随机模型-数学建模
数学建模之随机性模型与模拟方法

三、随机数的生成
我们知道对于丢硬币的随机结果可以用以下的离散 随机变量的改里函数来描述
X P(x) 0 0.5 1 0.5
如果我们需要模拟随机变量的以个值或一个集合, 可以用丢硬币然后记录其其结果的方法来得到,然 而这具又相当的局限性,这里我们用数学程序来产 生拟随机变量。即看上去是随机出现的,但并非真 正的随家便朗,它们产生于一个梯推公式。不过这 些拟随机数并没有明显的规律,当给于适当的伸缩 之后,它们非常接近于在 0,1 区间的均匀分布。
600
1030 3408 2520
382.5
489 1808 859
3.137
3.1595 3.141592 3.1795
由此可以看出蒙特卡罗方法的基本步骤:首先,建立 一个概率模型,使它的某个参数等于问题的解。然后按 照假设的分布,对随机变量选出具体的值(这一过程又 叫着抽样),从而构造出一个确定性的模型,计算出结 果。再通过几次抽样实验的结果,的到参数的统计特性, 最终算出解的近似值。 蒙特卡罗方法主要用再难以定量分析的概率模型,这 种模型一般的不到解析的结果,或虽然又解析结果,但 计算代价太大以至不可用。也可以用在算不出解析结果 的定性模型中。 用蒙特卡罗方法解题,需要根据随机变量遵循的分布 规律选出具体的至,即抽样。随机变量的抽样方法很多, 不同的分布采用的方法不尽相同。在计算机上的各种分 布的随机数事实上都是按照一定的确定性方法产生的伪 随机数。
X 1 [2 ln( RND1 )]1/ 2 cos(2 RND2 )
和
X 2 [2 ln( RND1 )]1/ 2 cos(2 RND2 )
来给出 X 的两个值,令X X 2 或 X X1 可以生成 ( , ) 型的正态分布。
随机建模及应用

随机建模及应用随机建模是一种将随机性考虑在内的数学建模方法。
在实际问题中,很多因素都存在随机性,这些随机因素会对问题的求解结果产生影响。
因此,随机建模不仅可以更准确地描述问题的现实情况,还能够提供对随机因素产生的不确定性进行分析和预测的能力。
随机建模的应用广泛,可以在各个领域中找到它的身影。
下面以金融风险分析为例,介绍随机建模的具体应用过程。
在金融领域中,随机建模可以用来分析和预测风险,帮助投资者做出更明智的决策。
金融市场的波动性是一个典型的随机现象,可以使用随机建模的方法来描述其特征和规律。
首先,我们需要根据历史数据来确定金融市场的随机性参数。
一般来说,我们可以使用统计学中的参数估计方法来计算均值、方差等参数。
通过对历史数据进行统计分析,我们可以得到金融市场的平均收益率、波动率等参数。
然后,我们可以建立随机过程模型来描述金融市场的价格变动。
常用的随机过程模型包括布朗运动模型、几何布朗运动模型等。
这些模型可以反映价格的随机性和不确定性,从而提供对市场波动的预测能力。
接下来,我们可以使用模型进行数值模拟和预测。
通过对随机过程的数值模拟,我们可以得到不同时间点上价格的分布情况。
同时,我们还可以根据模型的输出结果,计算金融产品的风险价值、价值-at-风险和条件价值-at-风险等指标,从而进行风险管理和决策。
最后,我们可以使用随机建模的结果来进行风险分析和风险控制。
通过对模型的结果进行统计分析,我们可以得到金融产品的价值变动情况和风险分布情况。
基于这些分析,我们可以制定合理的风险控制策略,降低投资风险。
总结起来,随机建模是一种有效的数学建模方法,可以帮助我们更好地理解和分析问题中的随机因素。
在金融风险分析中,随机建模可以提供对金融市场波动性进行建模和预测的能力,帮助投资者做出更明智的投资决策。
在实际应用中,我们还可以将随机建模与其他数学方法相结合,进一步提高模型的准确性和预测能力。
数学建模模型和技巧

数学建模模型和技巧数学建模是指将实际问题转化为数学问题,并利用数学方法进行分析和求解的过程。
数学建模模型是对问题进行抽象和形式化的表示,而数学建模技巧则是在建立数学模型和解决问题时的常用方法和技术。
以下是一些常用的数学建模模型和技巧。
一、常用数学建模模型1.优化模型:优化模型利用数学方法求解最优解,包括线性规划、整数规划、非线性规划等。
这种模型通常用于求解资源分配、生产调度、物流优化等问题。
2.统计模型:统计模型通过概率统计方法对问题进行分析和预测,包括回归分析、时间序列分析、假设检验等。
这种模型通常用于市场调研、风险评估、金融预测等问题。
3.动力学模型:动力学模型描述系统随时间变化的规律,包括微分方程模型、差分方程模型等。
这种模型通常用于研究物理过程、生态系统、经济波动等问题。
4.图论模型:图论模型利用图的概念和算法解决问题,包括最短路径、流网络、最小生成树等。
这种模型通常用于网络优化、交通规划、电路设计等问题。
5.随机模型:随机模型描述随机变量的分布和统计性质,包括随机过程、蒙特卡洛模拟等。
这种模型通常用于风险评估、信号处理、金融衍生品定价等问题。
二、常用数学建模技巧1.合理假设:在建立数学模型时,需要根据实际情况进行适当的简化和假设。
通过合理的假设,可以使模型更易求解,同时保持对原问题的关键特征进行准确描述。
2.变量选择:选择合适的变量是建立数学模型的重要一步。
需要根据问题的特点和求解的目标选择与问题相关的变量,并对它们进行合理的定义和界定。
3.数据处理:在数学建模中,经常需要处理大量的数据。
这包括数据的清洗、转换、归一化等操作,以便更好地与模型对接和求解。
4.模型求解:根据模型的数学特征,选择适当的方法和算法进行求解。
这包括常见的数值求解方法、优化算法、统计推断等技术。
5.模型评价:在得到数学模型的解后,需要对解的可行性和有效性进行评价。
通常可以利用灵敏度分析、稳定性分析等方法对模型进行评价和优化。
数学模型与数学建模

数学模型与数学建模数学模型是对实际问题的一种抽象表示,通过数学语言和符号来描述问题的特征、关系和规律。
数学建模是利用数学方法解决实际问题的过程,它依靠数学模型来分析和研究问题,得到问题的解决方案或优化结果。
数学模型与数学建模在各个领域都得到了广泛应用,成为解决实际问题的强有力工具。
一、数学模型的分类数学模型分为确定性模型和随机模型两大类。
确定性模型是指模型中的所有参数和变量的取值都是确定的,不存在随机性;随机模型则是指模型中的某些参数或变量的取值是随机的,存在一定的概率分布特性。
1.1 确定性模型确定性模型是最常见的模型类型,它包括数学分析模型、代数模型、几何模型等。
确定性模型主要用于描述具有确定关系的事物,其中最典型的就是几何模型。
例如,平面几何中的三角形和圆形可以用确定性模型来描述其属性、关系和性质,进一步进行几何推理和证明。
1.2 随机模型随机模型是描述随机现象的数学模型,其中包括概率模型、统计模型、随机过程模型等。
随机模型常用于处理实际问题中的不确定性和随机性因素。
例如,在金融领域,股票价格的变动通常具有一定的不确定性,可以用随机模型中的随机过程来描述和预测。
二、数学建模的步骤数学建模通常包括问题定义、建立数学模型、求解模型和验证模型这四个步骤。
2.1 问题定义在数学建模中,首先需要明确问题的定义和目标,包括问题的背景、需求和约束条件等。
问题定义阶段需要对问题进行细致的分析和抽象,确保问题的本质特征能够被准确地反映在数学模型中。
2.2 建立数学模型建立数学模型是数学建模的核心步骤,它需要将实际问题转化为数学语言和符号来描述。
建立数学模型时,需要进行参数选择、变量定义、关系建立等操作,以确保模型能够客观、准确地反映问题的特征和规律。
2.3 求解模型求解模型是通过数学方法和技术来实现对问题解决方案的确定。
根据具体问题的不同,求解模型的方法可以采用数值计算、符号计算、优化算法等不同的技术手段。
数学建模论文 两种随机存贮管理模型的建立和求解

两种随机存贮管理模型的建立和求解摘 要:本文建立了仓库容量有限条件下单品种、多品种的允许缺货随机存贮模型。
采用连续的时间变量更合理地描述了问题,简化了模型的建立。
模型的求解是一个以分段的平均损失费用函数作为目标的带约束最优化问题。
针对题目中的具体数据对随机量送货滞后时间的密度函数进行了估计,解出了单品种、多品种条件下最优订货点的值和存贮方案。
通过分情况讨论把单品种存贮模型推广为多品种(m 种)存贮模型,论证了目标函数的独立变量为21m -个,使模型更加清晰、求解方便。
类比控制论中的相关理论提出了一定条件下多品种存贮的最优性原理,给出了证明,指出该原理简化模型和验证模型求解结果的作用。
讨论了销售速率具有随机性时的存贮模型,实际当中调整修正订货点的方法,以及仓库最大存贮量的一种预测办法。
最后指出了模型的优缺点。
0问题重述工厂生产需定期地定购各种原料,商家销售要成批地购进各种商品。
无论是原料或商品,都有一个怎样存贮的问题。
存得少了无法满足需求,影响利润;存得太多,存贮费用就高。
因此说存贮管理是降低成本、提高经济效益的有效途径和方法。
问题1 某商场销售的某种商品。
市场上这种商品的销售速率假设是不变的,记为r ;每次进货的订货费为常数1c 与商品的数量和品种无关;使用自己的仓库存贮商品时,单位商品每天的存贮费用记为2c ,由于自己的仓库容量有限,超出时需要使用租借的仓库存贮商品,单位商品每天的存贮费用记为3c ,且32c c ≤;允许商品缺货,但因缺货而减少销售要造成损失,单位商品的损失记为4c ;每次订货,设货物在X 天后到达,交货时间X 是随机的;自己的仓库用于存贮该商品的最大容量为0Q ,每次到货后使这种商品的存贮量q 补充到固定值Q 为止,且Q Q <0;在销售过程中每当存贮量q 降到L 时即开始订货。
请你给出求使总损失费用达到最低的订货点*L (最优订货点)的数学模型。
问题 2 现给出来自某个大型超市的关于三种商品的真实数据,按你的模型分别计算出这三种商品各自相应的最优订货点*L 。
研究生数学建模e题常用的模型

研究生数学建模e题常用的模型
研究生数学建模中常用的模型包括:
1.线性模型:线性回归、线性规划等模型,适用于描述一些简单的线性关系。
2.非线性模型:非线性回归、非线性规划等模型,适用于描述一些复杂的非线性关系。
3.随机模型:包括随机过程、马尔可夫链、随机优化模型等,适用于描述具有随机性或不确定性的问题。
4.动态模型:包括差分方程、微分方程等模型,适用于描述随时间变化的问题。
5.优化模型:包括线性规划、整数规划、多目标规划等模型,适用于求解最优化问题。
6.网络流模型:包括最小生成树、最短路径、最大流等模型,适用于描述网络中的最优路径或流量问题。
7.图论模型:包括图的匹配、图的着色、图的遍历等模型,适用于描述图论问题。
8.排队论模型:包括排队系统、服务系统等模型,适用于描述排队等待问题。
9.时间序列模型:包括ARIMA模型、ARCH模型等,适用于描述时间序列数据的变化规律。
10.复杂系统模型:包括Agent-Based模型、神经网络模型等,适用于描述复杂系统内部的交互和演化过程。
以上模型只是研究生数学建模中常用的一部分,具体的模型选择要根据问题的特点和要求进行决定。
数学建模第五章随机模型

05
随机模拟
随机模拟的基本原理
随机模拟是一种基于概率统计的数值计算方法,通过模拟随机事件或过程来求解实 际问题。
随机模拟的基本原理包括抽样、统计推断和误差分析,其中抽样是随机模拟的核心 步骤,通过从概率分布中抽取样本,模拟随机事件的概率特征。
随机模拟的精度取决于样本数量和分布的准确性,样本数量越多,模拟结果越接近 真实情况。
THANKS FOR WATCHING
感谢您的观看
蒙特卡洛积分
蒙特卡洛积分是一种基于随机抽样的 数值积分方法,通过将积分转化为求 和的形式,利用大数定律和中心极限 定理来估计积分值。
蒙特卡洛积分在金融、物理、工程等 领域有广泛应用,可以用于求解复杂 的高维积分问题。
蒙特卡洛积分的精度与样本数量和积 分的可积性有关,对于不可积的积分, 可以通过增加样本数量来提高估计精 度。
马尔科夫链蒙特卡洛方法
总结词
马尔科夫链蒙特卡洛方法是一种基于马尔科夫链的随机抽样方法,常用于求解复杂数学 问题的不确定性。
详细描述
马尔科夫链蒙特卡洛方法通过构造一个马尔科夫链,使其平稳分布为目标分布,从而通 过抽样得到目标分布的近似解。这种方法在统计学、物理、经济学等领域有广泛应用, 可以用于求解复杂数学问题的不确定性,如概率论中的积分、统计推断中的参数估计等。
描述随机变量取值概率分布的函数称 为随机变量的分布函数。常见的分布 函数有离散型分布和连续型分布,如 二项分布、泊松分布、正态分布等。
03
随机过程
随机过程的定义与分类
定义
随机过程是随机变量在时间或空间上的扩展,描述了一个随机现象在连续时间或 离散时间上的变化。
分类
根据过程的性质和特点,随机过程可以分为平稳随机过程、非平稳随机过程、离 散随机过程和连续随机过程等。
数学建模经典案例详解

数学模型概述; 微积分模型;随机模型
P24
数学建模的一般步骤
模型准备
模型假设
模型构成
模型检验
模型分析
模型求解
模型应用
模 型
了解实际背景 明确建模目的 形成一个
准
比较清晰
备 搜集有关信息 掌握对象特征 的‘问题’
数学建模.
数学模型概述; 微积分模型;随机模型
数学建模的一般步骤
模
针对问题特点和建模目的
将数学语言表述的解答“翻译”回实际对象 用现实对象的信息检验得到的解答
实践 理论 实践
数学建模.
数学模型概述; 微积分模型;随机模型
P28
1.5 数学模型的特点和分类
数学模型的特点
模型的逼真性和可行性 模型的非预制性
模型的渐进性 模型的强健性
模型的条理性 模型的技艺性
模型的可转移性
模型的局限性
数学建模.
• Matlab (工程中应用最广的数学软件 Matrix Laboratory)
数学建模.
数学模型概述; 微积分模型;随机模型
P11
1.2 数学建模的具体应用
• 分析与设计
• 预报与决策
• 控制与优化
• 规划与管理
如虎添翼
数学建模
计算机技术
知识经济
数学建模.
数学模型概述; 微积分模型;随机模型
p5931报童的诀窍假设报童已经掌握了需求量的随机分布规律即在他的销售范围内每天报纸的需求量为份的概率是购进太多卖不完退回赔钱购进太少不够销售赚钱少应根据需求确定购进量每天需求量是随机的优化问题的目标函数应是长期的日平均收入每天收入是随机的存在一个合适的购进量即日收入的数学期望值数学模型概述
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1 报童的诀窍
问题:
报童每天清晨从报社购进报纸零售,晚上将没有
卖掉的报纸退回。设报纸每份的购进价为b,零售 价为a,退回价为c,假设a>b>c。即报童售出一份 报纸赚a-b,退回一份赔b-c。报童每天购进报纸太
多,卖不完会赔钱;购进太少,不够卖会少挣钱。 试为报童筹划一下每天购进报纸的数量,以获得最 大收入。
事件X(t +t)=n的分解 X(t)=n-1, t内出生一人 X(t)=n+1, t内死亡一人 X(t)=n, t内没有出生和死亡
其它(出生或死亡二人, 出生且死亡一人,… …)
概率Pn(t+t) Pn-1(t) bn-1t Pn+1(t) dn+1t Pn(t)(1-bnt -dn t)
o(t)
13
求解
dE ( )E(t)
dt E(0) n0
E(t) n0ert , r
r ~ 增长概率
比较:确定性指数增长模型 x(t) x0ert r ~ 平均增长率
X(t)的方差
D(t
)
n
2
P n
(t
)
E
2
(t
)
E
E(t)+(t)
n1
D(t)
n0
e [e ( )t ( )t
1]
n0
n
p(r)dr
P2
p
P ab 1
P bc 2
a-b ~售出一份赚的钱 b-c ~退回一份赔的钱
P1 P2
0
n
r
(a b) n , (b c) n
8
§2 随机人口模型
背景 • 一个人的出生和死亡是随机事件
一个国家或地区
平均生育率 平均死亡率
确定性模型
一个家族或村落
出生概率 死亡概率
随机性模型
dE n dPn
dt n1 dt
n-1=k
dE dt
n(n n 1
1)
P n
1
(t
)
k (k 1)Pk (t) k 1
n(n 1)Pn1 (t)
k (k 1)Pk (t) k 1
n 1
n+1=k
( ) n2 Pn (t)
n 1
dE dt
(
) nPn n1
(t)
(
) E (t )
4
报童售报: a (零售价) > b(购进价) > c(退回价)
问 售出一份赚 a-b;退回一份赔 b-c 题 每天购进多少份可使收入最大?
购进太多卖不完退回赔钱
分 析
购进太少不够销售赚钱少
应根据需求确定购进量存在一来自合 适的购进量每天需求量是随机的
每天收入是随机的
优化问题的目标函数应是长期的日平均收入
对象
X(t) ~ 时刻 t 的人口, 随机变量. Pn(t) ~概率P(X(t)=n), n=0,1,2,…
研究Pn(t)的变化规律;得到X(t)的期望和方差
9
模型假设
若X(t)=n, 对t到t+t的出生和死亡概率作以下假设
1)出生一人的概率与t成正比,记bnt ; 出生二人及二人以上的概率为o(t).
销售 本公司价 其他厂家 广告费用 价格差 销售量 周期 格(元) 价格(元) (百万元) (元) (百万支)
1
3.85
3.80
5.50
-0.05
7.38
2
3.75
4.00
6.75
n
(b c) p(r)dr
dn
0
(a b)np(n) n (a b) p(r)dr
n
(b c)0 p(r)dr (a b)n p(r)dr
dG 0 dn
n
0
n
p(r)dr p(r)dr
a b bc
7
结果解释
n
0
n
p(r)dr p(r)dr
ab bc
取n使
n
0
p(r)dr
P1 ,
Pn (t t) Pn1 (t)bn1t Pn1 (t)dn1t Pn (t)(1 bnt dnt) o(t) 11
建模
微分方程
dPn dt
bn1Pn1 (t) d P n1 n1 (t) (bn
dn )Pn (t)
bn=n,dn=n
dPn dt
(n 1)Pn1(t) (n 1)Pn1(t) ( )nPn (t)
等于每天收入的期望
5
准 调查需求量的随机规律——每天 备 需求量为 r 的概率 f(r), r=0,1,2…
建 • 设每天购进 n 份,日平均收入为 G(n) 模 • 已知售出一份赚 a-b;退回一份赔 b-c
r n 售出r 赚(a b)r
退回n r 赔(b c)(n r)
r n 售出n 赚(a b)n
随机模型
1
随机模型 确定性因素和随机性因素
随机因素可以忽略
随机因素影响可以简单 地以平均值的作用出现
确定性模型
随机因素影响必须考虑
随机性模型
概率模型 统计回归模型 马氏链模型
2
概率模型--用随机变量和概率分布描述随机因素的 影响,建立随机模型。
统计模型--由于客观事物内部规律的复杂性及人们 认识程度的限制,无法分析实际对象内 在的因果关系,建立合乎机理规律的模 型,通常要搜集大量的数据,基于对数 据的统计分析建立随机模型。
2)死亡一人的概率与t成正比,记dnt ; 死亡二人及二人以上的概率为o(t).
3)出生和死亡是相互独立的随机事件。
进一步假设
bn与n成正比,记bn=n , ~出生概率; dn与n成正比,记dn=n,~死亡概率。
10
建模 为得到Pn(t)=P(X(t)=n),的变化规律,
考察Pn(t+t) =P(X(t +t)=n).
1, Pn (0) 0,
n n0 n n0
(t=0时已知人口为n0)
~一组递推微分方程——求解的困难和不必要
转而考察X(t)的期望和方差
12
基本方程
dP n dt
(n 1)Pn1(t) (n 1)Pn1(t) ( )nPn (t)
求解 X(t)的期望 E(t) nPn (t) n 1
E(t)-(t)
0
t
X(t)大致在 E(t)2(t) 范围内( (t) ~均方差)
- = r D(t) , D(t)
14
§3 牙膏的销售量模型
1. 问题 建立牙膏销售量与价格、广告投入之间的模型;
预测在不同价格和广告费用下的牙膏销售量.
收集了30个销售周期本公司牙膏销售量、价格、 广告费用,及同期其他厂家同类牙膏的平均售价 .
n
G(n) [(a b)r (b c)(n r)] f (r) (a b)nf (r)
r0
r n1
求 n 使 G(n) 最大 6
求解 将r视为连续变量 f (r) p(r) (概率密度)
G(n)
n
0
[(
a
b)r
(b
c)(n
r
)]
p(r
)dr
n
(a
b)np(r
)dr
dG (a b)np(n)