(完整)圆幂定理讲义(带答案)
数学竞赛辅导讲义——圆幂与根轴

数学竞赛辅导讲义——圆幂与根轴一、圆幂的定义:在平面上,从点P 作半径为r 的圆O 的割线,从P 起到和该圆周相交为止的两线段之积是一个定值,称为点P 对于此圆周的圆幂.圆幂定理:(1)当P 在圆O 外时,点P 对于此圆的幂等于22OP r -; (2)当P 在圆O 内时,点P 对于此圆的幂等于22r OP -;(3)当P 在圆O 上时,规定:点P 对于此圆的幂等于0.二、根轴及其性质 1.根轴的定义:对于两个已知圆的圆幂相等的点的轨迹是一条直线,该直线称为这两圆的根轴.2.根轴的性质:(1)若两圆1O 与2O 相离(半径分别为1r ,2r 且12r r ≤),点M 为12O O 的中点,点H 在线段1O M 上,且2221122r r MH O O -=,则此两圆的根轴是过点H 且垂直于12O O 的直线.特别地,当两圆相离且半径相等时,它们的根轴是线段12O O 的中垂线.(2)若两个圆是同心圆,则这两个圆不存在根轴.(3)若两个圆相交,则它们的公共弦所在的直线就是它们的根轴.(4)若两圆相切,则过两圆切点的公切线是它们的根轴.(5)若三个圆的圆心互不相同,则任意两个圆的根轴共三条直线,它们相交于一点或互相平行.(6)若两圆相离,则两圆的四条公切线的中点共线(都在根轴上). 思考:能否从解析几何的角度看根轴?三、例题例1 如图,设I 和O 分别是ABC ∆的内心和外心,r 和R 分别是ABC ∆的内切圆和外接圆的半径,过I 作ABC ∆的外接圆的弦AK . 求证:(1)IK BK =;(2)2AI IK Rr ⋅=; (3)222OI R Rr =-.(欧拉公式)例2 如图,设圆1O 与圆2O 相离,引它们的一条外公切线切圆1O 于A ,切圆2O 于B ,又引它们的一条内公切线切圆1O 于C ,切圆2O 于D ,求证:(1)AC BD ⊥;(2)直线12O O 是分别以AB ,CD 为直径的圆3O ,4O 的根轴;(3)直线AC 和BD 的交点K 在两圆的连心线12O O 上 .例1K例3(1997年全国联赛)已知两个半径不相等的1O 与2O 相交于M ,N 两点,且1O ,2O 分别与O 内切于S ,T 两点,S ,N ,T三点共线,求证:OM MN ⊥.四、练习题1.点D ,E 为ABC ∆的边AB ,AC 上的点,分别以BE ,CD 为直径的圆1O 与2O 交于点M ,N .求证:ABC ∆的垂心H 在直线MN 上.1.C例32. (第36届IMO )设A 、B 、C 、D 是一条直线上依次排列的四个不同的点,分别以AC ,BD 为直径的圆1O ,2O 交于点X ,Y ,直线XY 交BC 于点Z .若P 为直线XY 上异于Z 的一点,直线CP 与交圆1O 于点C 及M ,直线BP 与交圆2O 于点B 及N . 求证:(1)B ,M ,N ,C 四点共圆; (2)A ,M ,N ,D 四点共圆; (3)AM ,DN ,XY 共点.3. (第40届IMO 国家队选拔题)凸四边形ABCD 的四边满足AB AD CB CD +=+,圆O 分别与凸四边形ABCD 的AB ,BC 两边相切于G ,H 两点,与对角线AC 相交于E ,F 两点.求证:存在另一个过E ,F 两点,且分别与DA ,DC 的延长线相切的圆'O .2.3.BD。
圆幂定理+讲义2023年九年级数学中考复习【附解析】

圆幂定理九年级数学中考复习一、圆幂的定义:一点P对半径为r的圆O的幂=22OP r-二、圆幂定理:是相交弦定理、切割线定理、割线定理(切割线定理推论)的统称。
1、相交弦定理:若圆内任意弦AB、弦CD交于点P,则··PAPB PC PD=()PAC PBD∆∆∽2、切割线定理:从圆外一点引圆的切线和割线,切线(PA)长是割线和这点到割线(PD)与圆交点的两条线段长的比例中项²·PA PC PD=()PAC PDA∆∆∽3、割线定理(切割线定理的推论):例如如果交点为P的两条相交直线与圆O相交于A、B 与C、D,则·PA PB PC PD⋅=总结:平面上任意一点对于圆的幂为这个点到圆心的距离与圆的半径的平方差的绝对值。
22··PA PB PC PD r OP==-222·PA PC PD OP r==-22·PA PB PC PD OP r⋅==-例题讲解【例1】如图,在圆O 中,M 、N 是弦AB 的三等分点,弦CD ,CE 分别经过点M ,N , 若2CM =,4MD =,3CN =,则线段NE 的长为( )A .83B .3C .103D .52【例2】如题图,圆O 的弦AB ,CD 相交于点E ,过点A 作圆O 的切线与DC 的延长线交于 点P ,若6PA =,9AE =,3PC =,:2:1CE ED =,则BE = .【例3】如图,点P 为弦AB 上一点,连接OP ,过P 作PC OP ⊥,PC 交O 于点C ,若 6AP =,3PB =,则PC 的长为( )A .4B .5C .23D .32【例4】如图,正方形ABCD 内接于O ,点P 在劣弧AB 上,连接DP ,交AC 于点Q .若 QP QO =,则QC QA的值为( )A .231B .23C 32D 32+【例5】如图,PA 切圆于点A ,直线PCB 交圆于C ,B 两点,切线长42PA =4PC =, 则AB AC等于( )A 2B .22C .2D .以上结果都不对 【例6】如图,AT 切O 于T ,若6AT =,3AE =,4AD =,2DE =,则BC 等于()A .3B .4C .6D .8【例7】如图,在以O 为圆心的两个同心圆中,A 为大圆上任意一点,过A 作小圆的割线 AXY ,若4AX AY ⋅=,则图中圆环的面积为( )A .16πB .8πC .4πD .2π【例8】如图,在ABCD 中,过A 、B 、C 三点的圆交AD 于E ,且与CD 相切.若4AB =, 5BE =,则DE 的长为( )A .3B .4C .154D .165【例9】如图,四边形ABCD 是圆的内接四边形,AB 、DC 的延长线交于点P ,若C 是PD 的中点,且6PD =,2PB =,那么AB 的长为( )A .9B .7C .3D .92【例10】已知:P 为O 外一点,PQ 切O 于Q ,PAB 、PCD 是O 的割线,且PAC BAD ∠=∠.求证:22PQ PA AC AD -=.【例11】圆幂定理是平面几何中最重要的定理之一,它包含了相交弦定理、切割线定理、割线定理以及它们推论,其中切割线定理的内容是:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.喜欢思考的天天在了解这个定理之后尝试给出证明,下面是他的部分证明过程:已知:如图①,点P为O外一点,切线PA与圆相切于点A,割线PBC与圆相交于点B、C.求证:2=⋅.PA PB PC证明:如图,连接AB、AC、BO、AO,PA切O于点A,∠+∠=︒.PAB BAO∴⊥,即90PA AO⋯阅读以上材料,完成下列问题:(1)请帮助天天补充完成以上证明过程;(2)如图②,割线PDE与圆交于点D、E,且4PE=,求DE的长.==,7PB BC挑战训练【挑战训练1】如图,已知:PA切O于A,若AC为O的直径,PBC为O的割线,E 为弦AB的中点,PE的延长线交AC于F,且45FPB∠=︒,点F到PC的距离为5,则FC 的长为()。
最新北师大版九年级下册数学 第3章 圆 第5节 切线定理与圆幂定理 讲义

1
5. 如图 4, PA 切⊙ O 于 A, AB PO, P 300, AB 6, 则⊙ O 的半径为__________.
A
E D
D O
C
B
O
图3
A C
图4
B
E
图5
图6
【典型例题】
例 1.①如图 5, CD 是⊙O 的直径, AE 切⊙O 于点 B, DC 的延长线交 AB 于点 A, A 200 ,则
的长为____________. A
B A
OM C
O
C
B
图 13
图
A
D
O
F
B
C
E 图 14
例 2.①12如图 15,从圆 O 外一点 P 引圆的切线 PA 和 PB ,切点分别是 A 和 B ,如果 APB 700 , 那么这
两条切线所夹 AB 的度数是( )
A. 1100
B.70
C.55
D.35
DBE =_______. ②如图 6, ABC 是圆内接三角形, BC 是圆的直径, B 350 , MN 是过 A 点的切线,那么
C =________; CAM =________; BAM =________. ③如图 7, ABC 内接于⊙O, AB AC, BOC 1000 , MN 是过 B 点而垂直 OB 的直线,
半径长为_________.
3. RTABC 的斜边 AB 5, 直角边 AC 3, 若 AB 与⊙ C 相切,则⊙ C 的半径是__________.
4.如图 3,已知半圆的圆心在 RTABC 的斜边上,且半圆分别切 AB, AC 于 D, E, AB 3cm, AC 4cm ,
圆幂定理

圆幂定理圆幂定理是对相交弦定理、切割线定理及割线定理(切割线定理推论)以及它们推论统一归纳的结果。
圆幂=PO^2-R^2(该结论为欧拉公式)所以圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。
相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。
切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
割线定理:从圆外一点P引两条割线与圆分别交于A、B;C、D,则有PA·PB=PC·PD。
统一归纳:过任意不在圆上的一点P引两条直线L1、L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D(可重合),则有PA·PB=PC·PD。
问题1相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的乘积相等。
证明:连结AC,BD,由圆周角定理的推论,得∠A=∠D,∠C=∠B。
∴△PAC∽△PDB∴PA/PD=PC/PB∴PA·PB=PC·PD问题2割线定理:从圆外一点P引两条割线与圆分别交于则有PA·PB=PC·PD,当PA=PB,即直线AB重合,即PA切线时得到切线定理PA^2=PC·PD证明:(令A在P、B之间,C在P、D之间)∵ABCD为圆内接四边形∴∠CAB+∠CDB=180°又∠CAB+∠PAC=180°∴∠PAC=∠CDB∵∠APC公共∴△APC∽△DPB∴PA/PD=PC/PB∴PA·PB=PC·PD切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项几何语言:∵PT切⊙O于点T,PBA是⊙O的割线∴PT^2=PA·PB(切割线定理)推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等几何语言:∵PBA、PDC是⊙O的割线∴PD·PC=PA·PB(切割线定理推论)问题3过点P任作直线交定圆于两点A、B,证明PA·PB为定值(圆幂定理)。
圆幂定理

中小学1对1课外辅导专家武汉龙文教育学科辅导讲义 圆幂定理圆幂定理:过一定点P 向⊙O 作任一直线,交⊙O 于两点,则自定点P 到两交点的两条线段之积为常数||(R 为圆半径),因为叫做点对于⊙O 的幂,所以将下述定理统称为圆幂定理。
定理 图形 已知 结论 证法 相交弦定理⊙O 中,AB 、CD 为弦,交于P. PA·PB=PC·PD 连结AC 、BD ,证:△APC∽△DPB .相交弦定理的推论⊙O 中,AB 为直径,CD⊥AB 于P.PC 2=PA·PB . 用相交弦定理.切割线定理⊙O 中,PT 切⊙O 于T ,割线PB 交⊙O 于APT 2=PA·PB 连结TA 、TB ,证:△PTB∽△PAT割线定理推论PB 、PD 为⊙O 的两条割线,交⊙O 于A 、C PA·PB=PC·PD 过P 作PT 切⊙O 于T ,用两次切割线定理圆中的相似(1)一、圆中相似三角形的判定1.如图,直线PM 切⊙O 于点M ,直线PO 交⊙O 于A ,B 点,弦AC ∥PM ,连接OM 、BC.求证:(1)△ABC ∽△POM ;(2)2OA 2=OP •BC .CA MB PO中小学1对1课外辅导专家2.如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 交AC 与E ,交BC 与D .求证:(1)D 是BC 的中点; (2)△BE C ∽△ADC ; (3)BC 2=2AB ·CE二、利用圆中相似三角形证明圆中的比例线段3.如图,在圆内接四边形ABCD 中,CD 为∠BCA 的外角的平分线,F 为错误!未找到引用源。
上一点,BC=AF ,延长DF 与BA 的延长线交于E . (1)求证:△ABD 为等腰三角形. (2)求证:AC•AF=DF•FE .4如图,BD 为⊙O 的直径,AB =AC ,AD 交B C 于点E ,AE =2,ED =4, (1)求证:△ABE ∽△ADB ; (2)求AB 的长;(3)延长DB 到F ,使得BF =BO ,连接F A ,试判断直线F A 与⊙O 的位置关系,并说明理由.FD OC EB AA C BD EO · 圆中的相似(2)三、利用圆中相似进行计算1.如图,已知AB 是⊙O 的直径,点C 在⊙O 上,过点C 的直线与AB 的延长线交于 点P ,AC=PC ,∠COB=2∠PCB. (1)求证:PC 是⊙O 的切线; (2)求证: AB =2BC ;(3)点M 是弧AB 的中点,CM 交AB 于点N , 若AB=4,求MN ·MC 的值.2.如图,已知R t △ABC ,∠ABC =90°,以直角边AB 为直径作O ,交斜边AC 于点D ,连结BD . (1)若AD =3,BD =4,求边BC 的长; (2)取BC 的中点E ,连结ED ,试证明ED 与⊙O 相切.四、圆的有关线段与相似三角形的综合运用3.如图,点P 为△ABC 的内心,延长AP 交△ABC 的外接圆于D ,在AC 延长线上有一点E ,满足AD 2=AB ·AE ,求证:DE 是⊙O 的切线.4.如图,AB 是⊙O 的直径,AC 是弦,CD 是⊙O 的切线,C 为切点,AD ⊥CD 于点D . 求证:(1)∠AOC =2∠ACD ;(2)AC 2=AB ·AD .圆中的相似(3)1、如图, Rt ABC △中,90ABC ∠=°,以AB 为直径的O ⊙交AC 于点D ,过点D 的切线交BC 于E .(1)求证:12DE BC =;(2)若,求AD 的长.2.如图,已知ABC △,以BC 为直径,O 为圆心的半圆交AC 于点F ,点E 为 CF的中点,连接BE 交AC 于点M ,AD 为△ABC 的角平分线,且AD BE ⊥,垂足为点H 。
高中数学-圆幂定理(教师版)

补充内容:圆幂定理一、圆幂定理及其逆定理:(1)割线定理:设过圆O 外一点P 的两直线分别与圆O 交于点B A ,和D C ,,则PD PC PB P A ⋅=⋅,反之PD PC PB P A ⋅=⋅,则D C B A ,,,四点共圆(2)相交弦定理:圆O 的两条弦CD AB ,相交于点P ,则PD PC PB P A ⋅=⋅,反之过点P 的两直线上四点D C B A ,,,满足PD PC PB P A ⋅=⋅,则D C B A ,,,四点共圆(3)切割线定理:设直线P A 与圆切于点T ,过点P 的直线交圆于C B ,两点,则PBP A PT ⋅=2证明:(1)连接BC AD ,,由圆的性质D B ∠=∠,所以P AD ∆∽PCB ∆所以⇒=PBPDPC P A PD PC PB P A ⋅=⋅(2)连接BC AD ,,则C A ∠=∠,B D ∠=∠,所以P AD ∆∽PCB ∆所以⇒=PBPDPC P A PD PC PB P A ⋅=⋅(3)连接TB TA ,,则PBT PTA ∠=∠,所以PTA ∆∽PBT ∆所以⇒=PTP APB PT PB P A PT ⋅=2二、圆幂定理的应用例1.“圆幂定理”是平面几何中关于圆的一个重要定理,它包含三个结论,其中一个是相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等,如图,已知圆O 的半径为2,点P 是圆O 内的定点,且2=OP ,弦BD AC ,均过点P ,则下列说法正确的是A.0)(=⋅+DB OB ODB.PC P A ⋅为定值C.OC OA ⋅的取值范围为]0,2[-D.当BD AC ⊥时,CD AB ⋅为定值解析:连接OP OD OC OB OA ,,,,,直线OP 交圆O 于F E ,,设BD 的中点S ,则BD OS ⊥02)(=⋅=⋅+DB OS DB OB OD ,A 正确;由相交弦定理得PF PE PC P A PC P A ⋅-=⋅-=⋅242)()(22-=-=-=+⋅--=R OP OP R OP R ,B 正确;取AC 的中点M ,则OCOA ⋅42)4(4122222-=--=-=OM OM OM AC OM ,又OPOM ≤≤0即]2,0[∈OM ,所以OC OA ⋅]0,4[-∈,所以C 错误;当BD AC ⊥时,)()(PC PD P A PB CD AB -⋅-=⋅4)4(222-=--=⋅-=⋅-⋅-=⋅+⋅=OP PF PE PC P A PD PB PC P A PD PB ,D 正确例2.在平面直角坐标系xOy 中,设直线2+-=x y 与圆)0(222>=+r r y x 交于B A ,两点,O 为坐标原点,若圆上一点C 满足OB OA OC 4345+=,则=r ()A.22 B.5C.3D.10r ===,设θ2=∠AOB ,则将OB OA OC 4345+=平方得θ2cos 3092516163016916252222222r r r r OB OA OB OA OC ++=⇒⋅++=432cos -=⇒θ55cos 531cos 22=⇒-=-⇒θθ,所以圆心到直线2+-=x y 的距离为θcos 22r =10552==⇒=⇒r r ,故选D例3.在平面直角坐标系xOy 中,圆O :322=+y x ,),2(m T ,若圆O 上存在以M 为中点的弦AB ,且MT AB 2=,则实数m 的取值范围是()A.]0,2[- B.]2,0( C.]2,2[- D.)2,2(-解法1:设),(y x M ,连OM ,由垂径定理知AB OM ⊥⇒32222=+=+MT OM MB OM 42)2()1(3)()2(2222222m m y x m y x y x -=-++⇒=-+-++⇒,所以点M 在以)2,1(m D -为圆心,222m -为半径的圆上,又点M 为圆O 的弦AB 的中点,所以点M 在圆O 内,所以两圆内含,所以223)2()1(222m m --<+-0)1(22>+⇔m ,只需022>-m 解得22<<-m ,即实数m 的取值范围是]2,2[-,故选C解法2:因为M 为弦AB 的中点,且MT AB 2=,所以090=∠ATB ,过点T 作圆的切线TF TE ,,F E ,为切点,则只需090≥∠ETF 即可,所以045≥∠OTE ,所以OTE∠sin 6223≤⇒≥=OT OT ,所以642≤+m ,解得22≤≤-m ,故选C例4.在平面直角坐标系xOy 中,直线kx y =与圆C :5)36()27(22=-+-y x 交于B A ,,则=⋅OB OA 解析:过点O 作圆C 的切线OT ,T 为切点,则由切割线定理得20205362722222=-+=-==⋅R OC OT OB OA 例5.在平面直角坐标系xOy 中,已知点)1,0(P 在圆C :01422222=+-+-++m m y mx y x 内,若存在过点P 的直线交圆C 于B A ,两点,且PBC ∆的面积是P AC ∆的面积的2倍,则实数m 的取值范围为解析:圆C :m y m x 4)1()(22=-++,圆心)1,(m -,半径为m r 2=,所以0>m 点P 在圆C 内40014212<<⇒<+-+-⇒m m m设AB 的中点为D ,t AP 2=,则t PD =,圆心到直线AB 的距离为d ,由PBC ∆的面积是P AC ∆的面积的2倍可知P A PB 2=,所以⎪⎩⎪⎨⎧=+=+⇐⎪⎩⎪⎨⎧=+=+mt d mt d r P A CD CP PD CD 492222222222222849d m m =-⇒,因为220m d <≤,所以494849022<≤⇒<-≤m m m m 当94=m 时,C B A P ,,,四点共线,不能构成三角形,所以m 的取值范围为)4,94(例6.在平面直角坐标系xOy 中,圆C :3)()2(22=-++m y x ,若圆C 存在以G 为中点的弦AB ,且GO AB 2=,则实数m 的取值范围是解析:类例3,]2,2[-例7.已知椭圆E 的中心为坐标原点O ,焦点在x 轴上,离心率为23,21,F F 分别为椭圆E 的左右焦点,点P 在椭圆E 上,以线段21F F 为直径的圆经过点P ,线段P F 1与y 轴交于点B ,且611=⋅B F P F (1)求椭圆E 的方程(2)设动直线l 与椭圆E 交于N M ,两点,且0=⋅ON OM ,求证:动直线l 与圆5422=+y x 相切解析:(1)设椭圆E :)0(12222>>=+b a b y a x ,c F F 221=,因为211F PF O BF ∠=∠,2211π=∠=∠PF F BOF ,所以BO F 1∆∽P F F 21∆,所以P F O F F F B F 11211=21111F F O F B F P F ⋅=⋅⇒3622=⇒==c c ,所以1,2233==⇒==b a a e ,所以椭圆E :1422=+y x (2)设OM 的倾斜角为θ,则)sin ,cos (θθOM OM M ,))90sin(),90cos((00±±θθON ON M ,又点N M ,在椭圆上,所以⎪⎪⎩⎪⎪⎨⎧=+=+⇒⎪⎩⎪⎨⎧=±+±=+22222202202222224cos 4sin 4sin 4cos 1)90(sin 4)90(cos 4sin 4cos ON OM ON ON OM OM θθθθθθθθ两式相加得4511541442222=+⇒=+=+ONOMONOM,设原点到直线MN 的距为d 由5421212222222=+=⇒=+=∆ONOM ON OM d ON OM d ON OM S OMN所以动直线l 与圆5422=+y x 相切。
圆幂定理
圆幂定理是平面几何中的一个定理。
所以圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。
圆幂定理是一个总结性的定理,是对相交弦定理、切割线定理及割线定理(切割线定理推论)以及它们推论的统一与归纳。
根据两条与圆有相交关系的线的位置不同,有以下定理:相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。
切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
割线定理:从圆外一点P引两条割线与圆分别交于A、B;C、D,则有PA·PB=PC·PD从上述定理可以看出,两条线的位置从内到外,都有着相似的结论。
经过总结和归纳,便得出了圆幂定理。
基本定义定义:一点P对半径R的圆O的幂定义如下:圆幂a=OP²-R²符号:圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。
定理内容过任意不在圆上的一点P引两条直线L1、L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D(可重合,即切线),则有PA×PB=PC×PD 。
考虑经过P点与圆心O的直线,设PO交⊙O于M、N,R 为圆的半径,则有PA×PB=PC×PD=PM×PN=(OP+R)│OP-R│=│OP²-R²│定理证明图Ⅰ:相交弦定理。
如图,AB、CD为圆O的两条任意弦。
相交于点P,连接AD、BC,由于∠B与∠D同为弧AC 所对的圆周角,因此由圆周角定理知:∠B=∠D,同理∠A=∠C,所以△PAD∽△PCB。
所以有:PA/PC=PD/PB,即:PA×PB=PC×PD 。
图Ⅱ:割线定理。
如图,连接AD、BC。
可知∠B=∠D,又因为∠P为公共角,所以有△PAD∽△PCB,同上证得PA×PB=PC×PD。
图Ⅲ:切割线定理。
如图,连接AC、AD。
∠PAC为切线PA与弦AC组成的弦切角,因此有∠PAC=∠D,又因为∠P为公共角,所以有△PAC∽△PDA ,易证PA²=PC×PD。
圆幂定理讲义(带答案解析)
【点评】 本题考查了垂径定理的应用,在半径或直径、弦长以及弦心距之间的计算中, 常用 的方法是转化为解直角三角形.圆幂定理STEP 1: 进门考理念: 1. 检测垂径定理的基本知识点与题型2. 垂径定理典型例题的回顾检测。
3. 分析学生圆部分的薄弱环节。
1)例题复习1. (2015?夏津县一模)一副量角器与一块含 30°锐角的三角板如图所示放置,三角板的直角顶点 C 落在量角器的直径 MN 上,顶点 A ,B 恰好都落在量角 器的圆弧上,且 AB ∥MN .若 AB=8cm ,则量角器的直径 MN= cm . 【考点】 M3:垂径定理的应用; KQ :勾股定理; T7:解直角三角形. 【分析】 作 CD ⊥ AB 于点 D ,取圆心 O ,连接 OA ,作 OE ⊥AB 于点 E ,首先求得 CD 的长,即 OE 的长,在直角△ AOE 中,利用勾股定理求得半径 OA 的长,则 MN 即可求解. 解答】 解:作 CD ⊥AB 于点 D ,取圆心 O ,连接 OA ,作 OE ⊥ AB 于点 E .在直角△ ABC 中,∠ A=30°,则 BC= AB=4cm , 在直角△ BCD 中,∠ B=90°﹣∠ A=60°, =2 (cm ), ∴ OE=CD=2 , 在△ AOE 中, AE= AB=4cm , ∴CD=BC?sinB=×4 则 OA= = =2 ( cm ), 则 MN=2OA=4 ( cm ). 故答案是: 4 .2. (2017?阿坝州)如图将半径为 2cm 的圆形纸片折叠后,圆弧恰好经过【考点】 M2:垂径定理; PB :翻折变换(折叠问题).【分析】 通过作辅助线, 过点 O 作 OD ⊥AB 交 AB 于点 D ,根据折叠的性质可知 OA=2O ,D 根据 勾股定理可将 AD 的长求出,通过垂径定理可求出 AB 的长. 【解答】 解:过点 O 作 OD ⊥ AB 交 AB 于点 D ,连接 OA , ∵OA=2OD=2c ,m ∴ AD== = ( cm ),点评】 本题考查了垂径定理和勾股定理的运用,正确应用勾股定理是解题关键.3. (2014?泸州)如图,在平面直角坐标系中,⊙ P 的圆心坐标是( 3,a ) a >3),半径为 3,函数 y=x 的图象被⊙ P 截得的弦 AB 的长为 ,则 a的值A .4考点】 M2:垂径定理; F8:一次函数图象上点的坐标特征; KQ :勾股定理.cmD .2 cm故选: D .cm.专题】11 :计算题;16 :压轴题.【分析】 PC ⊥x 轴于 C ,交 AB 于 D ,作 PE ⊥AB 于 E ,连结 PB ,由于 OC=3,PC=a ,易得D 点 坐标为( 3, 3),则△ OCD 为等腰直角三角形,△ PED 也为等腰直角三角形.由 PE ⊥ AB ,根 据垂径定理得 AE=BE= AB=2 ,在 Rt △PBE 中,利用勾股定理可计算出 PE=1,则 PD= PE=,所以 a=3+ .【解答】 解:作 PC ⊥x 轴于 C ,交 AB 于 D ,作 PE ⊥ AB 于 E ,连结 PB ,如图, ∵⊙ P 的圆心坐标是( 3, a ), ∴OC=3,PC=a ,把 x=3 代入 y=x 得 y=3, ∴ D 点坐标为( 3,3), ∴CD=3, ∴△ OCD 为等腰直角三角形, ∴△ PED 也为等腰直角三角形, ∵PE ⊥ AB , ∴PE=, ∴PD= PE= , ∴ a=3+ . 故选: B .4. (2013?内江)在平面直角坐标系 xOy 中,以原点 O 为圆心的圆过点 A 13,0),直线 y=kx ﹣3k+4与⊙O 交于 B 、C 两点,则弦 BC 的长的最小值为【分析】 根据直线 y=kx ﹣3k+4 必过点 D (3,4),求出最短的弦 CB 是过点 D 且与该圆直径 垂直的弦,再求出 OD 的长,再根据以原点 O 为圆心的圆过点 A (13,0),求出 OB 的长, 再利用勾股定理求出 BD ,即可得出答案.∴ AE=BE= AB在 Rt △ PBE 中, PB=3,考查了勾股定理和等腰直角三角形的性质.并且平分弦所对的两条弧.也【解答】解:∵直线y=kx ﹣3k+4=k (x﹣3)+4,∴k(x﹣3)=y﹣4,∵k 有无数个值,∴x﹣3=0,y ﹣4=0,解得x=3,y=4,∴直线必过点D(3,4),∴最短的弦CB是过点 D 且与该圆直径垂直的弦,∵点 D 的坐标是(3,4),∴OD=5,∵以原点O为圆心的圆过点A(13,0),∴圆的半径为13,∴OB=13,∴ BD=12,∴ BC 的长的最小值为24;故答案为:24.【点评】此题考查了一次函数的综合,用到的知识点是垂径定理、勾股定理、圆的有关性质,关键是求出BC最短时的位置.STEP 2: 新课讲解1、熟练掌握圆幂定理的基本概念。
圆补充定理(圆幂-割线-公共弦)及习题
圆补充定理及习题(20151218)板块一:圆幂定理(1)相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。
即:在⊙O 中,∵弦AB 、CD 相交于点P , ∴PA PB PC PD ⋅=⋅(2)相交弦定理推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.即:在⊙O 中,∵直径AB CD ⊥,∴2CE AE BE =⋅(3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
即:在⊙O 中,∵PA 是切线,PB 是割线∴ 2PA PC PB =⋅(4)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如图). 即:在⊙O 中,∵PB 、PE 是割线∴PC PB PD PE ⋅=⋅AD B1:如图,圆中两条弦AB,CD 相交于圆内一点P ,已知PA=PB=4,PC=14PD,求CD 的长2:E 是圆内两弦AB 和CD 的交点,直线EF//CB,交AD 的延长线于F ,切圆于G 。
求证(1) EFA DFE ∆∆ (2)EF=FG3:两圆相交于A,B 两点,P 为两圆公共弦AB 上任一点,从P 引两圆的切线PC,PD ,求证PC=PD4.如图,在半径为4的⊙O 中,AB 、CD 是两条直径,M 为OB 的中点,CM 的延长线交⊙O 于点E ,且EM>MC.连接DE ,DE 求EM 的长.板块二:两圆公共弦定理圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共弦.如图:12O O 垂直平分AB .即:∵⊙1O 、⊙2O 相交于A 、B 两点,∴12O O 垂直平分AB练习1:如图1,半径为5的两个等圆⊙O 1与⊙O 2相交于A 、B ,公共弦AB=8.由点O 1向⊙O 2作切线O 1C ,切点为C,则O 1C 的长为图1 图2练习2:如图2,⊙O 1与⊙O 2相交于A 、B .已知两圆的半径r 1=10,r 2=17,圆心距O 1O 2=21,公共弦AB 等于( )A .2B .16C .6D .17练习3:已知相交两圆的半径分别为5cm 和4cm,公共弦长为6cm ,则这两个圆的圆心距是 cm .分析:此题综合运用了相交两圆的性质以及勾股定理.注意此题应考虑两种情况.注意此题应考虑两种情况(图3和图4).练习4:如图5,⊙O 1和⊙O 2相交于点A ,B ,它们的半径分别为2和 ,公共弦AB 长为2,若圆心O 1、O 2在AB 的同侧,则∠O 1AO 2= 度.B A O1O2. C A B . . 1o 2o 图4图5 图3 2板块三:圆的公切线两圆公切线长的计算公式:(1)公切线长:12Rt O O C ∆中,221AB CO =(2)外公切线长:2CO 是半径之差; 内公切线长:2CO 是半径之和 。
第六节:圆幂定理
3.6 圆幂定理学习目标:能判定一条直线是否为圆的切线,会过圆上一点画圆的切线,会作三角形的内切圆。
学习重点:切线的判定和画法,切线长定理。
学习难点:探索圆的切线的判定方法,作三角形内切圆的方法,切线长定理,相交弦的应用。
【知识要点】1.切线长定理:从圆外一点引圆的切线,它们的切线长相等,圆心和这点的连线平分两条切线的夹角。
①如图:已知P为⊙O外一点,PA,PB为切线,A,B为切点,则切线长定理有两个结论:①PA=PB;②∠APO=∠BPO;即OP是∠APB的平分线。
实际上,由圆的对称性知,⊙O关于OP所在直线对称,A、B是对称点,则有很多相关结论,常会用到1)ΔAOB,ΔAPB是等腰三角形 2)OP平分∠APB,OP平分∠AOB 3)OP垂直平分AB 注意:①切线长不是切线的长度,切线是直线,不可度量,而切线长是切线上一条线段的长,即圆外已知点到切点之间距离。
②以上图形是切线长定理的基本图形。
2.弦切角定理①弦切角必须具备三个条件:1.顶点在圆上(切点);2.一边和圆相切;3.一边和圆相交(弦);三者缺一不可。
②弦切角定理及推论:弦切角等于它所夹的弧对的圆周角。
若两个弦切角所夹弧等,那么两个弦切角也相等,如图:图形中的两个角相等,有些同学常常意识不到。
③作用:可以将弦切角转化为圆内的角,这样可以使圆外、圆内的角联系在一起,常用于证明角度的关系。
3.和圆有关的比例线段相交弦定理:两弦AB,CD交于P,则PA·PB=PC·PD (如图一)推论:AB与直径CD垂直相交,则PA2=PC·PD (如图二)切割线定理及推论:PA为⊙O切线,PC、PF为割线,则有:PA2=PB·PC=PE·PF 注意:不要错写成PB·BC=PE·EF以上几个定理(相交弦定理及推论、切割线定理及推论)统称为圆幂定理。
用途:1)可以在圆中证明等积式或比例式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(完整)圆幂定理讲义(带答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)圆幂定理讲义(带答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)圆幂定理讲义(带答案)的全部内容。
1 / 29圆幂定理STEP 1:进门考理念:1。
检测垂径定理的基本知识点与题型。
2。
垂径定理典型例题的回顾检测。
3. 分析学生圆部分的薄弱环节.(1)例题复习。
1.(2015•夏津县一模)一副量角器与一块含30°锐角的三角板如图所示放置,三角板的直角顶点C落在量角器的直径MN上,顶点A,B恰好都落在量角器的圆弧上,且AB∥MN.若AB=8cm,则量角器的直径MN=cm.【考点】M3:垂径定理的应用;KQ:勾股定理;T7:解直角三角形.【分析】作CD⊥AB于点D,取圆心O,连接OA,作OE⊥AB于点E,首先求得CD的长,即OE的长,在直角△A OE中,利用勾股定理求得半径OA的长,则MN即可求解.【解答】解:作CD⊥AB于点D,取圆心O,连接OA,作OE⊥AB于点E.在直角△ABC中,∠A=30°,则BC=AB=4cm,在直角△BCD中,∠B=90°﹣∠A=60°,∴CD=BC•sinB=4×=2(cm), ∴OE=CD=2,在△AOE中,AE=AB=4cm,则OA===2(cm),则MN=2OA=4(cm).故答案是:4.2 / 29【点评】本题考查了垂径定理的应用,在半径或直径、弦长以及弦心距之间的计算中,常用的方法是转化为解直角三角形.3 / 292.(2017•阿坝州)如图将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为()A.2cm B.cm C.2cm D.2cm【考点】M2:垂径定理;PB:翻折变换(折叠问题).【分析】通过作辅助线,过点O作OD⊥AB交AB于点D,根据折叠的性质可知OA=2OD,根据勾股定理可将AD的长求出,通过垂径定理可求出AB的长.【解答】解:过点O作OD⊥AB交AB于点D,连接OA,∵OA=2OD=2cm,∴AD===(cm),∵OD⊥AB,∴AB=2AD=2cm.故选:D.【点评】本题考查了垂径定理和勾股定理的运用,正确应用勾股定理是解题关键.3.(2014•泸州)如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()4 / 295 / 29A .4B .C .D .【考点】M2:垂径定理;F8:一次函数图象上点的坐标特征;KQ:勾股定理.【专题】11 :计算题;16 :压轴题.【分析】PC⊥x 轴于C ,交AB 于D ,作PE⊥AB 于E ,连结PB ,由于OC=3,PC=a ,易得D 点坐标为(3,3),则△OCD 为等腰直角三角形,△PED 也为等腰直角三角形.由PE⊥AB ,根据垂径定理得AE=BE=AB=2,在Rt△PBE 中,利用勾股定理可计算出PE=1,则PD=PE=,所以a=3+. 【解答】解:作PC⊥x 轴于C,交AB 于D ,作PE⊥AB 于E ,连结PB ,如图,∵⊙P 的圆心坐标是(3,a ), ∴OC=3,PC=a ,把x=3代入y=x 得y=3, ∴D 点坐标为(3,3), ∴CD=3,∴△OCD 为等腰直角三角形, ∴△PED 也为等腰直角三角形,∵PE⊥AB, ∴AE=BE=AB=×4=2, 在Rt△PBE 中,PB=3, ∴PE=, ∴PD=PE=, ∴a=3+. 故选:B .【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和等腰直角三角形的性质.4.(2013•内江)在平面直角坐标系xOy中,以原点O为圆心的圆过点A (13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为.【考点】FI:一次函数综合题.【专题】16 :压轴题.【分析】根据直线y=kx﹣3k+4必过点D(3,4),求出最短的弦CB是过点D且与该圆直径垂直的弦,再求出OD的长,再根据以原点O为圆心的圆过点A(13,0),求出OB的长,再利用勾股定理求出BD,即可得出答案.【解答】解:∵直线y=kx﹣3k+4=k(x﹣3)+4, ∴k(x﹣3)=y﹣4,∵k有无数个值, ∴x﹣3=0,y﹣4=0,解得x=3,y=4,∴直线必过点D(3,4),∴最短的弦CB是过点D且与该圆直径垂直的弦,∵点D的坐标是(3,4), ∴OD=5,∵以原点O为圆心的圆过点A(13,0),∴圆的半径为13,∴OB=13,∴BD=12,∴BC的长的最小值为24; 故答案为:24.【点评】此题考查了一次函数的综合,用到的知识点是垂径定理、勾股定理、圆的有关性质,关键是求出BC最短时的位置.STEP 2:新课讲解6 / 297 / 291、熟练掌握圆幂定理的基本概念。
2、熟悉有关圆幂定理的相关题型,出题形式与解题思路。
3、能够用自己的话叙述圆幂定理的概念。
4、通过课上例题,结合课下练习。
掌握此部分的知识。
一、相交弦定理 ➢ 基本题型: 【例1】 (2014秋•江阴市期中)如图,⊙O 的弦AB 、CD 相交于点P ,若AP=3,BP=4,CP=2,则CD 长为( )A .6B .12C .8D .不能确定【考点】M7:相交弦定理.【专题】11 :计算题.【分析】由相交线定理可得出AP •BP=CP •DP ,再根据AP=3,BP=4,CP=2,可得出PD 的长,从而得出CD 即可.【解答】解:∵AP •BP=CP •DP ,∴PD=,∵AP=3,BP=4,CP=2,∴PD=6,相交弦定理 (1)相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.(经过圆内一点引两条线,各弦被这点所分成的两段的积相等).几何语言:若弦AB 、CD 交于点P,则PA•PB=PC•PD (相交弦定理)(2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.几何语言:若AB 是直径,CD 垂直AB 于点P,则PC 2=PA•PB (相交弦定理推论).∴CD=PC+PD=2+6=8.故选C.【点评】本题考查了相交线定理,圆内两条弦相交,被交点分成的两条线段的积相等.【练习1】(2015•南长区一模)如图,矩形ABCD为⊙O的内接四边形,AB=2,BC=3,点E为BC上一点,且BE=1,延长AE交⊙O于点F,则线段AF的长为()A.B.5 C.+1 D.【考点】M7:相交弦定理.【分析】由矩形的性质和勾股定理求出AE,再由相交弦定理求出EF,即可得出AF的长.【解答】解:∵四边形ABCD是矩形,∴∠B=90°,∴AE===,∵BC=3,BE=1,∴CE=2,由相交弦定理得:AE•EF=BE•CE,∴EF==,∴AF=AE+EF=;故选:A.【点评】本题考查了矩形的性质、勾股定理、相交弦定理;熟练掌握矩形的性质和相交弦定理,并能进行推理计算是解决问题的关键.8 / 29➢综合题型【例2】(2004•福州)如图,AB是⊙O的直径,M是⊙O上一点,MN⊥AB,垂足为N.P、Q分别是、上一点(不与端点重合),如果∠MNP=∠MNQ,下面结论:①∠1=∠2;②∠P+∠Q=180°;③∠Q=∠PMN;④PM=QM;⑤MN2=PN•QN.其中正确的是()A.①②③B.①③⑤C.④⑤D.①②⑤【考点】M7:相交弦定理;M2:垂径定理;M4:圆心角、弧、弦的关系;M5:圆周角定理;S9:相似三角形的判定与性质.【专题】16 :压轴题.【分析】根据圆周角定理及已知对各个结论进行分析,从而得到答案.【解答】解:延长MN交圆于点W,延长QN交圆于点E,延长PN交圆于点F,连接PE,QF∵∠PNM=∠QNM,MN⊥AB,∴∠1=∠2(故①正确),∵∠2与∠ANE是对顶角,∴∠1=∠ANE,∵AB是直径,∴可得PN=EN,同理NQ=NF,∵点N是MW的中点,MN•NW=MN2=PN•NF=EN•NQ=PN•QN(故⑤正确),∴MN:NQ=PN:MN,∵∠PNM=∠QNM,∴△NPM∽△NMQ,9 / 29∴∠Q=∠PMN(故③正确).故选B.【点评】本题利用了相交弦定理,相似三角形的判定和性质,垂径定理求解.➢与代数结合的综合题【例3】(2016•中山市模拟)如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP=QO,则的值为()A.B.C.D.【考点】M7:相交弦定理;KQ:勾股定理.【专题】11 :计算题.【分析】设⊙O的半径为r,QO=m,则QP=m,QC=r+m,QA=r﹣m.利用相交弦定理,求出m与r 的关系,即用r表示出m,即可表示出所求比值.【解答】解:如图,设⊙O的半径为r,QO=m,则QP=m,QC=r+m,QA=r﹣m.在⊙O中,根据相交弦定理,得QA•QC=QP•QD.即(r﹣m)(r+m)=m•QD,所以QD=.10 / 29连接DO,由勾股定理,得QD2=DO2+QO2,即,解得所以,故选D.【点评】本题考查了相交弦定理,即“圆内两弦相交于圆内一点,各弦被这点所分得的两线段的长的乘积相等”.熟记并灵活应用定理是解题的关键.➢需要做辅助线的综合题【例4】(2008秋•苏州期末)如图,⊙O过M点,⊙M交⊙O于A,延长⊙O的直径AB 交⊙M于C,若AB=8,BC=1,则AM=.【考点】M7:相交弦定理;KQ:勾股定理;M5:圆周角定理.【分析】根据相交弦定理可证AB•BC=EB•BF=(EM+MB)(MF﹣MB)=AM2﹣MB2=8,又由直径对的圆周角是直角,用勾股定理即可求解AM=6.【解答】解:作过点M、B的直径EF,交圆于点E、F,则EM=MA=MF,11 / 2912 / 29由相交弦定理知,AB •BC=EB •BF=(EM+MB)(MF ﹣MB )=AM 2﹣MB 2=8,∵AB 是圆O 的直径,∴∠AMB=90°,由勾股定理得,AM 2+MB 2=AB 2=64,∴AM=6.【点评】本题利用了相交弦定理,直径对的圆周角是直角,勾股定理求解.二、割线定理➢ 基本题型 【例5】 (1998•绍兴)如图,过点P 作⊙O 的两条割线分别交⊙O 于点A 、B 和点C 、D ,已知PA=3,AB=PC=2,则PD 的长是( )A .3B .7。