圆幂定理讲义(带答案)

合集下载

数学竞赛辅导讲义——圆幂与根轴

数学竞赛辅导讲义——圆幂与根轴

数学竞赛辅导讲义——圆幂与根轴一、圆幂的定义:在平面上,从点P 作半径为r 的圆O 的割线,从P 起到和该圆周相交为止的两线段之积是一个定值,称为点P 对于此圆周的圆幂.圆幂定理:(1)当P 在圆O 外时,点P 对于此圆的幂等于22OP r -; (2)当P 在圆O 内时,点P 对于此圆的幂等于22r OP -;(3)当P 在圆O 上时,规定:点P 对于此圆的幂等于0.二、根轴及其性质 1.根轴的定义:对于两个已知圆的圆幂相等的点的轨迹是一条直线,该直线称为这两圆的根轴.2.根轴的性质:(1)若两圆1O 与2O 相离(半径分别为1r ,2r 且12r r ≤),点M 为12O O 的中点,点H 在线段1O M 上,且2221122r r MH O O -=,则此两圆的根轴是过点H 且垂直于12O O 的直线.特别地,当两圆相离且半径相等时,它们的根轴是线段12O O 的中垂线.(2)若两个圆是同心圆,则这两个圆不存在根轴.(3)若两个圆相交,则它们的公共弦所在的直线就是它们的根轴.(4)若两圆相切,则过两圆切点的公切线是它们的根轴.(5)若三个圆的圆心互不相同,则任意两个圆的根轴共三条直线,它们相交于一点或互相平行.(6)若两圆相离,则两圆的四条公切线的中点共线(都在根轴上). 思考:能否从解析几何的角度看根轴?三、例题例1 如图,设I 和O 分别是ABC ∆的内心和外心,r 和R 分别是ABC ∆的内切圆和外接圆的半径,过I 作ABC ∆的外接圆的弦AK . 求证:(1)IK BK =;(2)2AI IK Rr ⋅=; (3)222OI R Rr =-.(欧拉公式)例2 如图,设圆1O 与圆2O 相离,引它们的一条外公切线切圆1O 于A ,切圆2O 于B ,又引它们的一条内公切线切圆1O 于C ,切圆2O 于D ,求证:(1)AC BD ⊥;(2)直线12O O 是分别以AB ,CD 为直径的圆3O ,4O 的根轴;(3)直线AC 和BD 的交点K 在两圆的连心线12O O 上 .例1K例3(1997年全国联赛)已知两个半径不相等的1O 与2O 相交于M ,N 两点,且1O ,2O 分别与O 内切于S ,T 两点,S ,N ,T三点共线,求证:OM MN ⊥.四、练习题1.点D ,E 为ABC ∆的边AB ,AC 上的点,分别以BE ,CD 为直径的圆1O 与2O 交于点M ,N .求证:ABC ∆的垂心H 在直线MN 上.1.C例32. (第36届IMO )设A 、B 、C 、D 是一条直线上依次排列的四个不同的点,分别以AC ,BD 为直径的圆1O ,2O 交于点X ,Y ,直线XY 交BC 于点Z .若P 为直线XY 上异于Z 的一点,直线CP 与交圆1O 于点C 及M ,直线BP 与交圆2O 于点B 及N . 求证:(1)B ,M ,N ,C 四点共圆; (2)A ,M ,N ,D 四点共圆; (3)AM ,DN ,XY 共点.3. (第40届IMO 国家队选拔题)凸四边形ABCD 的四边满足AB AD CB CD +=+,圆O 分别与凸四边形ABCD 的AB ,BC 两边相切于G ,H 两点,与对角线AC 相交于E ,F 两点.求证:存在另一个过E ,F 两点,且分别与DA ,DC 的延长线相切的圆'O .2.3.BD。

圆幂定理+讲义2023年九年级数学中考复习【附解析】

圆幂定理+讲义2023年九年级数学中考复习【附解析】

圆幂定理九年级数学中考复习一、圆幂的定义:一点P对半径为r的圆O的幂=22OP r-二、圆幂定理:是相交弦定理、切割线定理、割线定理(切割线定理推论)的统称。

1、相交弦定理:若圆内任意弦AB、弦CD交于点P,则··PAPB PC PD=()PAC PBD∆∆∽2、切割线定理:从圆外一点引圆的切线和割线,切线(PA)长是割线和这点到割线(PD)与圆交点的两条线段长的比例中项²·PA PC PD=()PAC PDA∆∆∽3、割线定理(切割线定理的推论):例如如果交点为P的两条相交直线与圆O相交于A、B 与C、D,则·PA PB PC PD⋅=总结:平面上任意一点对于圆的幂为这个点到圆心的距离与圆的半径的平方差的绝对值。

22··PA PB PC PD r OP==-222·PA PC PD OP r==-22·PA PB PC PD OP r⋅==-例题讲解【例1】如图,在圆O 中,M 、N 是弦AB 的三等分点,弦CD ,CE 分别经过点M ,N , 若2CM =,4MD =,3CN =,则线段NE 的长为( )A .83B .3C .103D .52【例2】如题图,圆O 的弦AB ,CD 相交于点E ,过点A 作圆O 的切线与DC 的延长线交于 点P ,若6PA =,9AE =,3PC =,:2:1CE ED =,则BE = .【例3】如图,点P 为弦AB 上一点,连接OP ,过P 作PC OP ⊥,PC 交O 于点C ,若 6AP =,3PB =,则PC 的长为( )A .4B .5C .23D .32【例4】如图,正方形ABCD 内接于O ,点P 在劣弧AB 上,连接DP ,交AC 于点Q .若 QP QO =,则QC QA的值为( )A .231B .23C 32D 32+【例5】如图,PA 切圆于点A ,直线PCB 交圆于C ,B 两点,切线长42PA =4PC =, 则AB AC等于( )A 2B .22C .2D .以上结果都不对 【例6】如图,AT 切O 于T ,若6AT =,3AE =,4AD =,2DE =,则BC 等于()A .3B .4C .6D .8【例7】如图,在以O 为圆心的两个同心圆中,A 为大圆上任意一点,过A 作小圆的割线 AXY ,若4AX AY ⋅=,则图中圆环的面积为( )A .16πB .8πC .4πD .2π【例8】如图,在ABCD 中,过A 、B 、C 三点的圆交AD 于E ,且与CD 相切.若4AB =, 5BE =,则DE 的长为( )A .3B .4C .154D .165【例9】如图,四边形ABCD 是圆的内接四边形,AB 、DC 的延长线交于点P ,若C 是PD 的中点,且6PD =,2PB =,那么AB 的长为( )A .9B .7C .3D .92【例10】已知:P 为O 外一点,PQ 切O 于Q ,PAB 、PCD 是O 的割线,且PAC BAD ∠=∠.求证:22PQ PA AC AD -=.【例11】圆幂定理是平面几何中最重要的定理之一,它包含了相交弦定理、切割线定理、割线定理以及它们推论,其中切割线定理的内容是:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.喜欢思考的天天在了解这个定理之后尝试给出证明,下面是他的部分证明过程:已知:如图①,点P为O外一点,切线PA与圆相切于点A,割线PBC与圆相交于点B、C.求证:2=⋅.PA PB PC证明:如图,连接AB、AC、BO、AO,PA切O于点A,∠+∠=︒.PAB BAO∴⊥,即90PA AO⋯阅读以上材料,完成下列问题:(1)请帮助天天补充完成以上证明过程;(2)如图②,割线PDE与圆交于点D、E,且4PE=,求DE的长.==,7PB BC挑战训练【挑战训练1】如图,已知:PA切O于A,若AC为O的直径,PBC为O的割线,E 为弦AB的中点,PE的延长线交AC于F,且45FPB∠=︒,点F到PC的距离为5,则FC 的长为()。

数学竞赛辅导讲义——圆幂与根轴

数学竞赛辅导讲义——圆幂与根轴

数学竞赛辅导讲义——圆幂与根轴一、圆幂的定义:在平面上,从点P 作半径为r 的圆O 的割线,从P 起到和该圆周相交为止的两线段之积是一个定值,称为点P 对于此圆周的圆幂.圆幂定理:(1)当P 在圆O 外时,点P 对于此圆的幂等于22OP r -; (2)当P 在圆O 内时,点P 对于此圆的幂等于22r OP -;(3)当P 在圆O 上时,规定:点P 对于此圆的幂等于0.二、根轴及其性质 1.根轴的定义:对于两个已知圆的圆幂相等的点的轨迹是一条直线,该直线称为这两圆的根轴.2.根轴的性质:(1)若两圆1O 与2O 相离(半径分别为1r ,2r 且12r r ≤),点M 为12O O 的中点,点H 在线段1O M 上,且2221122r r MH O O -=,则此两圆的根轴是过点H 且垂直于12O O 的直线.特别地,当两圆相离且半径相等时,它们的根轴是线段12O O 的中垂线.(2)若两个圆是同心圆,则这两个圆不存在根轴.(3)若两个圆相交,则它们的公共弦所在的直线就是它们的根轴.(4)若两圆相切,则过两圆切点的公切线是它们的根轴.(5)若三个圆的圆心互不相同,则任意两个圆的根轴共三条直线,它们相交于一点或互相平行.(6)若两圆相离,则两圆的四条公切线的中点共线(都在根轴上). 思考:能否从解析几何的角度看根轴?三、例题例1 如图,设I 和O 分别是ABC ∆的内心和外心,r 和R 分别是ABC ∆的内切圆和外接圆的半径,过I 作ABC ∆的外接圆的弦AK . 求证:(1)IK BK =;(2)2AI IK Rr ⋅=; (3)222OI R Rr =-.(欧拉公式)例2 如图,设圆1O 与圆2O 相离,引它们的一条外公切线切圆1O 于A ,切圆2O 于B ,又引它们的一条内公切线切圆1O 于C ,切圆2O 于D ,求证:(1)AC BD ⊥;(2)直线12O O 是分别以AB ,CD 为直径的圆3O ,4O 的根轴;(3)直线AC 和BD 的交点K 在两圆的连心线12O O 上 .例1例3(1997年全国联赛)已知两个半径不相等的1O 与2O 相交于M ,N 两点,且1O ,2O 分别与O 内切于S ,T 两点,S ,N ,T 三点共线,求证:OM MN ⊥.四、练习题1.点D ,E 为ABC ∆的边AB ,AC 上的点,分别以BE ,CD 为直径的圆1O 与2O 交于点M ,N .求证:ABC ∆的垂心H 在直线MN 上.1.C例32. (第36届IMO )设A 、B 、C 、D 是一条直线上依次排列的四个不同的点,分别以AC ,BD 为直径的圆1O ,2O 交于点X ,Y ,直线XY 交BC 于点Z .若P 为直线XY 上异于Z 的一点,直线CP 与交圆1O 于点C 及M ,直线BP 与交圆2O 于点B 及N . 求证:(1)B ,M ,N ,C 四点共圆; (2)A ,M ,N ,D 四点共圆; (3)AM ,DN ,XY 共点.3. (第40届IMO 国家队选拔题)凸四边形ABCD 的四边满足AB AD CB CD +=+,圆O 分别与凸四边形ABCD 的AB ,BC 两边相切于G ,H 两点,与对角线AC 相交于E ,F 两点.求证:存在另一个过E ,F 两点,且分别与DA ,DC 的延长线相切的圆'O .2.3.BD。

数学竞赛辅导讲义圆幂与根轴

数学竞赛辅导讲义圆幂与根轴

数学竞赛辅导讲义——圆幂与根轴一、圆幂的定义:在平面上,从点P 作半径为r 的圆O 的割线,从P 起到和该圆周相交为止的两线段之积是一个定值,称为点P 对于此圆周的圆幂.圆幂定理:(1)当P 在圆O 外时,点P 对于此圆的幂等于22OP r -; (2)当P 在圆O 内时,点P 对于此圆的幂等于22r OP -;(3)当P 在圆O 上时,规定:点P 对于此圆的幂等于0.二、根轴及其性质 1.根轴的定义:对于两个已知圆的圆幂相等的点的轨迹是一条直线,该直线称为这两圆的根轴.2.根轴的性质:(1)若两圆1O 与2O 相离(半径分别为1r ,2r 且12r r ≤),点M 为12O O 的中点,点H 在线段1O M 上,且2221122r r MH O O -=,则此两圆的根轴是过点H 且垂直于12O O 的直线.特别地,当两圆相离且半径相等时,它们的根轴是线段12O O 的中垂线.(2)若两个圆是同心圆,则这两个圆不存在根轴.(3)若两个圆相交,则它们的公共弦所在的直线就是它们的根轴.(4)若两圆相切,则过两圆切点的公切线是它们的根轴.(5)若三个圆的圆心互不相同,则任意两个圆的根轴共三条直线,它们相交于一点或互相平行.(6)若两圆相离,则两圆的四条公切线的中点共线(都在根轴上). 思考:能否从解析几何的角度看根轴?三、例题例1 如图,设I 和O 分别是ABC ∆的内心和外心,r 和R 分别是ABC ∆的内切圆和外接圆的半径,过I 作ABC ∆的外接圆的弦AK . 求证:(1)IK BK =;(2)2AI IK Rr ⋅=; (3)222OI R Rr =-.(欧拉公式)例2 如图,设圆1O 与圆2O 相离,引它们的一条外公切线切圆1O 于A ,切圆2O 于B ,又引它们的一条内公切线切圆1O 于C ,切圆2O 于D ,求证:(1)AC BD ⊥;(2)直线12O O 是分别以AB ,CD 为直径的圆3O ,4O 的根轴;(3)直线AC 和BD 的交点K 在两圆的连心线12O O 上 .例1K例3(1997年全国联赛)已知两个半径不相等的1O 与2O 相交于M ,N 两点,且1O ,2O 分别与O 内切于S ,T 两点,S ,N ,T 三点共线,求证:OM MN ⊥.四、练习题1.点D ,E 为ABC ∆的边AB ,AC 上的点,分别以BE ,CD 为直径的圆1O 与2O 交于点M ,N .求证:ABC ∆的垂心H 在直线MN 上.1.C例32. (第36届IMO )设A 、B 、C 、D 是一条直线上依次排列的四个不同的点,分别以AC ,BD 为直径的圆1O ,2O 交于点X ,Y ,直线XY 交BC 于点Z .若P 为直线XY 上异于Z 的一点,直线CP 与交圆1O 于点C 及M ,直线BP 与交圆2O 于点B 及N . 求证:(1)B ,M ,N ,C 四点共圆; (2)A ,M ,N ,D 四点共圆; (3)AM ,DN ,XY 共点.3. (第40届IMO 国家队选拔题)凸四边形ABCD 的四边满足AB AD CB CD +=+,圆O 分别与凸四边形ABCD 的AB ,BC 两边相切于G ,H 两点,与对角线AC 相交于E ,F 两点.求证:存在另一个过E ,F 两点,且分别与DA ,DC 的延长线相切的圆'O .2.3.BD。

圆幂定理及其相关问题解答

圆幂定理及其相关问题解答

圆幂定理及其相关问题解答1. 圆幂定理简介圆幂定理是平面几何中的一个重要定理,用于解决与圆相关的问题。

它给出了在一个平面内,一个点到圆的两条切线所构成的线段与该点到圆心的距离乘积的平方等于该点到圆的距离与圆心到切点的距离乘积的平方。

圆幂定理的数学表达如下:PA * PB = PC * PD其中,P为点到圆的距离,A、B为切点,C为圆心到切点A的距离,D为圆心到切点B的距离。

2. 圆幂定理的证明圆幂定理的证明可以通过构造垂直,利用勾股定理和相似三角形推导得到。

具体证明过程如下:假设点P到圆O的两条切线分别与圆O相交于A、B两点。

连接线段OP,并设其交点为C。

根据正弦定理可得:PA / sin ∠PAC = PC / sin ∠CPAPB / sin ∠PBC = PC / sin ∠CPB由于∠CPA = ∠CPB,而sin ∠PAC = sin ∠PBC,因此有:PA / PB = sin ∠PBC / sin ∠PAC由于∠PAC和∠PBC都是直角,所以sin ∠PAC = PC/PA,sin ∠PBC = PC/PB。

将上述结果代入可得:PA * PB = PC^2同样的方式可以得到另一组切线的结论。

综上所述,圆幂定理得到证明。

3. 圆幂定理的应用圆幂定理在解决与圆相关的问题时具有重要的应用价值,下面介绍几个常见的问题及其解法:3.1 问题一:求解切线长度已知一个圆的半径为r,以及一个点P到该圆的距离d,求解与该点P到圆的两条切线的长度。

解法:根据圆幂定理可得:PA * PB = PC * PD = d^2 - r^2由于PA = PB,所以:PA = PB = sqrt(d^2 - r^2)因此,切线长度为sqrt(d^2 - r^2)。

3.2 问题二:判断两个圆的位置关系已知两个圆的半径分别为r1和r2,以及两个圆的圆心之间的距离d,判断两个圆的位置关系。

解法:根据圆幂定理可得:(r1 + r2)^2 = d^2根据以上公式,可以得到以下几种情况:•当d < r1 + r2时,两个圆相交•当d = r1 + r2时,两个圆相切•当d > r1 + r2时,两个圆相离3.3 问题三:求解切点坐标已知一个圆的半径为r,以及一个点P到该圆的距离d,求解与该点P到圆的两条切线的切点坐标。

圆幂定理

圆幂定理

中小学1对1课外辅导专家武汉龙文教育学科辅导讲义 圆幂定理圆幂定理:过一定点P 向⊙O 作任一直线,交⊙O 于两点,则自定点P 到两交点的两条线段之积为常数||(R 为圆半径),因为叫做点对于⊙O 的幂,所以将下述定理统称为圆幂定理。

定理 图形 已知 结论 证法 相交弦定理⊙O 中,AB 、CD 为弦,交于P. PA·PB=PC·PD 连结AC 、BD ,证:△APC∽△DPB .相交弦定理的推论⊙O 中,AB 为直径,CD⊥AB 于P.PC 2=PA·PB . 用相交弦定理.切割线定理⊙O 中,PT 切⊙O 于T ,割线PB 交⊙O 于APT 2=PA·PB 连结TA 、TB ,证:△PTB∽△PAT割线定理推论PB 、PD 为⊙O 的两条割线,交⊙O 于A 、C PA·PB=PC·PD 过P 作PT 切⊙O 于T ,用两次切割线定理圆中的相似(1)一、圆中相似三角形的判定1.如图,直线PM 切⊙O 于点M ,直线PO 交⊙O 于A ,B 点,弦AC ∥PM ,连接OM 、BC.求证:(1)△ABC ∽△POM ;(2)2OA 2=OP •BC .CA MB PO中小学1对1课外辅导专家2.如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 交AC 与E ,交BC 与D .求证:(1)D 是BC 的中点; (2)△BE C ∽△ADC ; (3)BC 2=2AB ·CE二、利用圆中相似三角形证明圆中的比例线段3.如图,在圆内接四边形ABCD 中,CD 为∠BCA 的外角的平分线,F 为错误!未找到引用源。

上一点,BC=AF ,延长DF 与BA 的延长线交于E . (1)求证:△ABD 为等腰三角形. (2)求证:AC•AF=DF•FE .4如图,BD 为⊙O 的直径,AB =AC ,AD 交B C 于点E ,AE =2,ED =4, (1)求证:△ABE ∽△ADB ; (2)求AB 的长;(3)延长DB 到F ,使得BF =BO ,连接F A ,试判断直线F A 与⊙O 的位置关系,并说明理由.FD OC EB AA C BD EO · 圆中的相似(2)三、利用圆中相似进行计算1.如图,已知AB 是⊙O 的直径,点C 在⊙O 上,过点C 的直线与AB 的延长线交于 点P ,AC=PC ,∠COB=2∠PCB. (1)求证:PC 是⊙O 的切线; (2)求证: AB =2BC ;(3)点M 是弧AB 的中点,CM 交AB 于点N , 若AB=4,求MN ·MC 的值.2.如图,已知R t △ABC ,∠ABC =90°,以直角边AB 为直径作O ,交斜边AC 于点D ,连结BD . (1)若AD =3,BD =4,求边BC 的长; (2)取BC 的中点E ,连结ED ,试证明ED 与⊙O 相切.四、圆的有关线段与相似三角形的综合运用3.如图,点P 为△ABC 的内心,延长AP 交△ABC 的外接圆于D ,在AC 延长线上有一点E ,满足AD 2=AB ·AE ,求证:DE 是⊙O 的切线.4.如图,AB 是⊙O 的直径,AC 是弦,CD 是⊙O 的切线,C 为切点,AD ⊥CD 于点D . 求证:(1)∠AOC =2∠ACD ;(2)AC 2=AB ·AD .圆中的相似(3)1、如图, Rt ABC △中,90ABC ∠=°,以AB 为直径的O ⊙交AC 于点D ,过点D 的切线交BC 于E .(1)求证:12DE BC =;(2)若,求AD 的长.2.如图,已知ABC △,以BC 为直径,O 为圆心的半圆交AC 于点F ,点E 为 CF的中点,连接BE 交AC 于点M ,AD 为△ABC 的角平分线,且AD BE ⊥,垂足为点H 。

2021年初中数学竞赛辅导讲义及习题解答 第22讲 园幂定理

2021年初中数学竞赛辅导讲义及习题解答 第22讲 园幂定理

感谢您使用本资源,本资源是由订阅号”初中英语资源库“制作并分享给广大用户,本资源制作于2020年底,是集实用性、可编辑性为一体。

本资源为成套文件,包含本年级本课的相关资源。

有教案、教学设计、学案、录音、微课等教师最需要的资源。

我们投入大量的人力、物力,聘请精英团队,从衡水中学、毛毯厂中学、昌乐中学等名校集合了一大批优秀的师资,精研中、高考,创新教学过程,将同学们喜闻乐见的内容整体教给学生。

本资源适用于教师下载后作为教学的辅助工具使用、适合于学生家长下载后打印出来作为同步练习使用、也适用于同学们自己将所学知识进行整合,整体把握进度和难度,是一个非常好的资源。

如果需要更多成套资料,请微信搜索订阅号“初中英语资源库”,在页面下方找到“资源库”,就能得到您需要的每一份资源(包括小初高12000份主题班会课课件免费赠送!)第二十二讲园幂定理相交弦定理、切割线定理、割线定理统称为圆幂定理.圆幂定理实质上是反映两条相交直线与圆的位置关系的性质定理,其本质是与比例线段有关.相交弦定理、切割线定理、割线定理有着密切的联系,主要体现在:1.用运动的观点看,切割线定理、割线定理是相交弦定理另一种情形,即移动圆内两条相交弦使其交点在圆外的情况;2.从定理的证明方法看,都是由一对相似三角形得到的等积式.熟悉以下基本图形、基本结论:【例题求解】【例1】如图,PT切⊙O于点T,PA交⊙O于A、B两点,且与直径CT交于点D,CD=2,AD=3,BD=6,则PB= .思路点拨综合运用圆幂定理、勾股定理求PB长.注:比例线段是几何之中一个重要问题,比例线段的学习是一个由一般到特殊、不断深化的过程,大致经历了四个阶段:(1)平行线分线段对应成比例;(2)相似三角形对应边成比例;(3)直角三角形中的比例线段可以用积的形式简捷地表示出来;(4)圆中的比例线段通过圆幂定理明快地反映出来.【例2】如图,在平行四边形ABCD中,过A、B、C三点的圆交AD于点E,且与CD相切,若AB=4,BE=5,则DE 的长为( ) A .3 B .4 C .415 D .516思路点拨 连AC ,CE ,由条件可得许多等线段,为切割线定理的运用创设条件.注:圆中线段的算,常常需要综合相似三角形、直角三角形、圆幂定理等知识,通过代数化获解,加强对图形的分解,注重信息的重组与整合是解圆中线段计算问题的关键.【例3】 如图,△ABC 内接于⊙O ,AB 是∠O 的直径,PA 是过A 点的直线,∠PAC=∠B .(1)求证:PA 是⊙O 的切线;(2)如果弦CD 交AB 于E ,CD 的延长线交PA 于F ,AC=8,CE :ED=6:5,,AE :BE=2:3,求AB 的长和∠ECB 的正切值.思路点拨 直径、切线对应着与圆相关的丰富知识.(1)问的证明为切割线定理的运用创造了条件;引入参数x 、k 处理(2)问中的比例式,把相应线段用是的代数式表示,并寻找x 与k 的关系,建立x 或k 的方程.【例4】 如图,P 是平行四边形AB 的边AB 的延长线上一点,DP 与AC 、BC 分别交于点E 、E ,EG 是过B 、F 、P 三点圆的切线,G 为切点,求证:EG=DE思路点拨 由切割线定理得EG 2=EF ·EP ,要证明EG=DE ,只需证明DE 2=EF ·EP ,这样通过圆幂定理把线段相等问题的证明转化为线段等积式的证明.注:圆中的许多问题,若图形中有适用圆幂定理的条件,则能化解问题的难度,而圆中线段等积式是转化问题的桥梁.需要注意的是,圆幂定理的运用不仅局限于计算及比例线段的证明,可拓展到平面几何各种类型的问题中.【例5】如图,以正方形ABCD的AB边为直径,在正方形内部作半圆,圆心为O,DF切半圆于点E,交AB的延长线于点F,BF=4.求:(1)cos∠F的值;(2)BE的长.思路点拨解决本例的基础是:熟悉圆中常用辅助线的添法(连OE,AE);熟悉圆中重要性质定理及角与线段的转化方法.对于(1),先求出EF,FO值;对于(2),从△BE F∽△EAF,Rt△AEB入手.注:当直线形与圆结合时就产生错综复杂的图形,善于分析图形是解与圆相关综合题的关键,分析图形可从以下方面入手:(1)多视点观察图形.如本例从D点看可用切线长定理,从F点看可用切割线定理.(2)多元素分析图形.图中有没有特殊点、特殊线、特殊三角形、特殊四边形、全等三角形、相似三角形.(3)将以上分析组合,寻找联系.学力训练1.如图,PT是⊙O的切线,T为切点,PB是⊙O的割线,交⊙O于A、B两点,交弦CD 于点M,已知CM=10,MD=2,PA=MB=4,则PT的长为.2.如图,PAB、PCD为⊙O的两条割线,若PA=5,AB=7,CD=11,则AC:BD= .3.如图,AB是⊙O的直径,C是AB延长线上的一点,CD是⊙O的切线,D为切点,过点B作⊙O的切线交CD于点F,若AB=CD=2,则CE= .4.如图,在△ABC中,∠C=90°,AB=10,AC=6,以AC为直径作圆与斜边交于点P,则BP的长为( )A.6.4 B.3.2 C .3.6 D.85.如图,⊙O 的弦AB 平分半径OC ,交OC 于P 点,已知PA 、PB 的长分别为方程024122=+-x x 的两根,则此圆的直径为( )A .28B .26C .24D .226.如图,⊙O 的直径Ab 垂直于弦CD ,垂足为H ,点P 是AC 上一点(点P 不与A 、C 两点重合),连结PC 、PD 、PA 、AD ,点E 在AP 的延长线上,PD 与AB 交于点F ,给出下列四个结论:①CH 2=AH ·BH ;②AD =AC :③AD 2=DF ·DP ;④∠EPC=∠APD ,其中正确的个数是( )A .1B .2C .3D .47.如图,BC 是半圆的直径,O 为圆心,P 是BC 延长线上一点,PA 切半圆于点A ,AD ⊥BC 于点D .(1)若∠B=30°,问AB 与AP 是否相等?请说明理由; (2)求证:PD ·PO=PC ·PB ;(3)若BD :DC=4:l ,且BC =10,求PC 的长.8.如图,已知PA 切⊙O 于点A ,割线PBC 交⊙O 于点B 、C ,PD ⊥AB 于点D ,PD 、AO 的延长线相交于点E ,连CE 并延长交⊙O 于点F ,连AF . (1)求证:△PBD ∽△PEC ; (2)若AB=12,tan ∠EAF=32,求⊙O 的半径的长.9.如图,已知AB 是⊙O 的直径,PB 切⊙O 于点B ,PA 交⊙O 于点C ,PF 分别交AB 、BC 于E 、D ,交⊙O 于F 、G ,且BE 、BD 恰哈好是关于x 的方程0)134(622=+++-m m x x (其中m 为实数)的两根.(1)求证:BE=BD ;(2)若GE ·EF=36,求∠A 的度数.10.如图,△ABC 中,∠C=90°,O 为AB 上一点,以O 为圆心,OB 为半径的圆与AB⌒⌒⌒相交于点E ,与AC 相切于点D ,已知AD=2,AE=1,那么BC= .11.如图,已知A 、B 、C 、D 在同一个圆上,BC=CD ,AC 与BD 交于E ,若AC=8,CD=4,且线段BE 、ED 为正整数,则BD= . 12.如图,P 是半圆O 的直径BC 延长线上一点,PA 切半圆于点A ,AH ⊥BC 于H ,若PA=1,PB+PC=a (a >2),则PH=( )A .a 2 B .a 1 C .2a D .3a13.如图,△ABC 是⊙O 的内接正三角形,弦EF 经过BC 的中点D ,且EF ∥AB ,若AB=2,则DE 的长为( )A .21 B .215 C .23 D .1 14.如图,已知AB 为⊙O 的直径,C 为⊙O 上一点,延长BC 至D ,使CD=BC ,CE ⊥AD于E ,BE 交⊙O 于F ,AF 交CE 于P ,求证:PE=PC .15.已知:如图,ABCD 为正方形,以D 点为圆心,AD 为半径的圆弧与以BC 为直径的⊙O 相交于P 、C 两点,连结AC 、AP 、CP ,并延长CP 、AP 分别交AB 、BC 、⊙O 于E 、H 、F 三点,连结OF .(1)求证:△AEP ∽△CEA ;(2)判断线段AB 与OF 的位置关系,并证明你的结论; (3)求BH:HC16.如图,PA 、PB 是⊙O 的两条切线,PEC 是一条割线,D 是AB 与PC 的交点,若PE=2,CD=1,求DE 的长.17.如图,⊙O 的直径的长是关于x 的二次方程0)2(22=+-+k x k x (k 是整数)的最大整数根,P 是⊙O 外一点,过点P 作⊙O 的切线PA 和割线PBC ,其中A 为切点,点B 、C 是直线PBC 与⊙O 的交点,若PA 、PB 、PC 的长都是正整数,且PB 的长不是合数,求PA+PB+PC 的值.参考答案精品“正版”资料系列,由本公司独创。

圆幂定理试题及答案

圆幂定理试题及答案

圆幂定理试题及答案一、选择题1. 圆幂定理指的是()A. 圆上任意两点的距离等于它们到圆心的距离之和B. 圆上任意两点的距离等于它们到圆心的距离之差C. 圆上任意一点到圆心的距离等于该点到圆上其他点的距离之和D. 圆上任意一点到圆心的距离等于该点到圆上其他点的距离之差2. 在圆幂定理中,如果圆上一点P到圆心O的距离为OP,点P到圆上另一点A的距离为PA,则以下哪个表达式是正确的?()A. OP = PAB. OP + PA = 2RC. OP - PA = RD. OP × PA = R^2二、填空题3. 若圆的半径为5cm,圆上一点到圆心的距离为3cm,则该点到圆上任意一点的距离之和为_________。

4. 已知圆幂定理中的OP = 8cm,PA = 6cm,且点A在圆上,则圆的半径R为_________。

三、解答题5. 如图所示,圆O的半径为10cm,点P在圆上,OP(点P到圆心O的距离)为12cm。

求点P到圆上另一点B的距离PB。

6. 在一个半径为7cm的圆中,有两点A和B,已知OA(点A到圆心O 的距离)为5cm,求AB的长度。

四、证明题7. 证明圆幂定理:在一个给定的圆中,圆上任意一点到圆心的距离与该点到圆上其他点的距离之和等于圆的直径。

答案一、选择题1. 正确答案:D2. 正确答案:B二、填空题3. 该点到圆上任意一点的距离之和为10cm + 10cm = 20cm。

4. 圆的半径R可以通过勾股定理计算得出:R^2 = OP^2 - OA^2,所以R^2 = 8^2 - 6^2 = 64 - 36 = 28,因此R = √28 ≈ 5.29cm。

三、解答题5. 由于OP > OA,根据圆幂定理,PB = 2R - OP = 2 * 10 - 12 = 20 - 12 = 8cm。

6. 同样使用圆幂定理,AB = 2R - OA - OB,但是OB = OA = 5cm,所以AB = 2 * 7 - 5 - 5 = 14 - 10 = 4cm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆幂定理STEP 1:进门考理念:1. 检测垂径定理的基本知识点与题型。

2. 垂径定理典型例题的回顾检测。

3. 分析学生圆部分的薄弱环节。

(1)例题复习。

(2015•夏津县一模)一副量角器与一块含30°锐角的三角板如图所示放置,三角板的直角顶点C落在量角器的直径MN上,顶点A,B恰好都落在量角器的圆弧上,且AB∥MN.若AB=8cm,则量角器的直径MN= cm.【考点】M3:垂径定理的应用;KQ:勾股定理;T7:解直角三角形.【分析】作CD⊥AB于点D,取圆心O,连接OA,作OE⊥AB于点E,首先求得CD的长,即OE的长,在直角△AOE中,利用勾股定理求得半径OA的长,则MN即可求解.【解答】解:作CD⊥AB于点D,取圆心O,连接OA,作OE⊥AB于点E.在直角△ABC中,∠A=30°,则BC=AB=4cm,在直角△BCD中,∠B=90°﹣∠A=60°,∴CD=BC•sinB=4×=2(cm),∴OE=CD=2,在△AOE中,AE=AB=4cm,则OA===2(cm),则MN=2OA=4(cm).故答案是:4.【点评】本题考查了垂径定理的应用,在半径或直径、弦长以及弦心距之间的计算中,常用的方法是转化为解直角三角形.2.(2017•阿坝州)如图将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为()A.2cm B.cm C.2cm D.2cm【考点】M2:垂径定理;PB:翻折变换(折叠问题).【分析】通过作辅助线,过点O作OD⊥AB交AB于点D,根据折叠的性质可知OA=2OD,根据勾股定理可将AD的长求出,通过垂径定理可求出AB的长.【解答】解:过点O作OD⊥AB交AB于点D,连接OA,∵OA=2OD=2cm,∴AD===(cm),∵OD⊥AB,∴AB=2AD=2cm.故选:D.【点评】本题考查了垂径定理和勾股定理的运用,正确应用勾股定理是解题关键.(2014•泸州)如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.4 B. C. D.【考点】M2:垂径定理;F8:一次函数图象上点的坐标特征;KQ:勾股定理.【专题】11 :计算题;16 :压轴题.【分析】PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,由于OC=3,PC=a,易得D点坐标为(3,3),则△OCD为等腰直角三角形,△PED也为等腰直角三角形.由PE⊥AB,根据垂径定理得AE=BE=AB=2,在Rt△PBE中,利用勾股定理可计算出PE=1,则PD=PE=,所以a=3+.【解答】解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故选:B.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和等腰直角三角形的性质.(2013•内江)在平面直角坐标系xOy中,以原点O为圆心的圆过点A (13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为.【考点】FI:一次函数综合题.【专题】16 :压轴题.【分析】根据直线y=kx﹣3k+4必过点D(3,4),求出最短的弦CB是过点D且与该圆直径垂直的弦,再求出OD的长,再根据以原点O为圆心的圆过点A(13,0),求出OB的长,再利用勾股定理求出BD,即可得出答案.【解答】解:∵直线y=kx﹣3k+4=k(x﹣3)+4,∴k(x﹣3)=y﹣4,∵k有无数个值,∴x﹣3=0,y﹣4=0,解得x=3,y=4,∴直线必过点D(3,4),∴最短的弦CB是过点D且与该圆直径垂直的弦,∵点D的坐标是(3,4),∴OD=5,∵以原点O为圆心的圆过点A(13,0),∴圆的半径为13,∴OB=13,∴BD=12,∴BC的长的最小值为24;故答案为:24.【点评】此题考查了一次函数的综合,用到的知识点是垂径定理、勾股定理、圆的有关性质,关键是求出BC最短时的位置.STEP 2:新课讲解1、熟练掌握圆幂定理的基本概念。

2、熟悉有关圆幂定理的相关题型,出题形式与解题思路。

3、能够用自己的话叙述圆幂定理的概念。

4、通过课上例题,结合课下练习。

掌握此部分的知识。

一、相交弦定理相交弦定理(1)相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.(经过圆内一点引两条线,各弦被这点所分成的两段的积相等).几何语言:若弦AB、CD交于点P,则PA•PB=PC•PD(相交弦定理)(2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.几何语言:若AB是直径,CD垂直AB于点P,则PC2=PA•PB(相交弦定理推论).➢基本题型:(2014秋•江阴市期中)如图,⊙O的弦AB、CD相交于点P,若AP=3,BP=4,CP=2,则CD长为()A.6 B.12 C.8 D.不能确定【考点】M7:相交弦定理.【专题】11 :计算题.【分析】由相交线定理可得出AP•BP=CP•DP,再根据AP=3,BP=4,CP=2,可得出PD的长,从而得出CD即可.【解答】解:∵AP•BP=CP•DP,∴PD=,∵AP=3,BP=4,CP=2,∴PD=6,∴CD=PC+PD=2+6=8.故选C.【点评】本题考查了相交线定理,圆内两条弦相交,被交点分成的两条线段的积相等.(2015•南长区一模)如图,矩形ABCD为⊙O的内接四边形,AB=2,BC=3,点E为BC上一点,且BE=1,延长AE交⊙O于点F,则线段AF的长为()A.B.5 C.+1 D.【考点】M7:相交弦定理.【分析】由矩形的性质和勾股定理求出AE,再由相交弦定理求出EF,即可得出AF的长.【解答】解:∵四边形ABCD是矩形,∴∠B=90°,∴AE===,∵BC=3,BE=1,∴CE=2,由相交弦定理得:AE•EF=BE•CE,∴EF==,∴AF=AE+EF=;故选:A.【点评】本题考查了矩形的性质、勾股定理、相交弦定理;熟练掌握矩形的性质和相交弦定理,并能进行推理计算是解决问题的关键.➢综合题型(2004•福州)如图,AB是⊙O的直径,M是⊙O上一点,MN⊥AB,垂足为N.P、Q分别是、上一点(不与端点重合),如果∠MNP=∠MNQ,下面结论:①∠1=∠2;②∠P+∠Q=180°;③∠Q=∠PMN;④PM=QM;⑤MN2=PN•QN.其中正确的是()A.①②③B.①③⑤C.④⑤D.①②⑤【考点】M7:相交弦定理;M2:垂径定理;M4:圆心角、弧、弦的关系;M5:圆周角定理;S9:相似三角形的判定与性质.【专题】16 :压轴题.【分析】根据圆周角定理及已知对各个结论进行分析,从而得到答案.【解答】解:延长MN交圆于点W,延长QN交圆于点E,延长PN交圆于点F,连接PE,QF ∵∠PNM=∠QNM,MN⊥AB,∴∠1=∠2(故①正确),∵∠2与∠ANE是对顶角,∴∠1=∠ANE,∵AB是直径,∴可得PN=EN,同理NQ=NF,∵点N是MW的中点,MN•NW=MN2=PN•NF=EN•NQ=PN•QN(故⑤正确),∴MN:NQ=PN:MN,∵∠PNM=∠QNM,∴△NPM∽△NMQ,∴∠Q=∠PMN(故③正确).故选B.【点评】本题利用了相交弦定理,相似三角形的判定和性质,垂径定理求解.➢与代数结合的综合题(2016•中山市模拟)如图,正方形ABCD内接于⊙O,点P在劣弧AB 上,连接DP,交AC于点Q.若QP=QO,则的值为()A.B.C.D.【考点】M7:相交弦定理;KQ:勾股定理.【专题】11 :计算题.【分析】设⊙O的半径为r,QO=m,则QP=m,QC=r+m,QA=r﹣m.利用相交弦定理,求出m 与r的关系,即用r表示出m,即可表示出所求比值.【解答】解:如图,设⊙O的半径为r,QO=m,则QP=m,QC=r+m,QA=r﹣m.在⊙O中,根据相交弦定理,得QA•QC=QP•QD.即(r﹣m)(r+m)=m•QD,所以QD=.连接DO,由勾股定理,得QD2=DO2+QO2,即,解得所以,故选D.【点评】本题考查了相交弦定理,即“圆内两弦相交于圆内一点,各弦被这点所分得的两线段的长的乘积相等”.熟记并灵活应用定理是解题的关键.➢需要做辅助线的综合题(2008秋•苏州期末)如图,⊙O过M点,⊙M交⊙O于A,延长⊙O 的直径AB交⊙M于C,若AB=8,BC=1,则AM= .【考点】M7:相交弦定理;KQ:勾股定理;M5:圆周角定理.【分析】根据相交弦定理可证AB•BC=EB•BF=(EM+MB)(MF﹣MB)=AM2﹣MB2=8,又由直径对的圆周角是直角,用勾股定理即可求解AM=6.【解答】解:作过点M、B的直径EF,交圆于点E、F,则EM=MA=MF,由相交弦定理知,AB•BC=EB•BF=(EM+MB)(MF﹣MB)=AM2﹣MB2=8,∵AB是圆O的直径,∴∠AMB=90°,由勾股定理得,AM2+MB2=AB2=64,∴AM=6.【点评】本题利用了相交弦定理,直径对的圆周角是直角,勾股定理求解.二、割线定理割线定理割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.几何语言:∵PBA,PDC是⊙O的割线∴PD•PC=PA•PB(割线定理)由上可知:PT2=PA•PB=PC•PD.➢基本题型(1998•绍兴)如图,过点P作⊙O的两条割线分别交⊙O于点A、B 和点C、D,已知PA=3,AB=PC=2,则PD的长是()A.3 B.7.5 C.5 D.5.5【考点】MH:切割线定理.【分析】由已知可得PB的长,再根据割线定理得PA•PB=PC•PD即可求得PD的长.【解答】解:∵PA=3,AB=PC=2,∴PB=5,∵PA•PB=PC•PD,∴PD=7.5,故选B.【点评】主要是考查了割线定理的运用.(2003•天津)如图,Rt△ABC中,∠C=90°,AC=3,BC=4,以点C 为圆心、CA为半径的圆与AB、BC分别交于点D、E.求AB、AD的长.【考点】MH:切割线定理;KQ:勾股定理.【分析】Rt△ABC中,由勾股定理可直接求得AB的长;延长BC交⊙C于点F,根据割线定理,得BE•BF=BD•BA,由此可求出BD的长,进而可求得AD的长.【解答】解:法1:在Rt△ABC中,AC=3,BC=4;根据勾股定理,得AB=5.延长BC交⊙C于点F,则有:EC=CF=AC=3(⊙C的半径),BE=BC﹣EC=1,BF=BC+CF=7;由割线定理得,BE•BF=BD•BA,于是BD=;所以AD=AB﹣BD=;法2:过C作CM⊥AB,交AB于点M,如图所示,由垂径定理可得M为AD的中点,∵S△ABC=AC•BC=AB•CM,且AC=3,BC=4,AB=5,∴CM=,在Rt△ACM中,根据勾股定理得:AC2=AM2+CM2,即9=AM2+()2,解得:AM=,∴AD=2AM=.【点评】此题主要考查学生对勾股定理及割线定理的理解及运用.➢综合题型(2015•武汉校级模拟)如图,两同心圆间的圆环的面积为16π,过小圆上任意一点P作大圆的弦AB,则PA•PB的值是()A.16 B.16πC.4 D.4π【考点】MH:切割线定理.【分析】过P点作大圆的直径CD,如图,设大圆半径为R,小圆半径为r,根据相交弦定理得到PA•PB=(OC﹣OP)•(OP+OD)=R2﹣r2,再利用πR2﹣πr2=16π得到R2﹣r2=16,所以PA•PB=16.【解答】解:过P点作大圆的直径CD,如图,设大圆半径为R,小圆半径为r,∵PA•PB=PC•PD,∴PA•PB=(OC﹣OP)•(OP+OD)=(R﹣r)(R+r)=R2﹣r2,∵两同心圆间的圆环(即图中阴影部分)的面积为16π,∴πR2﹣πr2=16π,∴R2﹣r2=16,∴PA•PB=16.故选A.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了相交弦定理.【思考】观察讲义课后练习最后一道题,是否有思路?三、切割线定理切割线定理切割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.几何语言:∵PBA,PDC是⊙O的割线∴PD•PC=PA•PB(割线定理)由上可知:PT2=PA•PB=PC•PD.(2013•长清区二模)如图,PA为⊙O的切线,A为切点,⊙O的割线PBC过点O与⊙O分别交于B、C,PA=8cm,PB=4cm,求⊙O的半径.【考点】MH:切割线定理.【专题】11 :计算题.【分析】连接OA,设⊙O的半径为rcm,由勾股定理,列式计算即可.【解答】解:连接OA,设⊙O的半径为rcm,(2分)则r2+82=(r+4)2,(4分)解得r=6,∴⊙O的半径为6cm.(2分)【点评】本题考查的是切割线定理,勾股定理,是基础知识要熟练掌握.(2013秋•东台市期中)如图,点P是⊙O直径AB的延长线上一点,PC切⊙O于点C,已知OB=3,PB=2.则PC等于()A.2 B.3 C.4 D.5【考点】MH:切割线定理.【专题】11 :计算题.【分析】根据题意可得出PC2=PB•PA,再由OB=3,PB=2,则PA=8,代入可求出PC.【解答】解:∵PC、PB分别为⊙O的切线和割线,∴PC2=PB•PA,∵OB=3,PB=2,∴PA=8,∴PC2=PB•PA=2×8=16,∴PC=4.故选C.【点评】本题考查了切割线定理,熟记切割线定理的公式PC2=PB•PA.四、切线长定理切割线定理(1)圆的切线长定义:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.(2)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.(3)注意:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.(4)切线长定理包含着一些隐含结论:①垂直关系三处;②全等关系三对;③弧相等关系两对,在一些证明求解问题中经常用到.(2015•秦皇岛校级模拟)如图,一圆内切四边形ABCD,且BC=10,AD=7,则四边形的周长为()A.32 B.34 C.36 D.38【考点】MG:切线长定理.【分析】根据切线长定理,可以证明圆外切四边形的性质:圆外切四边形的两组对边和相等,从而可求得四边形的周长.【解答】解:由题意可得圆外切四边形的两组对边和相等,所以四边形的周长=2×(7+10)=34.故选:B.【点评】此题主要考查了切线长定理,熟悉圆外切四边形的性质:圆外切四边形的两组对边和相等是解题关键.(2015•岳池县模拟)如图,PA,PB切⊙O于A,B两点,CD切⊙O 于点E交PA,PB于C,D,若⊙O的半径为r,△PCD的周长为3r,连接OA,OP,则的值是()A.B.C.D.【考点】MG:切线长定理;MC:切线的性质.【分析】利用切线长定理得出CA=CF,DF=DB,PA=PB,进而得出PA=r,求出即可.【解答】解:∵PA,PB切⊙O于A,B两点,CD切⊙O于点E交PA,PB于C,D,∴CA=CF,DF=DB,PA=PB,∴PC+CF+DF+PD=PA=PB=2PA=3r,∴PA=r,则的值是:=.故选:D.【点评】此题主要考查了切线长定理,得出PA的长是解题关键.(2014秋•夏津县校级期末)如图,P为⊙O外一点,PA,PB分别切⊙O于A,B,CD切⊙O于点E,分别交PA,PB于点C,D.若PA=5,则△PCD 的周长和∠COD分别为()A.5,(90°+∠P)B.7,90°+C.10,90°﹣∠P D.10,90°+∠P【考点】MG:切线长定理.【分析】根据切线长定理,即可得到PA=PB,ED=AD,CE=BC,从而求得三角形的周长=2PA;连接OA、OE、OB根据切线性质,∠P+∠AOB=180°,再根据CD为切线可知∠COD=∠AOB.【解答】解:∵PA、PB切⊙O于A、B,CD切⊙O于E,∴PA=PB=10,ED=AD,CE=BC;∴△PCD的周长=PD+DE+PC+CE=2PA,即△PCD的周长=2PA=10,;如图,连接OA、OE、OB.由切线性质得,OA⊥PA,OB⊥PB,OE⊥CD,DB=DE,AC=CE,∵AO=OE=OB,易证△AOC≌△EOC(SAS),△EOD≌△BOD(SAS),∴∠AOC=∠EOC,∠EOD=∠BOD,∴∠COD=∠AOB,∴∠AOB=180°﹣∠P,∴∠COD=90°﹣∠P.故选:C.【点评】本题考查了切线的性质,运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题,是基础题型.五、圆幂定理请尝试解出下列例题:(2005•广州)如图,在直径为6的半圆上有两动点M、N,弦AM、BN相交于点P,则AP•AM+BP•BN的值为.【考点】M7:相交弦定理;KQ:勾股定理;M5:圆周角定理.【专题】16 :压轴题;25 :动点型.【分析】连接AN、BM,根据圆周角定理,由AB是直径,可证∠AMB=90°,由勾股定理知,BP2=MP2+BM2,由相交弦定理知,AP•PM=BP•PN,原式=AP(AP+PM)+BP(BP+PN)=AP2+AP•PM+BP2+BP•PN=AP2+BP2+2AP•PM=AP2+MP2+BM2+2AP•PM=AP2+(AP+PM)2=AP2+AM2=AB2=36.【解答】解:连接AN、BM,∵AB是直径,∴∠AMB=90°.∴BP 2=MP 2+BM 2∵AP •PM=BP •PN原式=AP (AP+PM )+BP (BP+PN )=AP 2+AP •PM+BP 2+BP •PN=AP 2+BP 2+2AP •PM=AP 2+MP 2+BM 2+2AP •PM=BM 2+(AP+PM )2=BM 2+AM 2=AB 2=36.【点评】本题利用了圆周角定理和相交弦定理,勾股定理求解.以上四条定理统称为圆幂定理。

相关文档
最新文档