3+bx 2+cx (b ,c ∈R),f ′(1)=0,x ∈[-1,3]时,曲线y =f (x )的切线斜率的最小值为-1,求b ,c 的值.。
高二下数学 (理科)选修2-2导数及其计算(过关)

导数及其计算【知识要点】1.导数的概念:函数()f x 在0x 处导数的定义:一般地,函数()y f x =在0x x =处的瞬时变化率是______________,我们称它为函数()y f x =在0x x =处的导数,记作0'()f x 或0'|x x y =.2.求()y f x =在0x 处的导数的步骤:(1)求函数的改变量()()00y f x x f x ∆=+∆-;(2)求平均变化率()()00f x x f x y x x+∆-∆=∆∆; (3)取极限,得导数()00lim x y f x x→∆'=∆ . 3.导数的几何意义: 函数()f x 在点0x 处的导数的几何意义,就是曲线()y f x =在点()()0,0P x f x 处的切线的斜率,即曲线()y f x =在点()()0,0P x f x 处的切线的斜率是()0f x ',相应地切线的方程是()()000y y f x x x -='-. 特别提醒:(1)在求曲线的切线方程时,要注意区分所求切线是曲线上某点处的切线,还是过某点的切线:曲线上某点处的切线只有一条,而过某点的切线不一定只有一条,即使此点在曲线上也不一定只有一条;(2)在求过某一点的切线方程时,要首先判断此点是在曲线上,还是不在曲线上,只有当此点在曲线上时,此点处的切线的斜率才是0()f x '.4.导数的物理意义:一般地,设()s s t =是物体的位移函数,那么'()s t 的物理意义是;设()v v t =是物体的速度函数,那么'()v t 的物理意义是.5.基本初等函数的导数公式'____c =(c 为常数);()'_______n x =(n Q ∈);(sin )'____x =;(cos )'____x =;(ln )_______x '=;(log )______a x '=,()______x e '=;()_______x a '=.6.导数运算法则法则1 [()()]()()f x g x f x g x ±'='±';法则2 [()()]()()()()f x g x f x g x f x g x '='+' , [()]'()cf x cf x '=(注意常数与函数的积的法则)法则3 '2()'()()()'()(()0)()[()]f x f x g x f x g x g x g x g x ⎛⎫-=≠ ⎪⎝⎭7.复合函数的导数 设函数()u x ϕ=在点x 处有导数()x u x ϕ'=',函数()y f u =在点x 的对应点u 处有导数()u y f u '=',则复合函数(())y f x ϕ=在点x 处也有导数,且x u x u y y '''⋅=或(())()()x f x f u x ϕϕ'='⋅'.8.复合函数的求导法则(链式法则)复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数.【课前回顾】1.已知函数f (x )在R 上满足f (x )=2f (2-x )-x 2+8x -8,则y =f (x )的解析式为__________.2.偶函数f (x )=ax 4+bx 3+cx 2+dx +e ,则b d e ++=__________.【典型例题】例1.已知f (x )在x =x 0处的导数为4,则000(2)()limx f x x f x x ∆→+∆-=∆________. 例2.求下列函数的导数:(1)f (x )=(x +2)(x -3);(2)f (x )=lg x -3x ;(3)f (x )=11-x +11+x ; (4)f (x )=sin x 1+sin x.例3.在曲线y =x 2上切线倾斜角为π4的点是________. 例4.已知曲线y =2x 2-7,求(1)曲线在点()2,1A 的切线方程;(2)曲线过点P (3,9)的切线方程.例5.已知抛物线y =x 2,直线x -y -2=0.求抛物线上的点到直线的最短距离.【课堂练习】1.2y x =的导数为( )A .2xB .2C .xD .12.函数3()3f x ax =+,若'(1)f -=6,则a 的值等于( )A .2-B .1-C .1D .2 3.ln y x x =的导数是( )A .1xB .ln xC .ln 1x +D .x4.函数sin x y x =的导数为( )A .2cos sin 'x x x y x +=B .2cos sin 'x x x y x -=C .2sin cos 'x x x y x -=D .2sin cos 'x x x y x += 5.函数2x y =的导数为___ _ __. 6.物体运动方程为4134s t =-,则5t =时的瞬时速度为. 7.已知f (x )在x =x 0处的导数为4,则000()()lim 2x f x x f x x∆→+∆-=∆________. 8.函数ln(21)y x =+的导数为___ _ __.9.如图,直线l 是曲线y =f (x )在x =4处的切线,则f ′(4)=.10.求抛物线24y x =(1)在点1,12P ⎛⎫ ⎪⎝⎭的切线方程;(2)过点()0,2-的切线方程.11.求过曲线y =cos x 上点P ⎝⎛⎭⎫π3,12且与在这点的切线垂直的直线方程.12.求下列函数的导数:(1)()()22311y x x -=+; (2)sin cos 22x x y x =-; (3)y =.13.已知函数f (x )=ax 3+bx 2+cx 过点(1,5),其导函数y =f ′(x )的图象如图所示,求f (x )的解析式.【课外练习】14.已知函数f(x)在R上满足f(x)=2f(2-x)-x2+8x-8,求曲线y=f(x)在点(2,f(2))处的切线方程.15.偶函数f(x)=ax4+bx3+cx2+dx+e的图象过点P(0,1),且在x=1处的切线方程为y=x-2,求y=f(x)的解析式.。
人教A版数学选修2-2《1.2导数的计算》课件(共26张ppt)

x x 1(是常数)
推广:
y f (x) x ( Q)
y/ x 1
这个公式称为幂函数的导数公式.
事实上 可以是任意实数.
基本初等函数的导数公式
1.若f(x)=c,则f'(x)=0
2.若f(x)=xn,则f'(x)=nxn-1(n R)
3.若f(x)=sinx,则f'(x)=cosx
x
x2 2x x x2 x2
x
2x x
O
所以 y' lim y lim 2x x 2x.
x0 x x0
y=x2 x
从几何的角度理解:
y =2x表示函数y=x2图象上点(x,y)处切线的斜 率为2x,说明随着x的变化,切线的斜率也在变化. 从导数作为函数在一点的瞬时变化率来看,y=2x 表明:
x
x
kx x kx
x
kx kx kx k, x
所以 y' lim y lim k k. x0 x x0
3.函数 y = f (x) = x2 的导数
因为
y
f x x f x x x3) y 3 x (4) y 3 x5
2:
(1)已知y x , 求f (1). x2
(2)已知y 2x3 , 求f (2).
导数的运算法则:
法则1:两个函数的和(差)的导数,等于这两个函数的导数的
和(差),即: f (x) g(x) f (x) g(x)
(3)求极限,得导函数y f (x) lim y . x0 x
几种常见函数的导数 基本初等函数的导数公
式及导数的运算法则
二、几种常见函数的导数
高二数学人教A版选修2-2导数的计算(二)课件

复合函数的导数
• 复合函数y=f(g(x))的导数和函数y=f(u),u =g(x)的导数间的关系为yx′=__y_u_′·_u_x_′___.即y对 x的导数等于__y_对__u_的__导_数___ __与__u_对__x的__导__数__的_乘__积____.
• 2.复合函数求导应注意的问题
(1)y=3-14x4;(2)y=cos(2 008x+8); (3)y=21-3x;(4)y=ln(8x+6).
[思路点拨] 选取中间变量 → 分解 → 求导 → 转化
解析: (1)引入中间变量 u=φ(x)=3-4x. 则函数 y=3-14x4是由函数 f(u)=u14=u-4 与 u=φ(x)=3-4x 复合而成的. 查导数公式表可得 f′(u)=-4u-5=-u45,φ′(x)=-4. 根据复合函数求导法则可得3-14x4′=f′(u)φ′(x) =-u45·(-4)=1u65 =3-164x5.
高中数学人教A 版选修2-2
1.2.2 导数的计算(二)
• 1.能利用导数的四则运算法则求解导函数.
• 2.能利用复合函数的求导法则进行复合函数 的求导.(难点)
• 3.掌握求曲线切线方程的方法和切线问题求 参数的题型.(重点)
导数的运算法则
• 设两个函数分别为f(x)和g(x)
两个函数的 和的导数
两个函数的 商的导数
gfxx′=_f_′__x__g__[xg_-_x_f]_2x__g_′___x_(_g_(_x)_≠__0_)___
• 1.应用导数的运算法则应注意的问题
• (1)对于教材中给出的导数的运算法则,不 要求根据导数定义进行推导,只要能熟练运用 运算法则求简单函数的导数即可.
• (2)对于和差的导数运算法则,此法则可推 广到任意有限个可导函数的和或差,即 [f1(x)±f2(x)±…±fn(x)]′=f′1(x)± f′2(x) ±…±f′n(x).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数的计算教学目标:1、能根据导数的定义推导部分基本初等函数的导数公式;2、能利用导数公式求简单函数的导数。
教学重难点: 能利用导数公式求简单函数的导数,基本初等函数的导数公式的应用一、 用定义计算导数问题1:如何求函数()y f x c ==的导数?2.求函数()y f x x ==的导数3.函数2()y f x x ==的导数4.函数1()y f x x ==的导数 5.函数y =二1.基本初等函数的导数公式表分几类 1、幂函数 2.三角函数 3指数函数 4.对数函数补充 1()f x x = '21()f x x =-()f x ='()f x =2公式的应用典型题一、求导数 A x y x y xy x y y x y cos )6(log )5(ln )4(1)3(5)2()1(125======、求下列函数的导数例思考 求()f x '的方法有哪些?3.导数的四则运算法则:问题 ln x x ⋅如何求?推论:[]''()()cf x cf x =提示:积法则,商法则, 都是前导后不导, 前不导后导, 但积法则中间是加号, 商法则中间是减号.。
常见错误:[]'''()()()()f x g x f x g x ⋅= '''()()(()0)()()f x f x g x g x g x ⎡⎤=≠⎢⎥⎣⎦典型题二、导数的四则运算法则例题3根据基本初等函数的导数公式和导数运算法则,求下列函数的导数.(1)323y x x =-+(2)sin y x x =⋅;(3)2(251)x y x x e =-+⋅;(4)cos x y x lnx =-A 变式练习11y x x=+ sin (cos )x y x x e =- cos x y x= +lnx 2sin y x x =sin cos x y x= A 变式2.求下列函数的导数(1)y=23x +3cosx, (2)y=(1+2x)(2x-3)(3)y=sin x x (4)y=2ln 1x x +A 变式3.已知f (x )=xcosx ﹣sinx ,则f′(x )=( )解:∵f (x )=xcosx ﹣sinx ,∴f ′(x )=cosx ﹣xsinx ﹣cosx=﹣xsinx ,已知函数f (x )=2x lnx ,则f′(x )等于( )函数y=e x sinx 的导数等于( )A . e x cosxB . e x sinxC . ﹣e x cosxD . e x (sinx+cosx )分析: 利用导数乘法法则进行计算,其中(e x )′=e x ,sin ′x=cosx .解答: 解:∵y=e x sinx ,∴y ′=(e x )′sinx+(e x )•(sinx )′=e x sinx+e x cosx=e x (sinx+cosx ).故选D .4.函数的导数值为0时,x 等于( ) 解:∵=,∴令y ′=0,即,解得x=±a .A 变式练习4若函数y=f (x )的导数f ′(x )=6x 2+5,则f (x )可以是( )A . 3x 2+5xB . 2x 3+5x+6C . 2x 3+5D . 6x 2+5x+6解答: 解:∵f'(x )=6x 2+5∴f (x )=2x 3+5x+c (c 为常数)故选B .函数f (x )=xsinx+cosx 的导数是( )解:∵f (x )=xsinx+cosx∴f ′(x )=(xsinx+cosx )′=(xsinx )′+(cosx )′=x ′sinx+x (sinx )′﹣sinx=sinx+xcosx ﹣sinx=xcosx2ln 1x x +若f ′(x )=2e x +xe x (其中e 为自然对数的底数),则f (x )可以是( )A . x e x +xB . (x+1)e x +1C . x e xD . (x+1)e x +x分析:利用导数的运算法则即可得出. 解答: 解:利用导数的运算法则可得:A .(xe x +x )′=e x +xe x +1,B .[(x+1)e x +1]=e x +(x+1)e x =(x+2)e x ,C .(xe x )′=e x +xe x ,D .[(x+1)e x +x ]′=e x +(x+1)e x +1=(x+2)e x +1.故选B .请默写出常见函数的导数4、复合函数问题 2(21)y x =+求导是多少?如果展开后求导,结果是 为什么会不同?复合函数的导数 复合函数()()y f g x =的导数和函数()y f u =和()u g x =的导数间的关系为x u x y y u '''=⋅,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.若()()y f g x =,则()()()()()y f g x f g x g x ''''==⋅⎡⎤⎣⎦上例中函数2(21)y x =+可以看作函数2y u =和21u x =+的复合函数。
x u x y y u '''=⋅=()2''()(21)221.284u x x x +=+=+ 典型题三、复合函数求导例题4 求下列函数的导数: (1)0.051x y e -+=;(2)sin()y x πϕ=+(其中,πϕ均为常数)(3) y =sin 4x +cos 4x (4)122sin -=x x y A 变式练习1 求下列函数导数(1)ln 2sin cos 22x x y x =- (2)bx ax e y +-=23函数的导函数是 解:对于函数,对其求导可得:f ′(x )===;A 变式21函数f (x )=cos 2x 的导数f′(x )=( )2函数y=sin (2x 2+x )导数是( )3.求y =xx sin 2的导数. y ′=____B.变式1求下列函数的导数(1)y=x 21-cos x423325x x y x -+-=y=ln (x +21x +)B 变式2函数的导数为( ) A . B . C . D .考点:简单复合函数的导数. 专题:计算题. 分析:根据函数商的求导法则再结合函数和的求导法则f (x )+g (x )=f (x )′+g (x )′代入计算化简即可.解答:解:∵ ∴∴=故选D2.求y =2sin xx -导数典型题四、导数公式的应用 例题 某运动物体自始点起经过t 秒后的距离s 满足:23416441t t t s +-=,求此物体在什么时刻速度为零?A.变式1函数f(x)=x2+ax+1,其导函数的图象过点(2,4),则a的值为()A变式2 已知函数f(x)=ax2+c,且f′(1)=2,则a的值为()A.1B.C.﹣1 D.0考点:导数的运算.专题:计算题.分析:先求出f′(x),再由f′(1)=2求出a的值.解答:解:∵函数f (x )=a x2+c,∴f′(x)=2ax又f′(1)=2,∴2a•1=2,∴a=1故答案为A.A变式3函数f(x)=ax若其导数过点(2,4),则a的值是典型题五、用导数方法求切线例题曲线y=x3-x+3在点(1,3)处的切线方程为________ 过(1,1)的切线方程为________A 变式1若曲线y=x4的一条切线l与直线x+4y﹣8=0垂直,则l的方程为()A.4x﹣y﹣3=0 B.x+4y﹣5=0 C.4x﹣y+3=0 D.x+4y+3=0考点:导数的几何意义;两条直线垂直的判定.分析:切线l与直线x+4y﹣8=0垂直,可求出切线的斜率,这个斜率的值就是函数在切点处的导数,利用点斜式求出切线方程.解答:解:设切点P(x0,y0)∵直线x+4y﹣8=0与直线l垂直,且直线x+4y﹣8=0的斜率为﹣,∴直线l的斜率为4,即y=x4在点P(x0,y0)处的导数为4,令y′=4x03=4,得到x0=1,进而得到y0=1利用点斜式,得到切线方程为4x﹣y﹣3=0.故选A.A 变式2函数f(x)=x4-x 在点P处的切线平行于直线3x-y=0,则此切线的方程为________A 变式3过点(﹣1,0)作抛物线y=x 2+x+1的切线,则其中一条切线为( )A . 2x+y+2=0B . 3x ﹣y+3=0C . x +y+1=0D . x ﹣y+1=0分析: 这类题首先判断某点是否在曲线上,(1)若在,直接利用导数的几何意义,求函数在此点处的斜率,利用点斜式求出直线方程(2)若不在,应首先利用曲线与切线的关系求出切点坐标,进而求出切线方程.此题属于第二种.解答: 解:y'=2x+1,设切点坐标为(x 0,y 0),则切线的斜率为2x 0+1,且y 0=x 02+x 0+1于是切线方程为y ﹣x 02﹣x 0﹣1=(2x 0+1)(x ﹣x 0),因为点(﹣1,0)在切线上,可解得x 0=0或﹣2,当x 0=0时,y 0=1;x 0=﹣2时,y 0=3,这时可以得到两条直线方程,验正D 正确.故选DA 变式4已知直线1y x =+与曲线y ln(2)x a =+相切,则a 的值为( )B 变式1 在f (x )=x 3+3x 2+6x ﹣10的切线中,斜率最小的切线方程为( )A . 3x+y ﹣11=0B . 3x ﹣y+6=0C . x ﹣3y ﹣11=0D . 3x ﹣y ﹣11=0分析:先对函数f (x )进行求导,然后求出导函数的最小值,其最小值即为斜率最小的切线方程的斜率,进而可求得切点的坐标,最后根据点斜式可得到切线方程.解答: 解:∵f (x )=x 3+3x 2+6x ﹣10∴f'(x )=3x 2+6x+6=3(x+1)2+3∵当x=﹣1时,f'(x )取到最小值3∴f (x )=x 3+3x 2+6x ﹣10的切线中,斜率最小的切线方程的斜率为3∵f (﹣1)=﹣1+3﹣6﹣10=﹣14∴切点坐标为(﹣1,﹣14)∴切线方程为:y+14=3(x+1),即3x ﹣y ﹣11=0故选D .点评: 本题主要考查导数的几何意义和导数的运算.导数的几何意义是函数在某点的导数值等于过该点的切线的斜率的值.B 变式2设函数f (x )=g (x )+x+lnx ,曲线y=g (x )在点(1,g (1))处的切线方程为y=2x+1,则曲线y=f (x )在点(1,f (1))处的切线方程为( )典型题六、切线与最短距离例题 曲线y=ln (2x-1)上的点到直线2x-y+3=0的最短距离是( )B 变式.1 曲线y=124x +上的点到直线x+3y+4=0的最短距离是( )B 变式2 曲线23x y e +=上的点到直线x-2y+3=0的最短距离是( )典型题七、()(),,0f x f x 与的关系例题 已知f (x )=x 2+2xf ′(1),则f ′(1)等于( )B 变式1已知f (x )=3x -xf ′(3),则f ′(3)等于( )B 变式2已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(e )+lnx ,则f ′(e )=。