拉曼光谱介绍资料讲解

合集下载

拉曼光谱介绍资料讲解

拉曼光谱介绍资料讲解

拉曼光谱介绍资料讲解拉曼光谱是一种非常重要的光谱分析技术,它能够提供有关物质的结构和化学成分的丰富信息。

在这篇文章中,我将对拉曼光谱的基本原理、仪器和应用进行介绍,并解释为什么它在科学研究和工业中如此重要。

首先,让我们来了解一下拉曼光谱的基本原理。

拉曼光谱是一种散射光谱,它通过测量物质散射光中的频率位移来揭示物质的结构和化学组成。

当一束单色激光照射到样品上时,其中一部分光子与样品中的分子发生相互作用。

在这个过程中,光子几乎立即被散射,并且其中一部分光子在散射过程中发生拉曼散射。

拉曼散射是由于分子的振动和旋转引起的,这些振动和旋转会改变散射光的频率。

拉曼光谱的仪器主要包括一个激光源、一个样品夹持器、一个光谱仪和一个探测器。

激光源通常是一束单色激光,比如氦氖激光或二极管激光。

样品夹持器用于将样品固定在适当的位置,并确保光线正好照射到样品上。

光谱仪用于收集拉曼散射的光子,并将其转换为拉曼光谱图。

探测器用于测量光子的强度,从而确定拉曼光谱的强度和频率。

拉曼光谱在许多领域中都有广泛的应用。

首先,它在化学领域中被用来确定物质的分子结构和化学成分。

拉曼光谱提供了有关化学键的信息,因此可以用于确定分子的结构。

此外,拉曼光谱还可以鉴定有机和无机化合物,并用于分析化学反应的动力学。

此外,拉曼光谱在生物医学领域也有许多应用。

它可以用于鉴定和诊断疾病,比如癌症和心脑血管疾病。

拉曼光谱还可以检测和监测生物分子和药物在细胞和组织中的分布。

这些信息对于了解疾病的发展和治疗策略的制定非常重要。

此外,拉曼光谱还在材料科学、地质学和环境科学等领域中得到广泛应用。

它可以用于表征材料的晶体结构和微观结构,并揭示材料中的欠饱和和晶格扭曲。

在地质学中,拉曼光谱可以用来研究岩石和矿物的组成和演化历史。

在环境科学中,拉曼光谱可以检测土壤和水体中的有机和无机物质,并评估环境质量。

总结来说,拉曼光谱是一种强大的光谱分析技术,它能够提供关于物质结构和化学成分的丰富信息。

拉曼光谱-课件分享

拉曼光谱-课件分享
现代材料物理研究方法
拉曼光谱分析
主要内容
红外光谱(IR) 拉曼光谱(Raman)
分子振动光谱
2
激光拉曼光谱基础
1928 C.V.Raman发现拉曼散射效应 1960 随着激光光源建立拉曼光谱分析 拉曼光谱和红外光谱一样,也属于分子振动光谱 生物分子,高聚物,半导体,陶瓷,药物等分析 ,
是否出现拉曼活性主要取决于分子在运动过程时某一 固定方向上的极化率的变化。 对于分子振动和转动来说,拉曼活性都是根据极化率 是否改变来判断的。 对于全对称振动模式的分子,在激发光子的作用下, 肯定会发生分子极化,产生拉曼活性,而且活性很强; 而对于离子键的化合物,由于没有分子变形发生,不 能产生拉曼活性。
Strength enhanced 102~3 more sensitive concentration < 0.1mM similar to UV
preresonance
Resonance enhanced
共振拉曼散射
11
拉曼原理-LRS与IR比较
拉曼光谱是分子对激发光的散射,而红外光谱则是分子对红外光的吸 收,但两者均是研究分子振动的重要手段,同属分子光谱。
优势:激发波长较长, 可以避免部分荧光产生
局限:黑色样品会产生热背景 薄膜样品的厚度应 >1m 光谱范围:5~4000cm-1
23
分析方法
普通拉曼光谱 一般采用斯托克斯分析
反斯托克斯拉曼光谱 采用反斯托克斯分析
24
Raman光谱可获得的信息
Raman 特征频率
Raman 谱峰的改变
Raman 偏振峰
47
100 Cr
100
depth profile lines

拉曼光谱

拉曼光谱
短波一侧为反斯托克斯线;
4.斯托克斯线强度比反斯托克斯线强;
拉曼光谱仪
拉曼光谱仪的基本结构
1.光源 它的功能是提供单色性好、功率大并且最好能多波长工作的入射光。 2.外光路 外光路部分包括聚光、集光、样品架、滤光和偏振等部件。 3.色散系统 色散系统使拉曼散射光按波长在空间分开,通常使用单色仪。 4.接收系统 拉曼散射信号的接收类型分单通道和多通道接收两种。光电倍增管 接收就是单通道接收。 5.信息处理与显示 为了提取拉曼散射信息,常用的电子学处理方法是直流放大、选频 和光子计数,然后用记录仪或计算机接口软件画出图谱。
拉曼光谱图
拉曼光谱的横坐标为拉曼位移,以波数 表示纵坐标为拉曼光强。由于拉曼位移与 激发光无关,一般仅用Stokes位移部分。对 发荧光的分子,有时用反Stokes位移。
拉曼光谱的信息
拉曼频率 的确认 物质的组成
parallel
拉曼偏振
perpendicular
晶体对称性和取 向
拉曼峰宽晶体质量好 坏 Nhomakorabea拉曼峰强 度
物质总量
拉曼光谱的特征
1. 对不同物质Raman 位移不同; 2.对同一物质 (
v v s v0 , v s 和 v0分别为斯托克斯
位移和入射光波数) 与入射光频率无关;是表征分子振-转能级 的特征物理量;是定性与结构分析的依据;
3.拉曼线对称地发布在瑞利线两侧,长波一侧为斯托克斯线,
拉曼光谱法优势
对样品无接触,无损伤;样品无需 制备 适合黑色和含水样品,试样量少
光谱成像快速、简便,分辨率高
一次可同时覆盖50-4000cm-1波数的 区间 仪器稳固,维护成本低,使用简单
拉曼光谱法的不足
拉曼散射信号弱

拉曼光谱解析教程

拉曼光谱解析教程

拉曼光谱解析教程拉曼光谱是一种非常有效的光谱分析技术,可用于分析分子和材料的结构、组成和状态。

以下是拉曼光谱解析的教程:1. 原理:拉曼效应是指分子或材料在受激光照射时,部分光子与分子或晶体格子内原子发生相互作用,导致光的散射现象。

拉曼光谱通过测量样品散射光的频率差异,从而提供有关样品成分、结构和状态的信息。

2. 实验设备:进行拉曼光谱分析需要一台拉曼光谱仪,通常包括一个激光器、一个样品台、一个光学系统和一个光学探测器。

激光器会产生单色的激光光束,样品台用于支撑和定位待测样品,光学系统用于收集和分析散射光,光学探测器将光信号转换成电信号。

3. 样品准备:将待测样品放置在样品台上,确保样品表面光洁,没有表面污染或杂质。

拉曼光谱可以对几乎所有类型的样品进行分析,包括液体、固体和气体。

4. 数据采集:使用拉曼光谱仪进行光谱采集,通过调整激光功率、扫描范围和积分时间等参数进行实验优化。

通常会采集多个波数点的拉曼光谱数据,越多的数据点可以提供更多信息,但也需要更长的采集时间。

5. 数据分析:通过对采集到的拉曼光谱数据进行分析,可以获得样品的结构、组成和状态信息。

常见的数据处理方法包括光谱峰拟合、数据平滑和峰位校准等。

6. 数据解释:根据拉曼光谱的特征峰位和峰形,结合已知的拉曼光谱库,可以对样品进行定性和定量分析。

可以通过比较待测样品和标准品的拉曼光谱,或者使用化学计量学方法进行定量分析。

7. 应用领域:拉曼光谱广泛应用于材料科学、生物医学、环境监测和药物研发等领域。

例如,可以用于分析化学反应中的中间产物和催化剂,检测食品和药品中的污染物,研究生物分子的结构和功能等。

希望以上的教程可以帮助您了解拉曼光谱解析的基本知识和步骤。

开展拉曼光谱实验前,请确保已熟悉仪器的操作和数据处理方法,以获得可靠的结果。

拉曼光谱 型号-概述说明以及解释

拉曼光谱 型号-概述说明以及解释

拉曼光谱型号-概述说明以及解释1.引言1.1 概述概述部分:拉曼光谱是一种非常重要的光谱分析技术,它基于拉曼散射效应,通过测量样品中散射出的光的频率和强度来研究物质的结构和特性。

与传统的吸收光谱相比,拉曼光谱能够提供更为详细的信息,并且不需要对样品进行任何处理,在无损的情况下进行测量。

因此,拉曼光谱在许多领域中得到了广泛应用。

本文将介绍拉曼光谱的原理,涵盖从光与物质相互作用到光散射的基本概念。

我们还将探讨拉曼光谱在不同领域的应用,包括材料科学、生物医学、环境监测等。

此外,我们还将介绍一些常用的实验方法,以及分析和解释拉曼光谱数据的技术。

通过本文的学习,读者将能够了解拉曼光谱的原理和应用,并且对如何进行拉曼光谱实验和数据分析有一个初步的了解。

希望本文能够帮助读者更好地理解和应用拉曼光谱技术,并促进相关领域的研究和发展。

1.2 文章结构本文主要分为引言、正文和结论三个部分,具体结构如下:1. 引言部分:本部分主要对拉曼光谱进行概述,并介绍本文的目的和文章结构。

首先,将简要介绍拉曼光谱的基本概念,包括其原理和应用领域的重要性。

随后,明确本文的目的是为了深入探讨拉曼光谱的原理、应用和实验方法,并对未来的发展进行展望。

2. 正文部分:本部分将详细介绍拉曼光谱的原理、应用领域和实验方法。

首先,在2.1节,将详细阐述拉曼光谱的原理,包括拉曼散射的基本原理和拉曼光谱的测量原理。

通过解释分子的振动和旋转对光散射的影响,以及拉曼效应的产生机制,读者将能够更好地理解拉曼光谱的基本原理。

在2.2节,将探讨拉曼光谱在不同领域的应用。

这些领域包括材料科学、化学、生物医学等,可通过拉曼光谱进行物质鉴定、组成分析、反应动力学研究等。

本节将举例说明各个领域中拉曼光谱的应用案例,并探讨其在相关研究中的重要性和优势。

最后,在2.3节,将详细介绍拉曼光谱的实验方法。

包括样品的准备与处理,拉曼光谱仪的选择和操作,以及数据分析的基本步骤和技巧。

拉曼光谱课件

拉曼光谱课件
总结词
利用拉曼光谱分析大气中的有害物质,如二氧化氮、二氧化硫、一氧化碳等,有助于监测和治理空气 污染。
详细描述
拉曼光谱能够检测大气中不同污染物的分子振动模式,从而确定污染物的种类和浓度。这种方法具有 非接触、无损、快速和高灵敏度的特点,对于大气污染的预防和治理具有重要意义。
水体污染物的拉曼光谱分析
总结词
拉曼光谱技术可用于检测水体中的有害物质,如重金属离子、有机污染物等,为水环境 的监测和治理提供有力支持。
详细描述
通过对水体样本进行拉曼光谱扫描,可以获取水中污染物的分子振动信息,从而判断污 染物的种类和浓度。这种方法在水质监测、饮用水安全等领域具有广泛的应用前景。
土壤污染物的拉曼光谱分析
总结词
用于分离拉曼散射信号中的不 同波长成分。
光电倍增管
用于检测拉曼散射信号,转换 为电信号。
实验操作流程
显微镜观察
使用显微镜观察样品,选择测 量区域和焦点。
数据采集
采集拉曼散射信号,记录光谱 数据。
样品准备
选择适当的样品,进行表面清 洁和干燥。
光路调整
调整拉曼光谱仪、单色仪和显 微镜的光路,确保测量区域的 聚焦。
与生物学和医学交叉
拓展拉曼光谱在生物分子结构和细胞代谢过程 中的应用。
与计算科学交叉
利用计算模拟方法预测分子拉曼光谱,指导实验设计和优化。
THANK YOU
总结词
高分子化合物的拉曼光谱分析主要依赖于链振动和侧基的振动,可以提供高分子化合物的结构和序列信息。
详细描述
拉曼光谱能够检测高分子化合物中主链和侧基的振动模式,从而推断出高分子的结构和序列。通过分析拉曼光谱 ,可以确定高分子化合物的聚合度、序列长度和支链结构等信息。

拉曼光谱知识点

拉曼光谱知识点

超全面拉曼光谱、红外光谱、XPS的原理及应用干货拉曼光谱由于近几年来以下几项技术的集中发展而有了更广泛的应用。

这些技术是:CCD 检测系统在近红外区域的高灵敏性,体积小而功率大的二极管激光器,与激发激光及信号过滤整合的光纤探头。

这些产品连同高口径短焦距的分光光度计,提供了低荧光本底而高质量的拉曼光谱以及体积小、容易使用的拉曼光谱仪。

(一)含义光照射到物质上发生弹性散射和非弹性散射。

弹性散射的散射光是与激发光波长相同的成分.非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应。

当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。

在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。

由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。

因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。

目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征。

(二)拉曼散射光谱具有以下明显的特征a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关;b. 在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量。

c. 一般情况下,斯托克斯线比反斯托克斯线的强度大。

这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。

(三)拉曼光谱技术的优越性提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。

此外:1 由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。

拉曼光谱介绍范文

拉曼光谱介绍范文

拉曼光谱介绍范文拉曼光谱是一种非常重要的分析技术,它利用了分子振动引起的光散射现象来提供关于分子结构和化学键的信息。

拉曼光谱的应用广泛,可以用于分析固体、液体和气体样品,以及生物分子和纳米材料等。

拉曼散射效应最早由印度物理学家C.V.拉曼于1928年发现,并因此获得1930年的诺贝尔物理学奖。

拉曼散射是一种物质与激发光发生相互作用后,散射光中产生的频移与激发光频率之间的差异。

这种散射光中频移的差异称为拉曼频移,它是由于分子振动引起的光的频率和波长的微小变化所产生的。

拉曼光谱通常由强入射激光和散射光组成。

入射激光一般使用可见光或近红外光,具有高单色性和窄带宽,以增强拉曼信号的检测。

散射光分为两个主要部分:一个是各向同性的爱曼散射,具有与入射光相同的波长和频率,而另一个是拉曼散射,具有频移的特性。

这些散射光经过光谱仪的分析,可以得到拉曼光谱图。

拉曼光谱图的横轴表示拉曼频移,纵轴表示散射光的强度。

拉曼光谱图中的峰对应于特定的分子振动模式,这些模式与分子中的化学键和键角有关。

通过对各峰的位置、强度和形状进行分析,可以推断出分子的结构和化学性质。

例如,在红外光谱中,通常只能检测到非极性的结构,而拉曼光谱可以提供关于极性结构的更多信息。

拉曼光谱的应用非常广泛。

在石油和化工行业,拉曼光谱可以用于燃料和原油的质量控制,以及对催化剂和聚合物材料的分析。

在药物领域,拉曼光谱可以用于药物的质量控制和结构表征。

在环境科学中,拉曼光谱可以用于水体和土壤中的有机污染物的检测和监测。

此外,拉曼光谱还常用于生物领域的研究,例如细胞和蛋白质的表征。

近年来,随着技术的发展,拉曼光谱已经得到了很大的改进。

例如,表面增强拉曼光谱(SERS)可以大大提高拉曼信号的灵敏度,使其可以检测到更低浓度的物质。

此外,激光共振拉曼光谱(LRS)可以通过共振增强效应提高拉曼信号的灵敏度。

这些改进使得拉曼光谱在更多领域中有了更广泛的应用。

总之,拉曼光谱是一种重要的分析技术,可以提供关于分子结构和化学键的信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

拉曼效应相关参数
• 拉曼散射的偏振
• 对确定分子的对称性很有用。由于激光是线偏振光,而大多数的有机 分子是各向异性的,在不同方向上的分子被入射光电场极化程度不同 。
• 在激光拉曼光谱中,完全自由取向的分子所散射的光也可能是偏振的
,因此一般在拉曼光谱中用去偏振度(退偏振比) ρ表征分子对称性
振动模式的高低。
拉曼效应相关参数
• 拉曼峰的强度
拉曼散射强度IR可用下式表达:
IL-激发光强度 ;N-散射分子数 v-分子振动频率 ;v0-激光频率 μ-振动原子的折合质量; α‘a-极化率张量的平均值不变量; γ’a-极化率张量的有向性不变量
IR45 2 43 2 3 c4hILN 1e 0 h K T 4 45a ' 27a ' 2
(2)收集光学系统 包括宏观散射光路和配置[前置单色器,偏振旋转器, 聚焦透镜,样品,收集散射光透镜(组),检偏器等],散射配置有0°、 90°和180°,后两者较常用。
(3)单色器和迈克尔逊干涉仪 有单光栅、双光栅或三光栅,一般使用平面 全息光栅干涉器一般与FTIR上使用的相同,为多层镀硅的CaF2或镀 Fe2O3的CaF2分束器。也有用石英分束器及扩展范围的KBr分束器。
488.0nm; 散射强度1/4 单色器: 光栅,多单色器; 检测器: 光电倍增管, 光子计数器;
•傅立叶变换-拉曼光谱仪
FT-Raman spectroscopy 光源:Nd-YAG钇铝石榴石激光器(1.064m); 检测器:高灵敏度的铟镓砷探头; 特点: (1)避免了荧光干扰; (2)精度高; (3)消除了瑞利谱线; (4)测量速度快。
样品制备
• 溶液样品 一般封装在玻璃毛细管中测定
• 固体样品 不需要进行特殊处理
透射 散射 吸收
瑞利散射(频率不变) 拉曼散射(频率改变)
分子结构的信息
瑞利散射
• 弹性碰撞: 只改变方向,不改变能量。 • 当一束激发光的光子与作为散射中心的分子发
生相互作用时,大部分光子仅是改变了方向, 发生散射,而光的频率仍与激发光源一致,这 种散射称为瑞利(Rayleigh)散射。
i94r2 2(n n2 2 2 2 n n1 1 2 2)2V2N0(I1c2o2 s)
温度升温高 度升高,反斯托克斯线增加。
概率大!
3 振电
2
动子 能基
1 级态
Байду номын сангаас
e
0
e
温州大学化材学院
2020/6/21
Rayleigh 散射 Raman 散射
微纳结构材料 & 物理化学研究所
7
7
拉曼光谱原理
• 斯托克斯(Stokes)拉曼散射
分子由处于振动基态E0被激发到激发态E1时,分子 获得的能量为ΔE,恰好等于光子失去的能量:ΔE= E1-E0,由此可以获得相应光子的频率改变Δν= ΔE/h
No
子 的
O=ICm=OageO=C=O

对称伸缩
反对称伸缩
谱 选
偶极距不变无红外活性
偶极距变有红外活性
律 极化率变有拉曼活性 极化率不变无拉曼活性
19
振动自由度:3N- 4 = 4
1 S C S
拉曼活性
2 S C S
红外活性
3
SCS
4
红外活性
红外光谱—源于偶极矩变化
拉曼光谱—源于极化率变化
对称中心分子CO2,CS2等,选律不相容。 无对称中心分子(例如SO2等),三种振动既是红外活性振动,又 是拉曼活性振动。
所以,拉曼散射强度正比于被激发光照明的分子数。这是应用拉曼光 谱术进行定量分析的基础。拉曼散射强度也正比于入射光强度和
(v0-v)4。
拉曼效应相关参数
• 拉曼不活性
仅仅考虑一个分子的对称性质和其中一种振动,就有可能判定来自该 振动的拉曼散射强度必定等于零。这种振动称为拉曼不活性的或禁戒 的。非拉曼不活性的振动称为拉曼活性的或许可的。
α= α0+(dα/dq)0q q=q0cos2∏w1t
拉曼光谱原理-拉曼活性
• 并不是所有的分子结构都具有拉曼活性的。分子振动是否 出现拉曼活性主要取决于分子在运动过程中某一固定方向 上的极化率的变化。
• 对于分子振动和转动来说,拉曼活性都是根据极化率是否 改变来判断的。
• 对于全对称振动模式的分子,在激发光子的作用下,肯定 会发生分子极化,产生拉曼活性,而且活性很强;而对于 离子键的化合物,由于没有分子变形发生,不能产生拉曼 活性。
• 瑞利滤光片
• 光谱仪和探测器
(1)激发光源 常用的有Ar离子激光器,Kr离子激光器,He-Ne激光器, Nd-YAG激光器,二极管激光器等。Ar离子激光器的两条主要强线是 488nm蓝光和514.5nm黄绿光,这也是拉曼光谱仪上常用的激发谱线。 Kr离子激光器丰要提供近紫外谱线219nm,242nm和266nm。He-Ne激 光器的激发线常用的是632.8nm。Nd-YAG激光器激发最强的是波长为 1064nm的谱线,特别适合用于开展共振拉曼散射的染料激光器的泵浦光 源。
2. 伸缩振动通常比弯曲振动有更强的散射; 3. 伸缩振动的拉曼强度随键级而增强; 4. 拉曼强度随键连接原子的原子序数而增强; 5. 对称振动比反对称振动有更强的拉曼散射; 6. 晶体材料比非晶体材料有更强更多的拉曼峰。
拉曼光谱仪 测量原理
• 光源——太阳光-汞灯 -激光
• 耦合光路——光照射 到样品,收集散射光 (大光路和显微光路)
光电场作用于电子云的力是位于垂直于光传播方向的平面上。平面上 该力的方向可用一个矢量来表示,矢量的振幅在正负值之间正弦振荡 。矢量所指的方向叫做光的偏振方向。
对于一特定分子的运动,其拉曼散射光的偏振方向就是该振动引起的 电子云极化率变化的方向。若光引起的电子云位移方向与入射光偏振 相同,则拉曼散射光就有与入射光相同的偏振方向。反之,散射光与 入射光有不同的偏振方向。
拉曼谱线
斯托克斯线和反斯托克斯线统称为拉曼谱线。 由于在通常情况下,分子绝大多数处于振动能 级基态,所以斯托克斯线的强度远远强于反斯 托克斯线。
CCl4
斯托克斯线
反斯托克斯线
拉曼位移 Raman ΔSν=h|ifνt0 – νs |
即散射光与激发光频率之差 Δv取决于分子振动能级的改变 因此是特征的
(4)检测和控制系统 传统的采用光电倍增管,目前多采用CCD探测器, FTRaman常用的检测器为Ge或InGaAs检测器。在控制和处理方面,因 FTRaman采用了傅里叶变换技术,因此对计算机有更高的要求。
激光Raman光谱仪
激光光源:He-Ne激光器,波长632.8nm;
Ar激光器, 波长514.5nm,
曼是活性的,则其红外就是非活性的。反之,若对红外是活性 的,则对拉曼就是非活性的。 • 相互允许规则:凡是没有对称中心的分子,若其分子振动对 拉曼是活性的,则对红外也是活性的。 • 相互禁阻规则:存在着对红外和拉曼都是禁阻的跃迁。对于 少数分子振动,其红外和拉曼光谱都是非活性的。
拉曼效应相关参数
• 拉曼散射的偏振
拉曼活性
拉曼光谱特点
拉曼光谱与红外光谱的关系

同属分子振(转)动光谱
红异外::红适外用于分研子究不对同红原外子的光极的性吸键收振动 -OH强, 度-由C=分O子,偶-极C距-决X定
拉曼:适用于研究同原子的非极性键振动 -N-N-, -C-C- 互补
18
对 拉曼光谱与红外光谱的关系

中 心 分


曼 散 射
λ
λ

增减散 大小射

λ

度 很

透过光λ不变





1

10 7
λ



Anti-Stocks线
拉曼光谱原理 Stocks线
e
e
受室激温虚时态处不于稳基定态e,振很动快能(级10的e-8分s)跃子回很基少态,
大An部ti-分st能oc量ke不线变也,远小少部于分st产oc生ks位线移。。
• Stokes散射光线的频率低于激发光频率 。反Stokes 线的频率νas=ν0+ΔE/h,高于激发光源的频率。
拉曼光谱原理
• 拉曼位移(Raman Shift) 斯托克斯与反斯托克斯散射光的频率与激发光源 频率之差Δν统称为拉曼位移(Raman Shift)。
• 斯托克斯散射的强度通常要比反斯托克斯散射强 度强得多,在拉曼光谱分析中,通常测定斯托克 斯散射光线。
拉曼活性
• 分子在光波的交变电磁场作用下会诱导出电偶极矩:
=0 E0 cos2 0 t+1/2 q0 E0 (d / d q) 0 [cos2 (0-) t + cos2(0+) t]
式中:-分子诱导的偶极矩; E-激发光的交变电场强度; -分子极化率(Polarizability) 描述电介质极化特性的微观参数,简称极化率。
=I / IP
I∥和I⊥——分别代表与激光电矢量平行和垂直的谱线的强度。
3 4
的谱带称为偏振谱带,表示分子有较高的对称振动模式 。
3 的谱带称为退偏振谱带,表示分子对称振动模式较低。
4
拉曼效应相关参数 样品分子对激光的散射和去偏振度的测量
拉曼效应相关参数
• 拉曼散射的偏振
值越小,分子的对称性越高。在使用90°背散射几何时,无规取向
分子的退偏振率在0~0.75之间。只有球对称振动分子能达到限定值得 最大或最小。因此通过测定拉曼谱线的去偏振度,可以确定分子的对
称 近性碳。原子如所前产CC生l4的的对拉称曼伸光缩谱振,动4引59起cm,-1是<0由.0四05个,氯去原极子化同度时很移小开,或移
相关文档
最新文档