最优化问题数学模型

合集下载

多目标最优化数学模型

多目标最优化数学模型

第六章 最优化数学模型§1 最优化问题1.1 最优化问题概念 1.2 最优化问题分类1.3 最优化问题数学模型 §2 经典最优化方法 2.1 无约束条件极值 2.2 等式约束条件极值 2.3 不等式约束条件极值 §3 线性规划 3.1 线性规划 3.2 整数规划§4 最优化问题数值算法 4.1 直接搜索法 4.2 梯度法 4.3 罚函数法§5 多目标优化问题 5.1 多目标优化问题 5.2 单目标化解法 5.3 多重优化解法 5.4 目标关联函数解法 5.5 投资收益风险问题第六章 最优化问题数学模型 §1 最优化问题1.1 最优化问题概念 (1)最优化问题在工业、农业、交通运输、商业、国防、建筑、通信、政府机关等各部门各领域的实际工作中,我们经常会遇到求函数的极值或最大值最小值问题,这一类问题我们称之为最优化问题。

而求解最优化问题的数学方法被称为最优化方法。

它主要解决最优生产计划、最优分配、最佳设计、最优决策、最优管理等求函数最大值最小值问题。

最优化问题的目的有两个:①求出满足一定条件下,函数的极值或最大值最小值;②求出取得极值时变量的取值。

最优化问题所涉及的内容种类繁多,有的十分复杂,但是它们都有共同的关键因素:变量,约束条件和目标函数。

(2)变量变量是指最优化问题中所涉及的与约束条件和目标函数有关的待确定的量。

一般来说,它们都有一些限制条件(约束条件),与目标函数紧密关联。

设问题中涉及的变量为n x x x ,,,21 ;我们常常也用),,,(21n x x x X 表示。

(3)约束条件在最优化问题中,求目标函数的极值时,变量必须满足的限制称为约束条件。

例如,许多实际问题变量要求必须非负,这是一种限制;在研究电路优化设计问题时,变量必须服从电路基本定律,这也是一种限制等等。

在研究问题时,这些限制我们必须用数学表达式准确地描述它们。

最优化问题的建模与解法

最优化问题的建模与解法

最优化问题的建模与解法最优化问题(optimization problem)是指在一组可能的解中寻找最优解的问题。

最优化问题在实际生活中有广泛的应用,例如在工程、经济学、物流等领域中,我们经常需要通过数学模型来描述问题,并利用优化算法来求解最优解。

本文将介绍最优化问题的建模和解法,并通过几个实例来说明具体的应用。

一、最优化问题的数学建模最优化问题的数学建模包括目标函数的定义、约束条件的确定以及变量范围的设定。

1. 目标函数的定义目标函数是一个表达式,用来衡量问题的解的优劣。

例如,对于一个最大化问题,我们可以定义目标函数为:max f(x)其中,f(x)是一个关于变量x的函数,表示问题的解与x的关系。

类似地,对于最小化问题,我们可以定义目标函数为:min f(x)2. 约束条件的确定约束条件是对变量x的一组限制条件,用来定义问题的可行解集合。

约束条件可以是等式或不等式,通常表示为:g(x) ≤ 0h(x) = 0其中,g(x)和h(x)分别表示不等式约束和等式约束。

最优化问题的解必须满足所有的约束条件,即:g(x) ≤ 0, h(x) = 03. 变量范围的设定对于某些变量,可能需要限定其取值的范围。

例如,对于一个实数变量x,可能需要设定其上下界限。

变量范围的设定可以通过添加额外的不等式约束来实现。

二、最优化问题的解法最优化问题的解法包括数学方法和计算方法两种,常见的数学方法有最优性条件、拉格朗日乘子法等,而计算方法主要是通过计算机来求解。

1. 数学方法数学方法是通过数学分析来求解最优化问题。

其中,常见的数学方法包括:(1)最优性条件:例如,对于一些特殊的最优化问题,可以通过最优性条件来判断最优解的存在性和性质。

最优性条件包括可导条件、凸性条件等。

(2)拉格朗日乘子法:对于带有约束条件的最优化问题,可以通过拉格朗日乘子法将原问题转化为无约束最优化问题,从而求解最优解。

2. 计算方法计算方法是通过计算机来求解最优化问题。

数学建模~最优化模型(课件)

数学建模~最优化模型(课件)

投资组合优化
在风险和收益之间寻求平衡,通 过优化投资组合实现最大收益。
03
非线性规划模型
非线性规划问题的定义
目标函数
一个或多个非线性函数,表示 要最小化或最大化的目标。
约束条件
决策变量的取值受到某些限制 ,通常以等式或不等式形式给 出。
决策变量
问题中需要求解的未知数,通 常表示为x1, x2, ..., xn。
这是一种常用的求解整数规划问题的算法,通过不断将问题分解为更 小的子问题,并确定问题的下界和上界,逐步逼近最优解。
割平面法
该方法通过添加割平面来限制搜索区域,从而逼近最优解。
迭代改进法
该方法通过不断迭代和改进当前解,逐步逼近最优解。
遗传算法
这是一种基于生物进化原理的优化算法,通过模拟自然选择和遗传机 制来寻找最优解。
定义域
决策变量的取值范围,通常是 一个闭区间或开区间。
非线性规划问题的求解方法
梯度法
利用目标函数的梯度信息,通过迭代方法寻 找最优解。
共轭梯度法
结合梯度法和牛顿法的思想,通过迭代方法 寻找最优解。
牛顿法
利用目标函数的二阶导数信息,通过迭代方 法寻找最优解。
信赖域方法
在每次迭代中,通过限制搜索步长来保证求 解的稳定性。
02
线性规划模型
线性规划问题的定义
01
02
03
线性规划问题
在给定一组线性约束条件 下,求一组线性函数的最 大值或最小值的问题。
约束条件
包括资源限制、物理条件 等,通常以等式或不等式 形式给出。
目标函数
需要最大化或最小化的线 性函数,通常表示为决策 变量的线性组合。
线性规划问题的求解方法

最优化方法及其应用课后答案

最优化方法及其应用课后答案

1 2( ( ⎨最优化方法部分课后习题解答1.一直优化问题的数学模型为:习题一min f (x ) = (x − 3)2 + (x − 4)2⎧g (x ) = x − x − 5 ≥ 0 ⎪ 11 2 2 ⎪试用图解法求出:s .t . ⎨g 2 (x ) = −x 1 − x 2 + 5 ≥ 0 ⎪g (x ) = x ≥ 0 ⎪ 3 1 ⎪⎩g 4 (x ) = x 2 ≥ 0(1) 无约束最优点,并求出最优值。

(2) 约束最优点,并求出其最优值。

(3) 如果加一个等式约束 h (x ) = x 1 −x 2 = 0 ,其约束最优解是什么? *解 :(1)在无约束条件下, f (x ) 的可行域在整个 x 1 0x 2 平面上,不难看出,当 x =(3,4) 时, f (x ) 取最小值,即,最优点为 x * =(3,4):且最优值为: f (x * ) =0(2)在约束条件下, f (x ) 的可行域为图中阴影部分所示,此时,求该问题的最优点就是在约束集合即可行域中找一点 (x 1 ,x 2 ) ,使其落在半径最小的同心圆上,显然,从图示中可以看出,当 x *=15 , 5 ) 时, f (x ) 所在的圆的半径最小。

4 4⎧g (x ) = x −x − 5 = 0⎧ 15 ⎪x 1 = 其中:点为 g 1 (x) 和 g 2 (x ) 的交点,令 ⎪ 1 1 2 ⎨2 求解得到: ⎨ 45即最优点为 x *= ⎪⎩g 2 (x ) = −x 1 −x 2 + 5 = 015 , 5 ) :最优值为: f(x * ) = 65 ⎪x =⎪⎩ 2 44 48(3).若增加一个等式约束,则由图可知,可行域为空集,即此时最优解不存在。

2.一个矩形无盖油箱的外部总面积限定为 S ,怎样设计可使油箱的容量最大?试列出这个优化问题的数学模型,并回答这属于几维的优化问题. 解:列出这个优化问题的数学模型为:max f (x ) = x 1x 2 x 3⎧x 1x 2 + 2x 2 x 3 + 2x 1x 3 ≤ S ⎪ s .t . ⎪x 1 > 0⎪x 2 > 0 ⎪⎩x 3 > 0该优化问题属于三维的优化问题。

最优化问题的数学模型一般可以用约束集X和目标函数f进行表示.集合X

最优化问题的数学模型一般可以用约束集X和目标函数f进行表示.集合X
minimize f (x) subject to x ∈
n n
) (UP)
.
在后面的章节中, 我们将研究 X 是
n
的子集的优化问题, 其中 X 可由等式和 f 是一个连续可微的函数, 并且是二阶连续可微的, f 的 一阶和二阶导数在最优解的特征, 即充分必要条件中发挥了重要作用, 这是 1.1 节的主要 内容. 一阶和二阶导数对于计算近似最优解也是非常重要的,1.2 节~ 1.8 节将讨论这方 面的若干算法和理论.1.9 节将前几节的方法运用到了求解含有离散时间动态系统的最优 控制问题中. 虽然本章主要研究的是无约束优化问题, 但是本章的内容的很多思想也是全 书其余内容的重要基础.
况. 即 x 是 f 在 X 上的一个局部最小点值,如果 x ∈ X 并且存在 ε > 0,对于所有满 足 x − x∗ < ε 的 x ∈ X ,都有 f (x∗ ) 小值点的定义可以类似地给出. 局部和全局的 最大值点 的定义也是类似的,即如果 x∗ 是 −f 的无约束局部 (全局) 最小值点,那么 x∗ 是 f 的无约束局部 (全局) 最大值点. 最优性的必要条件 如果目标函数可微, 那么就可利用梯度和泰勒展开去比较某个向量的函数值及其邻域 内的向量函数值的大小关系. 特别地, 我们考虑在给定向量 x∗ 上给予一个微小扰动 ∆x, 从而利用一阶近似得到目标函数的变化量为
最优化问题的数学模型一般可以用 约束集X 和 目标函数f 进行表示. 集合 X 包含 所有可用的决策 x,函数 f (x) 将 X 的元素映射到实数集上,表示决策 x 带来的成本损 失. 我们试图寻找一个最优的决策,即 x∗ ∈ X ,并且满足
f (x∗ ) f (x), ∀ x ∈ X.
本书假定 x 是一个 n 维向量,即 x 是一个由实数构成的 n 元数组 (x1 , · · · , xn ),因此约 束集 X 是 n 维欧氏空间

最优化问题的数学模型

最优化问题的数学模型

为凸集.
1,
0 证明: x , y 为超球中的任意两点, 设
则有:
x 1 y
r ???
x 1 y
r r r 1
即点 x 1 y 属于超球
所以超球为凸集.
注: 常见的凸集:空集,整个欧氏空间 超平面: H
T
aR
n
和实数
,
使得: T x a
a y , x D ,
xR a x
n T
即存在超平面 H y 与凸集 D .

严格分离点
注: 点与闭凸集的分离定理。
y.
D
定理
(点与凸集的分离定理)
是非空凸集,x D, 则存在 非零向量 a R n 使成立
DR
n
目标函数
R ( i 1, 2 , , p )
1
• 根据实际问题的不同要求,最优化模型有不同的形式, 但经过适当的变换都可以转换成上述一般形式.
最优化问题的分类
最优化问题
根据约束条件 分类
m in f ( x ), x R .
n
无约束最优化问题 约束最优化问题 等式约束最优化问题 不等式约束最优化问题 混合约束优化问题

a xa x
T T
x D . ( D代 表 D 的 闭 包 )
_ _
定理
(两个凸集的分离定理)
n
x
x
设 D1 , D2 是
且 R 的两个非空凸集, D1 D2 ,
则存在超平面分离 D1 和 D2 , 即存在非零向量 n a R 使得 aT x aT y , x D , y D . 1 2

数学知识总结解决实际问题的常用数学模型

数学知识总结解决实际问题的常用数学模型

数学知识总结解决实际问题的常用数学模型数学作为一门科学,不仅仅是学科的基础,还是解决实际问题的重要工具。

在工程、物理、经济、生物等领域中,数学模型被广泛运用于解决各种实际问题。

本文将总结一些常用的数学模型,并说明它们在应用中的具体作用。

1. 线性回归模型线性回归模型是一种常见的统计学模型,它用于描述两个变量之间的线性关系。

在实际问题中,我们常常需要通过已知的数据来预测或估计未知的变量。

线性回归模型通过建立一个线性方程,根据已知的数据点进行拟合,并用于预测未知数据点的取值。

这种模型广泛应用于经济预测、市场分析等领域。

2. 概率统计模型概率统计模型是研究随机现象规律性的数学工具。

在实际问题中,我们常常需要确定某个事件发生的可能性。

概率统计模型通过统计分析已有的数据,从而得到事件发生的概率。

根据已有的统计数据,我们可以计算出事件发生的可能性,并做出相应的决策。

例如,在风险评估中,我们可以通过概率统计模型来评估某个投资产品的风险。

3. 最优化模型最优化模型是研究如何找到使某个目标函数取得最优值的数学模型。

在实际问题中,我们常常需要在一定的约束条件下,找到一组满足特定条件的最优解。

最优化模型可以通过建立数学模型,并应用最优化算法来求解。

在工程设计、物流规划等领域中,最优化模型被广泛应用。

4. 图论模型图论模型是研究图的性质和关系的数学工具。

在实际问题中,我们常常需要分析和描述事物之间的关系。

图论模型可以通过构建图来描述和分析事物之间的关系,并帮助我们解决实际问题。

在社交网络分析、交通规划等领域中,图论模型发挥着重要的作用。

5. 随机过程模型随机过程模型是研究随机现象随时间变化规律的数学工具。

在实际问题中,我们常常需要研究某个随机变量随时间的变化趋势,或者某个随机事件在一段时间内的累积概率。

随机过程模型可以通过建立数学模型,对随机现象进行建模和分析。

在金融风险管理、天气预测等领域中,随机过程模型被广泛应用。

数学建模最优化模型

数学建模最优化模型
或x=fminsearch(fun,X0 ,options) (3)[x,fval]= fminunc(...);
或[x,fval]= fminsearch(...) (4)[x,fval,exitflag]= fminunc(...);
或[x,fval,exitflag]= fminsearch (5)[x,fval,exitflag,output]= fminunc(...);
41m外点法sutm内点法障碍罚函数法1罚函数法2近似规划法罚函数法罚函数法基本思想是通过构造罚函数把约束问题转化为一系列无约束最优化问题进而用无约束最优化方法去求解这类方法称为序列无约束最小化方法简称为sumt法其一为sumt外点法其二为sumt内点法其中txm称为罚函数m称为罚因子带m的项称为罚项这里的罚函数只对不满足约束条件的点实行惩罚
曲线不一定通过那m个测量点,而要产生“偏差”.
将测量点沿垂线方向到曲线的距离的
y
平方和作为这种“偏差”的度量.即
2
x
S
m i 1
yi
a1
1 a3
a2 ln 1 exp
xi a4 a5
显然偏差S越小,曲线就拟合得越好,说明参数值就选择得越好,从而 我们的问题就转化为5维无约束最优化问题。即:
一下是否达到了最优。 (比如基金人投资)
• 在各种科学问题、工程问题、生产管理、社会 经济问题中,人们总是希望在有限的资源条件 下,用尽可能小的代价,获得最大的收获。
(比如保险)
数学家对最优化问题的研究已经有很多年的 历史。
以前解决最优化问题的数学方法只限于古典 求导方法和变分法(求无约束极值问题),拉格 朗日(Lagrange)乘数法解决等式约束下的条件 极值问题。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工地位置(a,b)及水泥日用量 d
1
2
3
4
5
6
a
1.25
8.75
0.5
5.75
3
7.25
b
1.25
0.75
4.75
5
6.5
7.25
d
3
5
4
7
6
11
建立模型
记工地的位置为(ai,bi),水泥日用量为di,i=1,…,6;料场位置为 (xj,yj),日储量为ej,j=1,2;料场j向工地i的运送量为Xij.
4.多目标优化法 5.网络优化方法
化有为无梯度法
SUMT 法
SWIFT

...
复形法
三、最优化模型的建立
最优化数学模型形式
min f (x) x
s.t. gi (x) 0, i 1, 2,..., m hi (x) 0, i 1, 2,..., n
其中,极大值问题可以转化为极小值问题来
3.非线性规划
非线性规划问题的一般数学模型:
min f (x) s.t. gi (x) 0,i 1, 2, , m,
hj (x) 0, j 1, 2, ,l.
其中, x E n , f (x) 为目标函数,
g (x), h (x) 为约束函数,这些函数中至少有
i
j
一个是非线性函数。
应用实例: 供应与选址
0
16kg
4
12kg
该工厂每生产一件产品I可获利2元,每生产一件产品 II可获利3元。问应如何安排计划使该工厂获利最多?
解:该工厂生产产品I x1件,生产产品II x2件, 我们可建立如下数学模型:
max z 2x1 3x2
x1 2x2 8
s.t.
4
x1
4
x2
16 12
x1, x2 0
一、最优化模型的概述
解决最优生产计划、最优设计、最优策略….
数学家对最优化问题的研究已经有很多年的 历史。
以前解决最优化问题的数学方法只限于古典 求导方法和变分法,拉格朗日(Lagrange)乘数 法解决等式约束下的条件极值问题。
计算机技术的出现,使得数学家研究出了许 多最优化方法和算法用以解决以前难以解决的问 题。
59.4
57.2
62.4
决策变量:引入0-1变量 x ij,若选择队员i参加泳姿j的
比赛, 记,xij 1 ,否则记 xij 0。
目标函数:当队员i入选泳姿j时,c ij x ij 表示该队员的成 绩,否则 cijxij 0。于是接力队的成绩可表示为
45
f
cij xij.
j1 i1
约束条件:根据接力队要求,x ij 满足约束条件
运用最优化方法解决最优化问题的一般方 法步骤如下:
①前期分析:分析问题,找出要解决的目标,约束条件, 并确立最优化的目标。
②定义变量,建立最优化问题的数学模型,列出目标函 数和约束条件。
③针对建立的模型,选择合适的求解方法或数学软件。
④编写程序,利用计算机求解。
⑤对结果进行分析,讨论诸如:结果的合理性、正确性, 算法的收敛性,模型的适用性和通用性,算法效率与 误差等。
26
目标函数为: min f
X ij (x j ai )2 ( y j bi )2
j1 i1
进行求解。如求: max f (x) x 可以转化为: min f (x) x
目标:求函数极值或最值,求取得极值时变量的取值。
1.线性规划
问题:某工厂在计划期内要安排生产I、II两种产品,已 知生产单位产品所需的设备台时及A、B两种原材料的消 耗,如下表所示
I
II
设备
1
原材料A
4
原材料B
0
2
8台时
黄金分割法
1.解析法有约无束约 库束恩 极 微 变-值 图分 分原 克法 法理 定理 2.数值算法
最速下降法
无约束梯度法
拟牛顿法
共轭梯度法
变尺度法
多维搜索法
插值法
坐标轮换法
步长加速法 方向加速法
单纯形法
随机搜索法
3 .梯度算法
有约束梯度法
可行方向法
梯度投影法
4
a. 每人最多只能入选4种泳姿之一,即只能有一人入选,即 x ij 1.
i 1
综上所述,这个问题的优化模型可写作:
45
minf
cijxij
j1 i1
4
s.t.xij1,i1,2,3,4,5.
j1
5
xij 1,j1,2,3,4.
i1
xij {0,1}.
记泳姿j=1,2,3,4.记队员 i 的第 j 种泳姿的百米最好 成绩为c_ij(s),则表2-1可以表示成表2-2.
表2-2
c_ij i=1
i=2
i=3
i=4
i=5
j=1
66.8
57.2
78
70
67.4
j=2
75.6
66
67.8
74.2
71
j=3
87
66.4
84.6
69.6
83.8
j=4
58.6
53
某公司有6个建筑工地要开工,每个工地的位置(用平面坐标系 a,b表示,距离单位:km)及水泥日用量d(t)由下表给出.目前有 两个临时料场位于A(5,1),B(2,7),日储量各有20t.假设从料场到 工地之间均有直线道路相连. (1)试制定每天的供应计划,即从A,B两料场分别向各工地运 送多少水泥,可使总的吨千米数最小. (2)为了进一步减少吨千米数,打算舍弃两个临时料场,改建两 个新的,日储量各为20t,问应建在何处,节省的吨千米数有多大?
二、最优化模型的分类
最优化模型分类方法有很多,可按变量、约 束条件、目标函数个数、目标函数和约束条件的 是否线性是否依赖时间等分类。
根据目标函数,约束条件的特点将最优化模 型包含的主要内容大致如下划分:
线性规划
整数规划
非线性规划
多目标规划
动态规划
对策论
最优化模型的求解方法分类
裴波那契法
一维搜索法
z 14
x1 4,x2 2.
2.整数规划
最优化问题中的所有变量均为整数时,这类 问题称为整数规划问题。
整数规划可分为线性整数规划和非线性整数 规划 ,以及混合整数规划等。
如果决策变量的取值要么为0,要么为1,则 这样的规划问题称为0-1规划。
问题:某班级准备从5名游泳队员中选择4人组成接力队,
参加学校的4*100m混合泳接力比赛。5名队员4种泳姿的 百米平均成绩如表2-1,问应如何选拔队员组成接力队?
表2-1
队员 甲




蝶泳 66.8秒
57.2
78
70
67.4
仰泳
75.6
66
67.8
74.2
71
蛙泳
87
66.4
84.6
69.6
83.8
自由泳 58.6
53
59.4
57.2
62.4
问题分析:记甲、乙、丙、丁、戊分别为i=1,2,3,4,5;
相关文档
最新文档