八下数学专题突破:勾股定理(手拉手模型)(人教版)

合集下载

初中数学几何模型之手拉手模型

初中数学几何模型之手拉手模型
∴∠BAC-∠CAE=∠DAE-∠CAE,
即∠DAC=∠EAB,
在△ACD与△ABE中

∴△ACD≌△ABE(SAS);
(2)∵△ACD≌△ABE,
∴∠ADC=∠AEB,
∵△ADE是等腰直角三角形,
∴∠ADE=∠AED =45°,
∴∠AEB=∠ADE+∠CDE=45°+60°=105°.
【点睛】本题考查全等三角形的判定和性质,解题的关键是根据等腰直角三角形的性质和全等三角形的判定进行解答.
一、模型类别
二、相关结论的运用
(一)有公共顶点的等边三角形
典例精讲:
[问题提出]
(1)如图①, 均为等边三角形,点 分别在边 上.将 绕点 沿顺时针方向旋转,连结 .在图②中证明 .
[学以致用]
(2)在(1)的条件下,当点 在同一条直线上时, 的大小为度.
[拓展延伸]
(3)在(1)的条件下,连结 .若 直接写出 的面积 的取值范围.
(3)①
∵△ABC和△ADE都是等腰直角三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=90°,
∵∠BAD=∠BAC+∠DAC,∠CAE=∠DAE+∠DAC,
∴∠BAD=∠CAE,
∴△ABD≌△ACE,
∴BD=CE,∠ABD=∠ACE,
∵∠AOB=∠FOC,
∴∠BFC=∠BAC=90°,
∴S四边形BCDE=S△BCE+S△DCE ;
数学模型-----手拉手
有些同学在学习数学时无从下手,找不到突破的方法,做不到举一反三,所以在数学的学习过程中,必须深入本质,做到知识、规律、法则掌握准确,及时反思.下面先给大家介绍一种常见的数学模型---手拉手模型,通过对模型的理解和掌握,把模型的结论融会贯通,理解透彻,那么这一类题型,都是可以迎刃而解的.

专题01 旋转中的三种全等模型(手拉手、半角、对角互补模型)(解析版)

专题01 旋转中的三种全等模型(手拉手、半角、对角互补模型)(解析版)

专题01 旋转中的三种全等模型(手拉手、半角、对角互补模型)本专题重点分析旋转中的三类全等模型(手拉手、半角、对角互补模型),结合各类模型展示旋转中的变与不变,并结合经典例题和专项训练深度分析基本图形和归纳主要步骤,同时规范了解题步骤,提高数学的综合解题能力。

模型1.手拉手模型【模型解读】将两个三角形(或多边形)绕着公共顶点旋转某一角度后能完全重合,则这两个三角形构成手拉手全等,也叫旋转型全等。

其中:公共顶点A记为“头”,每个三角形另两个顶点逆时针顺序数的第一个顶点记为“左手”,第二个顶点记为“右手”。

手拉模型解题思路:SAS型全等(核心在于导角,即等角加(减)公共角)。

1)双等边三角形型条件:△ABC和△DCE均为等边三角形,C为公共点;连接BE,AD交于点F。

结论:①△ACD≌△BCE;②BE=AD;③∠AFM=∠BCM=60°;④CF平分∠BFD。

2)双等腰直角三角形型条件:△ABC和△DCE均为等腰直角三角形,C为公共点;连接BE,AD交于点N。

结论:①△ACD≌△BCE;②BE=AD;③∠ANM=∠BCM=90°;④CN平分∠BND。

3)双等腰三角形型条件:△ABC 和△DCE 均为等腰三角形,C 为公共点;连接BE ,AD 交于点F 。

结论:①△ACD ≌△BCE ;②BE =AD ;③∠ACM =∠BFM ;④CF 平分∠AFD 。

4)双正方形形型条件:△ABCFD 和△CEFG 都是正方形,C 为公共点;连接BG ,ED 交于点N 。

结论:①△△BCG ≌△DCE ;②BG =DE ;③∠BCM =∠DNM=90°;④CN 平分∠BNE 。

例1.(2022·黑龙江·中考真题)ABC V 和ADE V 都是等边三角形.(1)将ADE V 绕点A 旋转到图①的位置时,连接BD ,CE 并延长相交于点P (点P 与点A 重合),有PA PB PC +=(或PA PC PB +=)成立;请证明.(2)将ADE V 绕点A 旋转到图②的位置时,连接BD ,CE 相交于点P ,连接PA ,猜想线段PA 、PB 、PC 之间有怎样的数量关系?并加以证明;(3)将ADE V 绕点A 旋转到图③的位置时,连接BD ,CE 相交于点P ,连接PA ,猜想线段PA 、PB 、PC 之间有怎样的数量关系?直接写出结论,不需要证明.【答案】(1)证明见解析 (2)图②结论:PB PA PC =+,证明见解析 (3)图③结论:PA PB PC+=【分析】(1)由△ABC 是等边三角形,得AB =AC ,再因为点P 与点A 重合,所以PB =AB ,PC =AC ,PA =0,即可得出结论;(2)在BP 上截取BF CP =,连接AF ,证明BAD CAE V V ≌(SAS ),得ABD ACE Ð=Ð,再证明CAP BAF ≌△△(SAS ),得CAP BAF Ð=Ð,AF AP =,然后证明AFP V 是等边三角形,得PF AP =,即可得出结论;(3)在CP 上截取CF BP =,连接AF ,证明BAD CAE V V ≌(SAS ),得ABD ACE Ð=Ð,再证明BAP CAF ≌△△(SAS ),得出CAF BAP Ð=Ð,AP AF =,然后证明AFP V 是等边三角形,得PF AP =,即可得出结论:PA PB PF CF PC +=+=.(1)证明:∵△ABC 是等边三角形,∴AB =AC ,∵点P 与点A 重合,∴PB =AB ,PC =AC ,PA =0,∴PA PB PC +=或PA PC PB +=;(2)解:图②结论:PB PA PC=+证明:在BP 上截取BF CP =,连接AF ,∵ABC V 和ADE V 都是等边三角形,∴AB AC =,AD AE =,60BAC DAE Ð=Ð=°∴BAC CAD DAE CAD Ð+Ð=Ð+Ð,∴BAD CAE Ð=Ð,∴BAD CAE V V ≌(SAS ),∴ABD ACE Ð=Ð,∵AC =AB ,CP =BF , ∴CAP BAF ≌△△(SAS ),∴CAP BAF Ð=Ð,AF AP =,∴CAP CAF BAF CAF Ð+Ð=Ð+Ð,∴60FAP BAC Ð=Ð=°,∴AFP V 是等边三角形,∴PF AP =,∴PA PC PF BF PB +=+=;(3)解:图③结论:PA PB PC +=,理由:在CP 上截取CF BP =,连接AF ,∵ABC V 和ADE V 都是等边三角形,∴AB AC =,AD AE =,60BAC DAE Ð=Ð=°∴BAC BAE DAE BAE Ð+Ð=Ð+Ð,∴BAD CAE Ð=Ð,∴BAD CAE V V ≌(SAS ),∴ABD ACE Ð=Ð,∵AB =AC ,BP =CF ,∴BAP CAF ≌△△(SAS ),∴CAF BAP Ð=Ð,AP AF =,∴BAF BAP BAF CAF Ð+Ð=Ð+Ð,∴60FAP BAC Ð=Ð=°,∴AFP V 是等边三角形,∴PF AP =,∴PA PB PF CF PC +=+=,即PA PB PC +=.【点睛】本题考查等边三角形的判定与性质,全等三角形的判定与性质,熟练掌握等边三角形的判定与性质、全等三角形的判定与性质是解题的关键.例2.(2023·湖南·长沙市八年级阶段练习)如图1,在Rt △ABC 中,∠B =90°,AB =BC =4,点D ,E 分别为边AB ,BC 上的中点,且BD =BE .(1)如图2,将△BDE 绕点B 逆时针旋转任意角度α,连接AD ,EC ,则线段EC 与AD 的关系是 ;(2)如图3,DE ∥BC ,连接AE ,判断△EAC 的形状,并求出EC 的长;(3)继续旋转△BDE ,当∠AEC =90°时,请直接写出EC 的长.例3.(2023·黑龙江·虎林市九年级期末)已知Rt △ABC 中,AC =BC ,∠ACB =90°,F 为AB 边的中点,且DF =EF ,∠DFE =90°,D 是BC 上一个动点.如图1,当D 与C 重合时,易证:CD 2+DB 2=2DF 2;(1)当D 不与C 、B 重合时,如图2,CD 、DB 、DF 有怎样的数量关系,请直接写出你的猜想,不需证明.(2)当D 在BC 的延长线上时,如图3,CD 、DB 、DF 有怎样的数量关系,请写出你的猜想,并加以证明.【答案】(1)CD 2+DB 2=2DF 2 ;(2)CD 2+DB 2=2DF 2,证明见解析【分析】(1)由已知得222DE DF =,连接CF ,BE ,证明CDF BEF D @D 得CD =BE ,再证明BDE D 为直角三角形,由勾股定理可得结论;(2)连接CF ,BE ,证明CDF BEF D @D 得CD =BE ,再证明BDE D 为直角三角形,由勾股定理可得结论.【详解】解:(1)CD 2+DB 2=2DF 2证明:∵DF =EF ,∠DFE =90°,∴222DF EF DE += ∴222DE DF = 连接CF ,BE ,如图∵△ABC 是等腰直角三角形,F 为斜边AB 的中点∴CF BF =,CF AB ^,即90CFB Ð=° ∴45FCB FBC Ð=Ð=°,90CFD DFB Ð+Ð=°又90DFB EFB Ð+Ð=° ∴CFD EFB Ð=Ð在CFD D 和BFE D 中CF BF CFD BFE DF EF =ìïÐ=Ðíï=î∴CFD D @BFED ∴CD BE =,45EBF FCB Ð=Ð=° ∴454590DBF EBF Ð+Ð=°+°=° ∴222DB BE DE +=∵CD BE =,222DE DF =∴CD 2+DB 2=2DF 2 ;(2)CD 2+DB 2=2DF 2 证明:连接CF 、BE∵CF =BF ,DF =EF 又∵∠DFC +∠CFE =∠EFB +∠CFB=90°∴∠DFC =∠EFB ∴△DFC ≌△EFB ∴CD =BE ,∠DCF =∠EBF =135°∵∠EBD =∠EBF -∠FBD =135°-45°=90° 在Rt △DBE 中,BE 2+DB 2=DE 2∵ DE 2=2DF 2 ∴ CD 2+DB 2=2DF 2【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、证明三角形全等是解决问题的关键,学会添加常用辅助线,构造全等三角形解决问题.例4.(2022·青海·中考真题)两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来,则形成一组全等的三角形,把具有这个规律的图形称为“手拉手”图形.(1)问题发现:如图1,若ABC V 和ADE V 是顶角相等的等腰三角形,BC ,DE 分别是底边.求证:BD CE =;(2)解决问题:如图2,若ACB △和DCE V 均为等腰直角三角形,90ACB DCE Ð=Ð=°,点A ,D ,E 在同一条直线上,CM 为DCE V 中DE 边上的高,连接BE ,请判断∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系并说明理由.图1 图2【答案】(1)见解析 (2)90DCE Ð=°;2AE AD DE BE CM=+=+【分析】(1)先判断出∠BAD =∠CAE ,进而利用SAS 判断出△BAD ≌△CAE ,即可得出结论;(2)同(1)的方法判断出△BAD ≌△CAE ,得出AD =BE ,∠ADC =∠BEC ,最后用角的差,即可得出结论.【解析】(1)证明:∵ABC V 和ADE V 是顶角相等的等腰三角形,∴AB AC =,AD AE =,BAC DAE Ð=Ð,∴BAC CAD DAE CAD Ð-Ð=Ð-Ð,∴BAD CAE Ð=Ð.在BAD V 和CAE V 中,AB AC BAD CAE AD AE =ìïÐ=Ðíï=î,∴()BAD CAE SAS ≌△△,∴BD CE =.(2)解:90AEB =°∠,2AE BE CM =+,理由如下:由(1)的方法得,≌ACD BCE V V ,∴AD BE =,ADC BEC ÐÐ=,∵CDE △是等腰直角三角形,∴45CDE CED Ð=Ð=°,∴180135ADC CDE Ð=°-Ð=°,∴135BEC ADC Ð=Ð=°,∴1354590AEB BEC CED Ð=Ð-Ð=°-°=°.∵CD CE =,CM DE ^,∴DM ME =.∵90DCE Ð=°,∴DM ME CM ==,∴2DE CM =.∴2AE AD DE BE CM =+=+.【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,等腰三角形,等边三角形,等腰直角三角形的性质,判断出△ACD ≌△BCE 是解本题的关键.3)15°模型2.半角模型【模型解读】半角模型概念:过多边形一个顶点作两条射线,使这两条射线夹角等于该顶角一半思想方法:通过旋转构造全等三角形,实现线段的转化1)正方形半角模型条件:四边形ABCD是正方形,∠ECF=45°;结论:①△BCE≌△DCG;②△CEF≌△CGF;③EF=BE+DF;④D AEF的周长=2AB;⑤CE、CF分别平分∠BEF和∠EFD。

人教版 八年级下册数学 第17章勾股定理 17.1.2勾股定理的实际运用(课件)(共18张PPT)

人教版 八年级下册数学 第17章勾股定理 17.1.2勾股定理的实际运用(课件)(共18张PPT)
人教版 数学八年级下册
17.1.2 勾股定理
(勾股定理的实际运用)
知识回顾 :
勾股定理:
如果直角三角形的两条直角边长分别为a,
B b,斜边长为c,那么 a2 b2 c2 .
c a
b
C
A
知识回忆 :
在△ABC中,∠C=90°.
(1)若b=8,c=10,则a= 6
;
(2)若a=5,b=10,则c = ������ ������ ;
B
c a
30°
C
b
A
(5)∵ ∠A=30°, ∴ c =2a
设a =x,则c = 2x ∵������������ + ������������ = ������������ ∴������������ + ������������ = (������������)������ 解得: ������ = ������ ������ ∴ ������ = ������ ������,������ = ������ ������
A
在Rt△ABC中,由勾股定理得:
AC= ������������������ + ������������������= ������������������ + ������������=13cm
答:吸管至少要做 13+4.6=17.6cm.
C
Hale Waihona Puke B练习提高6. 如图,甲船以16海里/时的速度离开码头向东北方向航行,乙船同 时由码头向西北方向航行,已知两船离开码头1.5小时后相距30海里, 问乙船每小时航行多少海里?
30 24
练习提高
7.如图,一架梯子AB长13米,斜靠在一面墙上,梯子底端离墙5米. (1)这个梯子的顶端距地面有多高? (2)如果梯子的底端B外移了2米,那么梯子的顶端A沿墙下滑了多少米?

专题04 手拉手模型证全等(解析版)

专题04 手拉手模型证全等(解析版)

专题04 手拉手模型证全等类型一等边手拉手1.图1、图2中,点C为线段AB上一点,△ACM与△CBN都是等边三角形.(1)如图1,线段AN与线段BM是否相等?证明你的结论;(2)线段AN与线段BM交于点O,求∠AOM的度数;(3)如图2,AN与MC交于点E,BM与CN交于点F,探究△CEF的形状,并证明你的结论.【答案】(1)AN=BM,见解析;(2)60°;(3)等边三角形,见解析【解析】【分析】(1)证△ACN≌△MCB(SAS),即可得出AN=BM;(2)由全等三角形的性质得∠ANC=∠MBC,则∠AOM=∠CAN+∠MBC=∠CAN+∠ANC =∠BCN=60°;(3)证△ACE≌△MCF(ASA),得CE=CF,即可得出结论.【详解】解:(1)AN=BM,理由如下:∵△ACM、△CBN都是等边三角形,∴AC=CM,CN=CB,∠ACM=∠BCN=60°,∴∠ACM +∠MCN =∠BCN +∠MCN ,∴∠ACN =∠BCM ,在△ACN 和△MCB 中,AC MC ACN MCB CN CB =⎧⎪∠=∠⎨⎪=⎩,∴△ACN ≌△MCB (SAS ),∴AN =BM ;(2)由(1)得:△ACN ≌△MCB ,∴∠ANC =∠MBC ,∴∠AOM =∠CAN +∠MBC =∠CAN +∠ANC =∠BCN =60°;(3)△CEF 是等边三角形,理由如下:∵△ACN ≌△MCB ,∴∠CAE =∠CMF ,∵∠MCF =180°﹣∠ACM ﹣∠BCN =60°,∴∠ACE =∠MCF ,在△ACE 和△MCF 中,CAE CMF AC MCACE MCF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ACE ≌△MCF (ASA ),∴CE =CF ,∵∠MCF =60°,∴△CEF 是等边三角形.【点睛】本题考查等边三角形的性质、全等三角形的判定与性质,是重要考点,难度较易,掌握相关知识是解题关键.2.如图,△ABD 和△BCE 都是等边三角形,∠ABC <105°,AE 与DC 交于点F . (1)求证:AE =DC ;(2)求∠BFE 的度数;(3)若AF =9.17cm ,BF =1.53cm ,CF =7.53cm ,求CD .【答案】(1)见解析;(2)60°;(3)18.23cm【解析】【分析】(1)由等边三角形的性质可知∠DBA=∠EBC=60°,BD=AB,BC=BE.从而可证∠DBC =∠ABE.即可利用“SAS”可证明△DBC≌△ABE,得出结论AE=DC.(2)过点B作BN⊥CD于N,BH⊥AE于H.由△DBC≌△ABE可知∠BEH=∠BCN,∠BDF =∠BAF.再结合等边三角形的性质可求出∠FDA+∠DAF=120°,进而求出∠DF A=180°-120°=60°,即求出∠DFE=180°-60°=120°.即可利用“AAS”证明△BEH≌△BCN,得出结论BH=BN,即得出BF平分∠DFE,即可求出∠BFE=60°.(3)延长BF至Q,使FQ=AF,连接AQ.根据所作辅助线可知∠AFQ=∠BFE=60°,即证明△AFQ是等边三角形,得出结论AF=AQ=BQ,∠F AQ=60°.又可证明∠DAF=∠BAQ.利用“SAS”可证明△DAF≌△BAQ,即得出DF=BQ=BF+FQ=BF+AF,最后即可求出CD=DF+CF=BF+AF+CF=1.53+9.17+7.53=18.23cm.【详解】(1)证明:∵△ABD和△BCE都是等边三角形,∴∠DBA=∠EBC=60°,BD=AB,BC=BE,∴∠DBA+∠ABC=∠EBC+∠ABC,即∠DBC=∠ABE,∵在△DBC和△ABE中,BD ABDBC ABE BC BE=⎧⎪∠=∠⎨⎪=⎩,∴△DBC≌△ABE(SAS),∴AE=DC;(2)解:如图,过点B作BN⊥CD于N,BH⊥AE于H.∵△DBC ≌△ABE ,∴∠BEH =∠BCN ,∠BDF =∠BAF ,∵△ABD 是等边三角形,∴∠BDA +∠BAD =120°,∴∠FDA +∠DAF =120°,∴∠DF A =180°-120°=60°,∴∠DFE =180°-60°=120°,在△BEH 和△BCN 中,90BEH BCN BHE BNC BE BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△BEH ≌△BCN (AAS ),∴BH =BN ,∴BF 平分∠DFE ,∴∠BFE =12∠DFE =12×120°=60°;(3)解:如图,延长BF 至Q ,使FQ =AF ,连接AQ .则∠AFQ =∠BFE =60°,∴△AFQ 是等边三角形,∴AF =AQ =BQ ,∠F AQ =60°,∵△ABD 是等边三角形,∴AD =AB ,∠DAB =60°,∴∠DAB +∠BAF =∠BAF +∠F AQ ,即∠DAF =∠BAQ ,在△DAF 和△BAQ 中,AD AB DAF BAQ AF AQ =⎧⎪∠=∠⎨⎪=⎩,∴△DAF ≌△BAQ (SAS ),∴DF =BQ =BF +FQ =BF +AF ,∴CD =DF +CF =BF +AF +CF =1.53+9.17+7.53=18.23cm .【点睛】本题为三角形综合题.考查等边三角形的判定和性质,全等三角形的判定和性质,三角形内角和定理以及角平分线的判定和性质.正确的作出辅助线也是解答本题的关键. 3.如图,点C 为线段BD 上一点,,ABC CDE △△都是等边三角形,AD 与CE 交于点,F BE 与AC 相交于点G .(1)求证:≌ACD BCE ;(2)求证:ACF BCG ≌(3)若8,25CF CG BD +==,求ACD △的面积.【答案】(1)见解析;(2)见解析;(3)【解析】【分析】(1)根据SAS 即可证明△BCE ≌△ACD ;(2)由△ACD ≌△BCE 可得∠CBG =∠CAF ,从而利用ASA 可证明△ACF ≌△BCG ;(3)求出CG =CF =4,过G 作GM ⊥BD 于M ,过点F 作FN ⊥BD 于N ,求出GM ,FN ,根据S △ACD =S △ACF +S △CDF =S △BCG +S △CDF 可求出答案.【详解】解:(1)证明:∵△ABC ,△CDE 是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACB +∠ACE =∠DCE +∠ACE ,即∠BCE =∠DCA ,∴△ACD ≌△BCE (SAS ).(2)由(1)得△ACD ≌△BCE ,∴∠CBG =∠CAF ,又∵∠ACF =∠BCG =60°,BC =AC ,在△ACF 和△BCG 中,ACF BCG BC ACCAF CBG ∠=∠⎧⎪=⎨⎪∠=⎩, ∴△ACF ≌△BCG (ASA );(3)∵△ACF ≌△BCG ,∴S △ACF =S △BCG ,CG =CF ,而CF +CG =8,∴CG =CF =4,过G 作GM ⊥BD 于M ,过点F 作FN ⊥BD 于N ,又∵∠ACB =∠DCE =60°,∴GM=FN= ∴S △ACD =S △ACF +S △CDF=S △BCG +S △CDF =12BC •GM +12CD •FN=12⨯(BC +CD )=【点睛】本题考查了全等三角形的判定和性质以及等边三角形的判定和性质,利用全等三角形的性质得出CG =CF 是解答此题的关键.类型二 等直手拉手4.已知:两个等腰直角三角板△ACB 和△DCE (AC =BC ,DC =CE ,∠ACB =∠DCE =90°)如图所示摆放,连接AE 、BD 交于点O .AE 与DC 交于点M ,BD 与AC 交于点N .(1)如图1(两个等腰直角三角板大小不等),试判断AE 与BD 有何关系并说明理由; (2)如图2(两个等腰直角三角板大小相等,即AC =DC ),在不添加任何辅助线的情况,请直接写出图2中四对全等的直角三角形.【答案】(1)AE =BD 且AE ⊥BD .理由见解析;(2)△ACB ≌△DCE ,△EMC ≌△BCN ,△AON ≌△DOM ,△AOB ≌△DOE【解析】【分析】(1)证明△ACE ≌△BCD ,可得AE =BD ,∠CEA =∠BDC ,由∠CME =∠DMO ,根据三角形内角和定理即可得∠DOM =∠ECM =90°,进而可证AE ⊥BD .(2)根据三角形全等的判定找出相等边和角,进而找出全等三角形.【详解】解:(1)结论;AE =BD 且AE ⊥BD .理由如下:∵∠ACB =∠DCE ,∴∠ACB +∠DCA =∠DCE +∠DCA ,即∠DCB =∠ACE ,∵AC =BC ,CD =CE ,在△ACE 与△BCD 中,AC BC ACE DCB CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△BCD (SAS ),∴AE =BD ,∠CEA =∠BDC ,∵∠CME =∠DMO ,∴180()180()CEA CME DMO BDC ︒-∠+∠=︒-∠+∠,即∠DOM =∠ECM =90°,∴AE ⊥BD ,∴AE =BD 且AE ⊥BD ;(2)∵AC =DC ,∴AC =CD =EC =CB ,在△ACB 与△DCE 中,AC DC ACB DCE CB CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACB ≌△DCE (SAS );由(1)可知:∠AEC =∠BDC ,∠EAC =∠DBC ,∴∠DOM =90°,∵∠AEC =∠CAE =∠CBD ,∴△EMC ≌△BCN (ASA ),∴CM =CN ,∴DM =AN ,∴△AON ≌△DOM (AAS ),∵DE =AB ,AO =DO ,∴△AOB ≌△DOE (HL ).【点睛】本题考查了三角形全等的性质与判定,掌握三角形全等的性质与判定是解题的关键. 5.已知Rt ABC △中,AB AC =,90BAC ∠=︒,点D 为直线BC 上的一动点(点D 不与点B 、C 重合),以AD 为边作Rt ADE △,AD AE =,连接CE .(1)发现问题:如图①,当点D 在边BC 上时,①请写出BD 和CE 之间的数量关系________,位置关系________;②线段CE 、CD 、BC 之间的关系是_________;(2)尝试探究:如图②,当点D 在边BC 的延长线上且其他条件不变时,(1)中CE 、CD 、BC 之间存在的数量关系是否成立?若成立,请证明;若不成立,请说明理由;(3)拓展延伸:如图③,当点D 在边CB 的延长线上且其他条件不变时,若6BC =,1CE =,则线段AD 的长为________.【答案】(1)①BD CE =,BD CE ⊥.②BC CE CD =+.(2)不成立,CE BC CD =+.(3)5【解析】【分析】(1)①根据全等三角形的判定定理证明△BAD ≌△CAE ,根据全等三角形的性质证明; ②根据全等三角形的对应边相等证明即可;(2)证明△BAD ≌△CAE ,根据全等三角形的性质解答即可;(3)根据△BAD ≌△CAE 得到BD =CE =1,再证明△DCE 是直角三角形,利用勾股定理求出DE ,即可求出AD 的长度;【详解】(1)①解:结论:BD =CE ,BD ⊥CE ,理由:∵∠ABC =∠ACB =45°,∠ADE =∠AED =45°,∴∠BAC =∠DAE =90°,∴∠BAD =∠CAE ,在△BAD 和△CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△CAE ,∴BD =CE ,∠ACE =∠B =45°,∴∠BCE =90°,即BD ⊥CE ,故答案为:BD =CE ;BD ⊥CE ;②证明:∵BD =CE ,∴BC =BD +CD =CE +CD ;故答案为:BC CE CD =+.(2)解:(1)中BC 、CE 、CD 之间存在的数量关系不成立,新的数量关系是CE =BC +CD , 理由:∵∠BAC =∠DAE =90°,∴∠BAD =∠CAE ,在△BAD 和△CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△CAE ,∴BD =CE ,∴CE =BC +CD ;(3)解:∵∠BAC =∠DAE =90°,∴∠BAD =∠CAE ,在△BAD 和△CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△CAE ,∴BD =CE =1,∠ABD =∠ACE =135°,∵∠ACB =45°,∴∠DCE =90°,在Rt △DCE 中,CD =BD +BC =7,CE =1,∴DE=∴52AD ==; 故答案为:5.【点睛】本题考查三角形综合题,等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.6.在△ABC 中,∠BAC =90°,AB =AC ,D 为BC 的中点.(1)如图1,E 、F 分别是AB 、AC 上的点,且BE =AF 、求证:△DEF 是等腰直角三角形经过分析已知条件AB =AC ,D 为BC 的中点.容易联想等腰三角形三线合一的性质,因此,连结AD (如图2),以下是某同学由己知条件开始,逐步按层次推出结论的流程图.请帮助该同学补充完整流程图.补全流程图:①___≅____,②∠EDF =___(2)如果E 、F 分别为AB 、CA 延长线上的点,仍有BE =AF ,其他条件不变,试猜想△DEF是否仍为等腰直角三角形?请在备用图中补全图形、先作出判断,然后给予证明.【答案】(1)△BDE ,△ADF ,90°;(2)△DEF 仍为等腰直角三角形,理由见解析【解析】【分析】(1)连接AD ,根据∠BAC =90°,AB =AC ,D 为BC 的中点,可以得到∠B =∠C =45°,AD ⊥BC ,1==452BAD CAD BAC =∠∠∠,12AD CD BD BC ===,从而可以证明△BDE ≌△ADF (SAS ),得到DE =DF ,∠BDE =∠ADF ,由∠ADE +∠BDE =∠BDA =90°,可得∠ADE +∠ADF =90°,即∠EDF =90°,即可证明;(2)连接AD ,同样证明△BDE ≌△ADF (SAS ),得到DE =DF ,∠BDE =∠ADF ,再由∠ADF +∠BDF =∠BDA =90°,即可得到∠BDE +∠BDF =90°,即∠EDF =90°,即可证明.【详解】解:(1)如图所示,连接AD ,∵∠BAC =90°,AB =AC ,D 为BC 的中点,∴∠B =∠C =45°,AD ⊥BC ,1==452BAD CAD BAC =∠∠∠,12AD CD BD BC ===, ∴∠B =∠BAD =∠CAD ,在△BDE 和△ADF 中,BD AD B DAF BE AF =⎧⎪∠=∠⎨⎪=⎩,∴△BDE ≌△ADF (SAS ),∴DE =DF ,∠BDE =∠ADF ,∵∠ADE +∠BDE =∠BDA =90°,∴∠ADE +∠ADF =90°,即∠EDF =90°,∴△DEF 是等腰直角三角形;故答案为:△BDE ,△ADF ,90°;(2)△DEF 仍为等腰直角三角形,理由如下:连接AD ,∵∠BAC =90°,AB =AC ,D 为BC 的中点,∴∠ABC =∠C =45°,AD ⊥BC ,1==452BAD CAD BAC =∠∠∠,12AD CD BD BC ===, ∴∠F AD =180°-∠CAD =135°,∠EBD =180°-∠ABC =135°,∴∠F AD =∠EBD ,在△BDE 和△ADF 中,BD AD EBD FAD BE AF =⎧⎪∠=∠⎨⎪=⎩,∴△BDE ≌△ADF (SAS ),∴∴DE =DF ,∠BDE =∠ADF ,∵∠ADF +∠BDF =∠BDA =90°,∴∠BDE +∠BDF =90°,即∠EDF =90°,∴△DEF 是等腰直角三角形.【点睛】本题主要考查了全等三角形的性质与判定,等腰直角三角形的性质与判定,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.7.(1)问题发现:如图1,ACB △和DCE 均为等腰直角三角形,90ACB DCE ∠=∠=︒,连接AD ,BE ,点A 、D 、E 在同一条直线上,则AEB ∠的度数为__________,线段AD 、BE 之间的数量关系__________;(2)拓展探究:如图2,ACB △和DCE 均为等腰直角三角形,90ACB DCE ∠=∠=︒,连接AD ,BE ,点A 、D 、E 不在一条直线上,请判断线段AD 、BE 之间的数量关系和位置关系,并说明理由. (3)解决问题:如图3,ACB △和DCE 均为等腰三角形,ACB DCE α∠=∠=,则直线AD 和BE 的夹角为__________.(请用含α的式子表示)【答案】(1)90°,AD =BE ;(2)AD =BE ,AD ⊥BE ;(3)α【解析】【分析】(1)由已知条件可得AC BC =,CD CE =,进而根据∠ACB −∠DCB =∠DCE −∠DCB ,可得∠ACD =∠BCE ,证明△ACD ≌△BCE (SAS ),即可求得AD =BE ;∠BEC =∠CDA =135°;(2)延长AD 交BE 于点F ,同理可得△ACD ≌△BCE ,设∠F AB =α,则∠CAD =∠CBE =45°-α,根据∠ABE =45°+45°-α=90°-α,进而根据∠AFB =180°-∠F AB -∠ABE =180°-α-(90°-α)=90°,即可求解;(3)延长BE 交AD 于点G ,方法同(2)证明△ACD ≌△BCE ,进而根据三角形的内角和定理即可求得直线AD 和BE 的夹角.【详解】(1)∵ACB △和DCE 均为等腰直角三角形,90ACB DCE ∠=∠=︒,∴AC BC =,CD CE =,∠CDE =45°∴∠CDA =135°∵∠ACB −∠DCB =∠DCE −∠DCB ,∴∠ACD =∠BCE .在△ACD 和△BCE 中,AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩===,∴△ACD ≌△BCE (SAS ),∴∠BEC =∠ADC =135°,AD =BE∴∠AEB =90°故答案为:90°,AD =BE(2)AD =BE ,AD ⊥BE ,理由如下,同理可得△ACD ≌△BCE ,则AD =BE ,延长AD 交BE 于点F ,设∠F AB =α,则∠CAD =∠CBE =45°-α∴∠ABE =45°+45°-α=90°-α∴∠AFB =180°-∠F AB -∠ABE =180°-α-(90°-α)=90°∴AD ⊥BE(3)如图,延长BE 交AD 于点G ,∵ACB △和DCE 均为等腰三角形,∴AC BC =,CD CE =,∵∠ACB =∠DCE =α,∵∠ACB +∠ACE =∠DCE +∠ACE ,∴∠ACD =∠BCE .在△ACD 和△BCE 中,AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩===,∴△ACD ≌△BCE (SAS ),∴∠CBE =∠CAD∵ACB DCE α∠=∠=∴∠CBA =∠CAB =()11180=9022αα︒-︒- ∴∠GAB +∠GBA =()()CAD CAB ABC CBE ∠+∠+∠-∠,ABC CAB =∠+∠180α=︒-,∴∠AGB =180°-(∠GAB +∠GBA )α= ,即直线AD 和BE 的夹角为α.故答案为:α.【点睛】本题考查了等腰三角形的性质,三角形内角和定理,全等三角形的性质与判定,掌握旋转模型证明三角形全等是解题的关键.8.已知:等腰Rt ABC 和等腰Rt ADE △中,AB AC =,AE AD =,90BAC EAD ∠=∠=︒.(1)如图1,延长DE 交BC 于点F ,若68BAE ∠=︒,则DFC ∠的度数为;(2)如图2,连接EC 、BD ,延长EA 交BD 于点M ,若90AEC ∠=︒,求证:点M 为BD 中点;(3)如图3,连接EC 、BD ,点G 是CE 的中点,连接AG ,交BD 于点H ,9AG =,5HG =,直接写出AEC △的面积.【答案】(1)68︒;(2)见解析;(3)36【解析】【分析】(1)由已知条件可得45D C ∠=∠=︒,对顶角AQD CQF ∠=∠,则DAC DFC ∠=∠,根据DAE CAB ∠=∠即可的DFC BAE ∠=∠;(2)过点B 作ME 的垂线交EM 的延长线于N ,证明AEC BNA △≌△,得AE BN =,进而可得AD NB =,再证明DAM BNM △≌△即可得证点M 为BD 中点;(3)延长AG 至K ,使得9GK AG ==,连接CK ,设AE 交BC 于点P ,先证明ABE ACD △≌△,进而证明AEG KCG △≌△,根据角度的计算以及三角形内角和定理求得BAD KCA ∠=∠,进而证明ABD CAK △≌△,再根据,90CAG ABD BAC ∠=∠∠=︒,证明AH BD ⊥,根据已知条件求得ABD S最后证明AEC ABD S S =即可.【详解】 (1)设DF 交AC 于Q ,如图1,ABC 是等腰Rt ABC 和ADE 是等腰Rt ADE △AQD CQF ∠=∠180,180DAQ D AQD QFC C CQF ∠=-∠-∠∠=-∠-∠DAQ QFC ∴∠=∠90BAC EAD ∠=∠=︒即BAE EAQ EAQ QAD ∠+∠=∠+∠BAE QAD ∴∠=∠DFC BAE ∴∠=∠68BAE ∠=︒68DFC ∴∠=︒故答案为68︒(2)如图2,过点B 作ME 的垂线交EM 的延长线于N ,90N ∴∠=︒90AEC =︒∠N AEC ∴∠=∠90BAC ∠=︒90EAC NAB ∴∠+∠=︒90NAC ACE ∠+∠=︒NAB ECA ∴∠=∠ ABC 是等腰Rt ABC 和ADE 是等腰Rt ADE △,AB AC AD AE ∴== 又AC AB =∴AEC BNA △≌△NB AE ∴=AE AD =AD NB ∴=90DAE ∠=︒DAM N ∴∠=∠又DMA BMN ∠=∠DAM BNM ∴△≌△DM BM ∴=即M 是BD 的中点(3)延长AG 至K ,使得9GK AG ==,连接CK ,设AE 交BC 于点P ,如图90BAC EAD ∠=∠=︒即BAE EAC EAC CAD ∠+∠=∠+∠BAE CAD ∴∠=∠ABC 是等腰Rt ABC 和ADE 是等腰Rt ADE △,AB AC AE AD ∴==在ABE △与ACD △中,AE AD BAE CAD AB AC =⎧⎪∠=∠⎨⎪=⎩∴ABE △≌ACD △(SAS )ABE ABD S S ∴=△△,BE CD = G 点是EC 的中点EG GC ∴=AGE KGC ∠=∠,AG GK =AGE KGC ∴△≌△(SAS )∴,AE CK AEG KCG =∠=∠,AE KC AD ∴==ACK ACB BCE KCG ∠=∠+∠+∠45AEC BCE =︒+∠+∠45ABC BAP =︒+∠+∠90BAE =︒+∠BAD =∠AKC ABD ∴△≌△(SAS )18BD AK ∴==,CAK ABD ∠=∠90BAG CAG ∠+∠=︒90ABD BAG ∴∠+∠=︒即90AHB ∠=︒9AG =,5HG =954AH AG HG ∴=-=-=111843622ABD S BD AH ∴=⋅=⨯⨯=△ 36AEC AEG AGC GCK AGC ACK ABD S S S S S S S =+=+===△△△△△△△∴AEC S 36=【点睛】本题考查了三角形全等的性质与判定,等腰直角三角形的性质,三角形内角和定理,三角形外角性质,构造辅助线是解题的关键.类型三 等腰手拉手9.已知:如图,在△ABC 中,AB =AC ,在△ADE 中,AD =AE ,且∠BAC =∠DAE ,连接BD ,CE 交于点F ,连接AF .(1)求证:△ABD ≌△ACE ;(2)求证:F A 平分∠BFE .【答案】(1)见解析(2)见解析【解析】【分析】(1)根据SAS 证明结论即可;(2)作AM ⊥BD 于M ,作AN ⊥CE 于N .由(1)可得BD =CE ,S △BAD =S △CAE ,然后根据角平分线的性质即可解决问题.(1)证明:∵∠BAC =∠DAE ,∴∠BAC +∠CAD =∠DAE +∠CAD ,即∠BAD =∠CAE ,在△BAD 和△CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△CAE (SAS );(2)证明:如图,作AM ⊥BD 于M ,作AN ⊥CE 于N .由△BAD ≌△CAE ,∴BD =CE ,S △BAD =S △CAE , ∵1122BD AM CE AN ⋅⋅=⋅⋅, ∴AM =AN ,∴点A 在∠BFE 平分线上,∴F A 平分∠BFE .【点睛】本题考查全等三角形的判定和性质、三角形的面积,解题的关键是熟练掌握全等三角形的判定和性质,学会转化的思想,巧用等积法进行证明.10.如图,在等腰△ABC 与等腰△ADE 中,AB =AC ,AD =AE ,∠BAC =∠DAE =α,连接BD 和CE 相交于点P ,交AC 于点M ,交AD 于点N .(1)求证:BD=CE.(2)求证:AP平分∠BPE.(3)若α=60°,试探寻线段PE、AP、PD之间的数量关系,并说明理由.【答案】(1)见解析(2)见解析(3)PE=AP+PD,见解析【解析】【分析】(1)由“SAS”可证△BAD≌△CAE,可得BD=CE;(2)由全等三角形的性质可得S△BAD=S△CAE,由三角形面积公式可得AH=AF,由角平分线的性质可得AP平分∠BPE;(3)由全等三角形的性质可得∠BDA=∠CEA,由“SAS”可证△AOE≌△APD,可得AO=AP,可证△APO是等边三角形,可得AP=PO,可得PE=AP+PD,即可求解.(1)证明:∵∠BAC=∠DAE=α,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴BD=CE;(2)证明:如图,过点A作AH⊥BD,AF⊥CE,∵△BAD≌△CAE,∴S△BAD=S△CAE,BD=CE,∴12BD×AH=12CE×AF,∴AH=AF,又∵AH⊥BD,AF⊥CE,∴AP平分∠BPE;(3)解:PE=AP+PD,理由如下:如图,在线段PE上截取OE=PD,连接AO,∵△BAD≌△CAE,∴∠BDA=∠CEA,又∵OE=PD,AE=AD,∴△AOE≌△APD(SAS),∴AP=AO,∵∠BDA=∠CEA,∠PND=∠ANE,∴∠NPD=∠DAE=α=60°,∴∠BPE=180°-∠NPD=180°-60°=120°,又∵AP平分∠BPE,∴∠APO=60°,又∵AP=AO,∴△APO是等边三角形,∴AP =PO ,∵PE =PO +OE ,∴PE =AP +PD .【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,直角三角形的性质,等边三角形的判定和性质以及角之间的关系,证明△BAD ≌△CAE 是解本题的关键.11.如图,在△ABC 和△ADE 中,AB =AC ,AD =AE ,∠BAC =∠DAE ,连接BD ,CE ,BD 与CE 交于点O ,BD 与AC 交于点F .(1)求证:BD =CE .(2)若∠BAC =48°,求∠COD 的度数.(3)若G 为CE 上一点,GE =OD ,AG =OC ,且AG ∥BD ,求证:BD ⊥AC .【答案】(1)见解析;(2)132°;(3)见解析【解析】【分析】(1)根据∠BAC =∠DAE ,推出∠BAD =∠CAE ,从而结合“SAS ”证明△BAD ≌△CAE ,即可得出结论;(2)根据外角定理推出∠COD =∠OBC +∠BCA +∠ACE ,结合全等三角形的性质推出∠COD =∠ABC +∠BCA ,最后在△ABC 中利用内角和定理求解即可;(3)连接AO ,根据题意确定△ADO ≌△AEG ,得到∠OAD =∠GAE ,AO =AG ,再结合题干条件推出△AOC 为等腰三角形,以及∠BOA =∠BOC ,从而根据“三线合一”证明即可.【详解】(1)证:∵∠BAC =∠DAE ,∴∠BAC +∠CAD =∠DAE +∠CAD ,即:∠BAD =∠CAE ,在△BAD 和△CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩∴△BAD ≌△CAE (SAS ),∴BD =CE ;(2)解:∵∠COD =∠OBC +∠BCO ,∠BCO =∠BCA +∠ACE ,∴∠COD =∠OBC +∠BCA +∠ACE ,∵△BAD ≌△CAE ,∴∠ABD =∠ACE ,∴∠COD =∠OBC +∠BCA +∠ABD =∠ABC +∠BCA ,∵∠BAC =48°,∴∠ABC +∠BCA =180°-48°=132°,∴∠COD =132°;(3)证:如图所示,连接AO ,∵△BAD ≌△CAE ,∴∠ADO =∠AEG ,在△ADO 和△AEG 中,E A ADO A G E E D G D A O =⎧⎪⎨⎪∠==⎩∠ ∴△ADO ≌△AEG (SAS ),∴∠OAD =∠GAE ,AO =AG ,∴∠AOG =∠AGO ,∴∠OAD +∠DAG =∠GAE +∠DAG ,即:∠OAG =∠DAE ,∵∠DAE =∠BAC ,∴∠BAC =∠OAG ,在△ABF 和△COF 中,∠BAC =180°-∠ABD -∠AFB ,∠BOC =180°-∠ACE -∠CFO , 由(2)知∠ABD =∠ACE ,∵∠AFB =∠CFO ,∴∠BAC =∠BOC ,∴∠BOC =∠OAG ,∵AG ∥BD ,∴∠BOA =∠OAG ,∴∠BOA =∠BOC ,∵AO =AG ,AG =CO ,∴AO =CO ,即:△AOC为等腰三角形,∵∠BOA=∠BOC,∴OF⊥AC,∴BD⊥AC.【点睛】本题考查全等三角形的判定与性质,等腰三角形的判定与性质等,掌握全等三角形的判定与性质,熟悉“手拉手”模型的证明是解题关键.类型四手拉手综合12.现有一块含30°角的直角三角板AOB,点N在其斜边AB上,点M在其最短直角边OA 所在直线上.以MN为边作如图所示的等边△MNP.(1)如图1,当M在线段OA上时,证明:AM﹣AN=AP;(2)如图2当M在射线OA上时,试探究AM、AN、AP三者之间的数量关系并给出证明.【答案】(1)见解析;(2)AM+AN=AP,理由见解析【解析】【分析】(1)在AB上取点C,使得AC=AM,则△ACM为等边三角形,结合“手拉手”模型证明△CMN≌△AMP,得到CN=AP,即可得证;(2)在射线AO上取点D,使得AN=AD,仿照(1)的过程证明△DNM≌△ANP,即可得到AP=DM,从而得出结论.【详解】证:(1)由题意可知,∠BAO =60°,如图所示,在AB 上取点C ,使得AC =AM ,则△ACM 为等边三角形,MC =MA ,∠CMA =60°,∵△NMP 为等边三角形,∴MN =MP ,∠NMP =60°,∴∠CMA =∠NMP ,∴∠CMA -∠NMA =∠NMP -∠NMA ,∴∠CMN =∠AMP ,在△CMN 和△AMP 中,M M CMN A P P A N M C M M =⎧⎪⎨⎪∠==⎩∠ ∴△CMN ≌△AMP (SAS ),∴CN =AP ,∴CN +AN =AP +AN =AC ,∵AC =AM ,∴AP +AN =AM ,∴AM -AN =AP ;(2)AM +AN =AP ,理由如下:如图所示,在射线AO 上取点D ,使得AN =AD ,∵∠BAO =60°,∴△AND 为等边三角形,ND =NA ,∠DNA =60°,∵△NMP 为等边三角形,∴NM =NP ,∠MNP =60°,∴∠DNA =∠MNP ,∴∠DNA +∠ANM =∠MNP +∠ANM ,∴∠DNM =∠ANP ,在△DNM 和△ANP 中,N N DNM A P P A M N D N N =⎧⎪⎨⎪∠==⎩∠ ∴△DNM ≌△ANP (SAS ),∴AP =DM ,∵AN =AD ,DA +AM =DM ,∴AN +AM =AP .【点睛】本题考查等边三角形的性质,全等三角形的判定与性质等,掌握双等边三角形中“手拉手”模型是解题关键.13.已知:△ABC 与△BDE 都是等腰三角形.BA =BC ,BD =BE (AB >BD )且有∠ABC =∠DBE .(1)如图1,如果A 、B 、D 在一直线上,且∠ABC =60°,求证:△BMN 是等边三角形; (2)在第(1)问的情况下,直线AE 和CD 的夹角是 °;(3)如图2,若A 、B 、D 不在一直线上,但∠ABC =60°的条件不变则直线AE 和CD 的夹角是 °;(4)如图3,若∠ACB =60°,直线AE 和CD 的夹角是 °.【答案】(1)证明见解析;(2)60;(3)60;(4)60;【解析】【分析】(1)根据题意,得∠ABC =∠DBE =60°,从而得ABE DBC ∠=∠;通过证明ABE CBD ≌,得BAE BCD ∠=∠;通过证明BAM BCN ≌,得BM BN =,根据等边三角形的性质分析,即可完成证明;(2)结合题意,通过证明ABC 为等边三角形,得60BAC BCA ∠=∠=︒;结合(1)的结论,根据三角形外角性质,推导得120AOD ∠=︒,从而完成求解;(3)同理,通过证明ABC 为等边三角形,得60BAC BCA ∠=∠=︒;通过证明ABE CBD ≌,得BAE BCD ∠=∠;根据三角形外角性质,推导得120AOD ∠=︒,从而完成求解; (4)根据题意,通过证明ABC 为等边三角形,推导得ABE CBD ∠=∠,通过证明ABE CBD ≌,得BAE BCD ∠=∠,结合三角形外角的性质计算,即可得到答案.【详解】(1)∵∠ABC =∠DBE =60°∴18060MBN ABC DBE ∠=︒-∠-∠=︒,ABE ABC MBN ∠=∠+∠,DBC DBE MBN ∠=∠+∠ ∴ABE DBC ∠=∠∵BA =BC ,BD =BEABE △和CBD 中BA BC ABE DBC BE BD =⎧⎪∠=∠⎨⎪=⎩∴ABE CBD ≌∴BAE BCD ∠=∠ BAM 和BCN △中 60BAE BCD AB BC ABC MBN ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩∴BAM BCN ≌∴BM BN =∴BMN △为等边三角形;(2)∵∠ABC =∠DBE =60°, BA =BC∴ABC 为等边三角形;∴60BAC BCA ∠=∠=︒根据题意,AE 和CD 相交于点O∵BAE BCD ∠=∠∴AOD OAC ACO OAC BCA BCD OAC BCA BAE ∠=∠+∠=∠+∠+∠=∠+∠+∠∵OAC BAE BAC ∠+∠=∠∴120AOD BAC BCA ∠=∠+∠=︒∴18060AOC AOD ∠=︒-∠=︒,即直线AE 和CD 的夹角是60︒故答案为:60;(3)∵∠ABC =∠DBE =60°, BA =BC∴ABC 为等边三角形;∴60BAC BCA ∠=∠=︒∵ABE ABC MBN ∠=∠+∠,DBC DBE MBN ∠=∠+∠,∠ABC =∠DBE =60°∴ABE DBC ∠=∠∵BA =BC ,BD =BEABE △和CBD 中BA BC ABE DBC BE BD =⎧⎪∠=∠⎨⎪=⎩∴ABE CBD ≌∴BAE BCD ∠=∠如图,延长AE ,交CD 于点O∴AOD OAC ACO OAC BCA BCD OAC BCA BAE ∠=∠+∠=∠+∠+∠=∠+∠+∠∵OAC BAE BAC ∠+∠=∠∴120AOD BAC BCA ∠=∠+∠=︒∴18060AOC AOD ∠=︒-∠=︒,即直线AE 和CD 的夹角是60︒故答案为:60;(4)∵BA =BC ,∴ACB CAB ∠=∠∵∠ACB =60°∴60ACB CAB ∠=∠=︒∴ABC 为等边三角形∵BD =BE ,∠ABC =∠DBE∴60DBE ∠=︒∵ABE ABC CBE ∠=∠-∠,CBD DBE CBE ∠=∠-∠∴ABE CBD ∠=∠ABE △和CBD 中BA BC ABE DBC BE BD =⎧⎪∠=∠⎨⎪=⎩∴ABE CBD ≌∴BAE BCD ∠=∠分别延长CD 、AE ,相较于点O ,如下图:∴AOF OAC ACO OAC BCA BCD OAC BCA BAE ∠=∠+∠=∠+∠+∠=∠+∠+∠∵OAC BAE BAC ∠+∠=∠∴120AOF BAC BCA ∠=∠+∠=︒∴18060AOC AOF ∠=︒-∠=︒,即直线AE 和CD 的夹角是60︒故答案为:60.【点睛】本题考查了等腰三角形、等边三角形、全等三角形、补角、三角形外角的知识;解题的关键是熟练掌握等边三角形、全等三角形、三角形外角的性质,从而完成求解.14.在ABC 中,AB =AC ,点D 是直线BC 上一点(不与B ,C 重合),以AD 为一边在AD 的右侧作ADE ,使AD =AE ,∠DAE =∠BAC ,连接CE .(1)(请直接写出你的结论)如图1,当点D 在线段BC 上:①如果∠BAC =90°,则∠BCE =°;②如果∠BAC =100°,则∠BCE =°;(2)设∠BAC =α,∠BCE =β.①如图2,当点D在线段BC上移动,则α、β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,则α、β之间有怎样的数量关系?请画出图形,并直接写出你的结论.【答案】(1)①90;②80;(2)①α+β=180°,理由见解析;②图见解析,α+β=180°或α=β【解析】【分析】、(1)①由等腰直角三角形的性质可得∠ABC=∠ACB=45°,由“SAS”可证△BAD≌△CAE,可得∠ABC=∠ACE=45°,可求∠BCE的度数;②由等腰三角形的性质求出∠ABD=∠ACB=40°,由“SAS”可证△ABD≌△ACE得出∠ABD =∠ACE=40°,则可得出结论;(2)①由“SAS”可证△ABD≌△ACE得出∠ABD=∠ACE,再用三角形的内角和即可得出结论;②分两种情况画出图形,由“SAS”可证△ABD≌△ACE得出∠ABD=∠ACE,再用三角形的内角和即可得出结论.【详解】解:(1)①∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∵∠DAE=∠BAC,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS)∴∠ABC=∠ACE=45°,∴∠BCE=∠ACB+∠ACE=90°,故答案为:90;②∵∠BAC=100°,AB=AC,∴∠ABD=∠ACB=40°,∵∠BAC=∠DAE,∴∠BAD=∠CAE,在△ABD和△ACE中,∵∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE=40°,∴∠BCE =∠ACE +∠ACB =40°+40°=80°,故答案为:80.(2)①α+β=180°,理由:∵∠BAC =∠DAE ,∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC .即∠BAD =∠CAE .在△ABD 与△ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS ),∴∠B =∠ACE .∴∠B +∠ACB =∠ACE +∠ACB .∵∠ACE +∠ACB =β,∴∠B +∠ACB =β,∵α+∠B +∠ACB =180°,∴α+β=180°.②如图1:当点D 在射线BC 上时,α+β=180°,连接CE ,∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS ),∴∠ABD =∠ACE ,在△ABC 中,∠BAC +∠B +∠ACB =180°,∴∠BAC +∠ACE +∠ACB =∠BAC +∠BCE =180°,即:∠BCE+∠BAC=180°,∴α+β=180°,如图2:当点D在射线BC的反向延长线上时,α=β.连接BE,∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∴∠ABD=∠ACE=∠ACB+∠BCE,∴∠ABD+∠ABC=∠ACE+∠ABC=∠ACB+∠BCE+∠ABC=180°,∵∠BAC=180°﹣∠ABC﹣∠ACB,∴∠BAC=∠BCE.∴α=β;综上所述:点D在直线BC上移动,α+β=180°或α=β.【点睛】本题主要考查全等三角形的判定及性质,等腰三角形的性质和三角形内角和定理,掌握全等三角形的判定方法及性质是关键.15.小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.(1)问题发现:如图1,若△ABC和△ADE均是顶角为40°的等腰三角形,BC、DE分别是底边,求证:BD=CE;(2)拓展探究:如图2,若△ACB和△DCE均为等边三角形,点A、D、E在同一条直线上,连接BE,则∠AEB的度数为;线段BE与AD之间的数量关系是;(3)解决问题:如图3,若△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一条直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM、AE、BE之间的数量关系并说明理由.【答案】(1)见解析;(2)60°,BE=AD;(3)∠AEB=90°,AE=BE+2CM,理由见解析【解析】【分析】(1)先判断出∠BAD=∠CAE,进而利用SAS判断出△BAD≌△CAE,即可得出结论;(2)同(1)的方法判断出△BAD≌△CAE,得出AD=BE,∠ADC=∠BEC,最后用角的差,即可得出结论;(3)同(2)的方法,即可得出结论.【详解】解:(1)∵△ABC和△ADE均是顶角为40°的等腰三角形,∴AB=AC,AD=AE,∠BAC=∠DAE,∴∠BAC﹣∠CAD=∠DAE﹣∠CAD,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴BD=CE;(2)∵△ABC和△ADE均是等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=∠CDE=∠CED=60°,∴∠ACB﹣∠BCD=∠DCE﹣∠BCD,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴AD=BE,∠ADC=∠BEC,∵∠CDE=60°,∴∠BEC=∠ADC=180°﹣∠CDE=120°,∵∠CED=60°,∴∠AEB=∠BEC﹣∠CED=60°,故答案为:60°,BE=AD;(3)AE=BE+2CM,理由:同(1)(2)的方法得,△ACD≌△BCE(SAS),∴AD=BE,∠ADC=∠BEC,∵△CDE是等腰直角三角形,∴∠CDE=∠CED=45°,∴∠ADC=180°﹣∠CDE=45°,∴∠BEC=∠ADC=135°,∴∠AEB=∠BEC﹣∠CED=135°﹣45°=90°,∵CD=CE,CM⊥DE,∴DM=ME,∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.。

初中数学“手拉手”模型——共顶点的等腰三角形压轴题三种题型及答案

初中数学“手拉手”模型——共顶点的等腰三角形压轴题三种题型及答案

模型构建专题:“手拉手”模型【考点导航】目录【典型例题】【类型一共顶点的等边三角形】【类型二共顶点的等腰直角三角形】【类型三共顶点的一般等腰三角形】【典型例题】【类型一共顶点的等边三角形】1(2023·全国·八年级假期作业)如图所示,△ABC和△ADE都是等边三角形,且点B、A、E在同一直线上,连接BD交AC于M,连接CE交AD于N,连接MN.(1)求证:BD=CE;(2)求证:△ABM≌△ACN;(3)求证:△AMN是等边三角形.【变式训练】1(2023春·山西运城·八年级统考期中)如图,点C为线段AB上一点,△DAC、△ECB都是等边三角形,AE、DC交于点M,DB、EC交于点N,DB、AE交于点P,连接MN,下列说法正确的个数有个.①MN∥AB;②∠DPM=60°;③∠DAP=∠PEC;④△ACM≌△DCN;⑤若∠DBE=30°,则∠AEB=90°.2(2023秋·四川凉山·八年级统考期末)如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.求证:(1)AD=BE;(2)△CPQ为等边三角形;3(2021春·广东佛山·八年级校考阶段练习)已知图1是边长分别为a和b a>b的两个等边三角形纸片ABC和三角形C DE叠放在一起(C与C 重合)的图形.(1)将△C DE绕点C按顺时针方向旋转30°,连接AD,BE.如图2:在图2中,线段BE与AD之间具有怎样的大小关系?证明你的结论;(2)若将上图中的△C DE,绕点C按顺时针方向任意旋转一个角度α,连接AD、BE,如图3:在图3中,线段BE与AD之间具有怎样的大小关系?证明你的结论:(3)根据上面的操作过程,请你猜想当α为多少度时,线段AD的长度最大,最大是多少?当α为多少度时,线段AD的长度最小,最小是多少?请直接写出答案.4(2023春·广东梅州·七年级校考期末)【初步感知】(1)如图1,已知ΔABC为等边三角形,点D为边BC上一动点(点D不与点B,点C重合).以AD为边向右侧作等边ΔADE,连接CE.求证:ΔABD≌ΔACE;【类比探究】(2)如图2,若点D在边BC的延长线上,随着动点D的运动位置不同,猜想并证明:①AB与CE的位置关系为:;②线段EC、AC、CD之间的数量关系为:;【拓展应用】(3)如图3,在等边ΔABC中,AB=3,点P是边AC上一定点且AP=1,若点D为射线BC上动点,以DP为边向右侧作等边ΔDPE,连接CE、BE.请问:PE+BE是否有最小值?若有,请直接写出其最小值;若没有,请说明理由.【类型二共顶点的等腰直角三角形】1(2023春·湖北黄冈·八年级统考期中)如图,△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE= 90°.(1)【猜想】:如图1,点E在BC上,点D在AC上,线段BE与AD的数量关系是,位置关系是.(2)【探究】:把△DCE绕点C旋转到如图2的位置,连接AD,BE,(1)中的结论还成立吗?说明理由;(3)【拓展】:把△DCE绕点C在平面内自由旋转,若AC=5,CE=22,当A,E,D三点在同一直线上时,则AE的长是.【变式训练】1(2023·全国·九年级专题练习)如图,在等腰直角三角形ABC和DEC中,∠BCA=∠DCE=90°,点E在边AB上,ED与AC交于点F,连接AD.(1)求证:△BCE≌△ACD;(2)求证:AB⊥AD.2(2023春·八年级课时练习)(1)问题发现:如图1,△ABC与△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,则线段AE、BD的数量关系为,AE、BD所在直线的位置关系为;(2)深入探究:在(1)的条件下,若点A,E,D在同一直线上,CM为△DCE中DE边上的高,请判断∠ADB的度数及线段CM,AD,BD之间的数量关系,并说明理由.3(2023·山东枣庄·统考二模)感知:如图①,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE =90°,点B在线段AD上,点C在线段AE上,我们很容易得到BD=CE,不需证明.(1)探究:如图②,将△ADE绕点A逆时针旋转α(0<α<90°),连接BD和CE,此时BD=CE是否依然成立?若成立,写出证明过程;若不成立,说明理由.(2)应用:如图③,当△ADE绕点A逆时针旋转,使得点D落在BC的延长线上,连接CE.求:①∠ACE的度数;②若AB=AC=32,CD=3,则线段DE的长是多少?【类型三共顶点的一般等腰三角形】1(2023春·山东泰安·七年级校考开学考试)如图,△ABC与△CDE都是等腰三角形,AC=BC,CD= CE,∠ACB=∠DCE=42°,AD、BE相交于点M.(1)试说明:AD=BE;(2)求∠AMB的度数.【变式训练】1(2023秋·辽宁抚顺·八年级统考期末)如图,已知△ABC中,AB≠AC≠BC.分别以AB、AC为腰在AB左侧、AC右侧作等腰三角形ABD.等腰三角形ACE,连接CD、BE.(1)如图1,当∠BAD=∠CAE=60°时,①△ABD、△ACE的形状是;②求证:BE=DC.(2)若∠BAD=∠CAE≠60°,①如图2,当AB=AD,AC=AE时,BE=DC是否仍然成立?请写出你的结论并说明理由;②如图3,当AB=DB,AC=EC时,BE=DC是否仍然成立?请写出你的结论并说明理由.2(2023秋·全国·八年级专题练习)定义:顶角相等且顶点重合的两个等腰三角形叫做“同源三角形”,我们称这两个顶角为“同源角”.如图,△ABC和△CDE为“同源三角形”,AC=BC,CD=CE,∠ACB 与∠DCE为“同源角”.(1)如图1,△ABC和△CDE为“同源三角形”,试判断AD与BE的数量关系,并说明理由.(2)如图2,若“同源三角形”△ABC和△CDE上的点B,C,D在同一条直线上,且∠ACE=90°,则∠EMD =°.(3)如图3,△ABC和△CDE为“同源三角形”,且“同源角”的度数为90°时,分别取AD,BE的中点Q,P,连接CP,CQ,PQ,试说明△PCQ是等腰直角三角形.3(2023春·辽宁丹东·七年级统考期末)(1)如图1,两个等腰三角形△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,连接BD,CE.则△ADB≌,此时线段BD和线段CE的数量关系式;(2)如图2,两个等腰直角三角形△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°,连接BD,CE,两线交于点P,请判断线段BD和线段CE的关系,并说明理由;(3)如图3,分别以△ABC的两边AB,AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,两线交于点P.请直接写出线段BE和线段CD的数量关系及∠PBC+∠PCB的度数.模型构建专题:“手拉手”模型【考点导航】目录【典型例题】【类型一共顶点的等边三角形】【类型二共顶点的等腰直角三角形】【类型三共顶点的一般等腰三角形】【典型例题】【类型一共顶点的等边三角形】1(2023·全国·八年级假期作业)如图所示,△ABC和△ADE都是等边三角形,且点B、A、E在同一直线上,连接BD交AC于M,连接CE交AD于N,连接MN.(1)求证:BD=CE;(2)求证:△ABM≌△ACN;(3)求证:△AMN是等边三角形.【答案】(1)证明见解析(2)证明见解析(3)证明见解析【分析】(1)由已知条件等边三角形,可知AB=AC,AD=AE,∠BAC=∠DAE,进一步求证∠BAD=∠CAE,从而△ABD≌△ACE(SAS),所以BD=CE.(2)由(1)知△ABD≌△ACE,得∠ABM=∠CAN,由点B、A、E共线,得∠CAN=60°=∠BAC,进一步求证△ABM≌△ACN(ASA).(3)由△ABM≌△ACN,得AM=AN,而∠CAN=60°,所以△AMN是等边三角形.【详解】(1)∵△ABC和△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE.在△ABD和△ACE中,AB=AC∠BAD=∠CAE AD=AE∴△ABD≌△ACE(SAS),∴BD=CE.(2)由(1)知△ABD≌△ACE,∴∠ABM=∠ACN.∵点B、A、E在同一直线上,且∠BAC=∠DAE=60°,∴∠CAN=60°=∠BAC.在△ABM和△ACN中,∠BAM=∠CAN AB=AC∠ABM=∠ACN∴△ABM≌△ACN(ASA).(3)由(2)知△ABM≌△ACN,∴AM=AN,∵∠CAN=60°,∴△AMN是等边三角形.【点睛】本题主要考查等边三角形的性质和判定、全等三角形判定和性质;将等边三角形的条件转化为相等线段和等角,选择合适的方法判定三角形全等是解题的关键.【变式训练】1(2023春·山西运城·八年级统考期中)如图,点C为线段AB上一点,△DAC、△ECB都是等边三角形,AE、DC交于点M,DB、EC交于点N,DB、AE交于点P,连接MN,下列说法正确的个数有个.①MN∥AB;②∠DPM=60°;③∠DAP=∠PEC;④△ACM≌△DCN;⑤若∠DBE=30°,则∠AEB=90°.【答案】①②③④⑤【分析】根据等边三角形的性质得到AC=CD,BC=CE,∠ACD=∠BCE=60°,得到∠ACE=∠BCE,∠DCE=60°,根据平行线的判定定理得到AD∥CE,根据平行线的性质得到∠DAP=∠PEC,故③正确;根据全等三角形的性质得到∠CAE=∠CDB,根据三角形的内角和得到∠DPM=∠ACM=60°,故②正确,推出△ACM≌△DCN,故④正确;根据全等三角形的性质得到CM=CN,得到△CMN是等边三角形,求得∠CMN=60°,根据平行线的判定定理得到MN∥AB,故①正确;根据三角形的内角和得到∠AEB= 90°.故⑤正确.【详解】解:∵△DAC 、△ECB 都是等边三角形,∴AC =CD ,BC =CE ,∠ACD =∠BCE =60°,∴∠ADC =∠DCE =60°,∴∠ACE =∠BCD ,∠DCE =60°,∴AD ∥CE ,∴∠DAP =∠PEC ,故③正确;在△ACE 与△BCD 中,AC =CD∠ACE =∠BCD CE =CB,∴△ACE ≌△BCD SAS ,∴∠CAE =∠CDB ,∵∠PMD =∠AMC ,∴∠DPM =∠ACM =60°,故②正确,在△ACM 与△DCN 中,∠CAM =∠CDNAC =CD ∠ACM =∠DCN =60°,∴△ACM ≌△DCN ,故④正确;∴CM =CN ,∴△CMN 是等边三角形,∴∠CMN =60°,∴∠CMN =∠ACD ,∴MN ∥AB ,故①正确;∵∠DBE =30°,∠BPE =∠APD =60°,∴∠AEB =90°.故⑤正确;故答案为:①②③④⑤.【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,平行线的判定,熟练掌握全等三角形的判定和性质是解题的关键.2(2023秋·四川凉山·八年级统考期末)如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作等边△ABC 和等边△CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ.求证:(1)AD =BE ;(2)△CPQ 为等边三角形;【答案】(1)见解析;(2)见解析.【分析】(1)由等边三角形的性质可知AC =BC ,CD =CE ,∠ACB =∠DCE =60°,从而可求出∠ACD =∠BCE ,即可利用“SAS ”证明△ADC ≌△BEC ,即得出AD =BE ;(2)由等边三角形的性质可知∠ACB =∠DCE =60°,AC =BC ,即可求证∠ACP =∠BCQ =60°.再根据△ADC ≌△BEC 可得出∠CAP =∠CBQ ,利用“ASA ”证明△APC ≌△BQC ,据此即可证明结论成立.【详解】(1)证明:∵△ABC 和△CDE 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∵∠ACD =∠ACB +∠BCD ,∠BCE =∠DCE +∠BCD ,∴∠ACD =∠BCE ,∴AC =BC∠ACD =∠BCE CD =CE,∴△ADC ≌△BEC (SAS ),∴AD =BE ;(2)证明:∵△ABC 和△CDE 是等边三角形,∴∠ACB =∠DCE =60°,AC =BC ,∴∠BCQ =180°-∠ACP -∠ECD =60°,∴∠ACP =∠BCQ =60°.∵△ADC ≌△BEC∴∠CAP =∠CBQ .∴∠CAP =∠CBQAC =BC∠ACP =∠BCQ∴△APC ≌△BQC ASA .∴CP =CQ ,又∵∠PCQ =60°,∴△CPQ 为等边三角形.【点睛】本题考查等边三角形的性质,全等三角形的判定和性质.熟练掌握全等三角形的判定条件是解题关键.3(2021春·广东佛山·八年级校考阶段练习)已知图1是边长分别为a 和b a >b 的两个等边三角形纸片ABC 和三角形C DE 叠放在一起(C 与C 重合)的图形.(1)将△C DE 绕点C 按顺时针方向旋转30°,连接AD ,BE .如图2:在图2中,线段BE 与AD 之间具有怎样的大小关系?证明你的结论;(2)若将上图中的△C DE ,绕点C 按顺时针方向任意旋转一个角度α,连接AD 、BE ,如图3:在图3中,线段BE 与AD 之间具有怎样的大小关系?证明你的结论:(3)根据上面的操作过程,请你猜想当α为多少度时,线段AD 的长度最大,最大是多少?当α为多少度时,线段AD 的长度最小,最小是多少?请直接写出答案.【答案】(1)BE =AD ,证明见解析(2)BE =AD ,证明见解析(3)当α为180度时,线段AD 的长度最大,最大值为a +b ;当α为0度或360度时,线段AD 的长度最小,最小值为a -b .【分析】(1)先由等边三角形判断出AC =BC ,CE =CD ,再由旋转判断出∠BCE =∠ACD ,进而判断出△BCE ≌△ACD ,即可得出结论;(2)同(1)的方法,即可得出结论;(3)当点D 在AC 的延长线上时,AD 最大,最大值为a +b ,当点D 在线段AC 上时,AD 最小,最小值为a -b ,即可得出结论.【详解】(1)解:BE =AD证明:∵点C 与C 1重合,△ABC 和△C 1DE ,∴△ABC 和△CDE 都是等边三角形,∴AC =BC ,CE =CD ,由旋转知,∠BCE =∠ACD =30°,在△BCE 和△ACD 中,BC =AC∠BCE =∠ACD CE =CD,∴△BCE ≌△ACD (SAS ),∴BE =AD ,(2)解:BE =AD ,证明:∵△ABC 和△CDE 都是等边三角形,∴AC =BC ,CE =CD ,由旋转知,∠BCE =∠ACD ,在△BCE 和△ACD 中,BC =AC∠BCE =∠ACD CE =CD,∴△BCE ≌△ACD (SAS ),∴BE =AD ;(3)解:当点D 在AC 的延长线上时,AD 最大,最大值为AC +CD =a +b ,如图,∴当α为180度时,线段AD 的长度最大,最大值为a +b ,当点D 在线段AC 上时,AD 最小,最小值为AC -CD =a -b ,如图,∴当α为0度或360度时,线段AD的长度最小,最小值为a-b.【点睛】此题是三角形综合题,主要考查了等边三角形的性质,全等三角形的判定和性质,判断出△BCE≌△ACD是解本题的关键.4(2023春·广东梅州·七年级校考期末)【初步感知】(1)如图1,已知ΔABC为等边三角形,点D为边BC上一动点(点D不与点B,点C重合).以AD为边向右侧作等边ΔADE,连接CE.求证:ΔABD≌ΔACE;【类比探究】(2)如图2,若点D在边BC的延长线上,随着动点D的运动位置不同,猜想并证明:①AB与CE的位置关系为:;②线段EC、AC、CD之间的数量关系为:;【拓展应用】(3)如图3,在等边ΔABC中,AB=3,点P是边AC上一定点且AP=1,若点D为射线BC上动点,以DP 为边向右侧作等边ΔDPE,连接CE、BE.请问:PE+BE是否有最小值?若有,请直接写出其最小值;若没有,请说明理由.【答案】(1)见解析(2)平行EC=AC+CD(3)有最小值,5【分析】(1)由ΔABC和ΔADE是等边三角形,推出AB=AC,AD=AE,∠BAC=∠DAE=60°,又因为∠BAC=∠DAE,则∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE,从而利用“SAS”证明ΔABD≌ΔACE;(2)①由(1)得ΔABD≌ΔACE(SAS),得出∠B=∠ACE=60°,CE=BD,∠BAC=∠ACE,则AB∥CE;②因为CE=BD,AC=BC,所以CE=BD=BC+CD=AC+CD;(3)在BC上取一点M,使得DM=PC,连接EM,可证ΔEPC≌ΔEDM(SAS),EC=EM,求得∠CEM= 60°,得出ΔCEM是等边三角形,则∠ECD=60°,即点E在∠ACD角平分线上运动,在射线CD上截取CP =CP,当点E与点C重合时,BE+PE=BE+P E≥BP =5,进而解答此题.【详解】(1)证明:∵ΔABC和ΔADE是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∵∠BAC=∠DAE,∴∠BAC-∠DAC=∠DAE-∠DAC 即∠BAD=∠CAE在ΔABD和ΔACE中,AB=AC∠BAD=∠CAE AD=AE,∴ΔABD≌ΔACE(SAS);(2)平行,EC=AC+CD,理由如下:由(1)得ΔABD≌ΔACE(SAS),∴∠B=∠ACE=60°,CE=BD,∴∠BAC=∠ACE,∴AB∥CE,∵CE=BD,AC=BC,∴CE=BD=BC+CD=AC+CD;(3)有最小值,理由如下:如图,在射线BC上取一点M,使得DM=PC,连接EM,∵ΔABC和ΔDPE是等边三角形,∴PE=ED,∠DEP=∠ACB=60°,∴∠ACD=180°-∠ACB=180°-60°=120°,∴∠ACD+∠DEP=120°+60°=180°,由三角形内角和为180°,可知:∠PCE+∠CEP+∠EPC=180°,∠ECD+∠CDE+∠CED=180°,∴∠PCE+∠CEP+∠EPC+∠ECD+∠CDE+∠CED=360°,又∵∠PCE+∠ECD+∠CEP+∠CED=∠ACD+∠DEP=180°,∴∠EPC+∠CDE=360°-180°=180°,∵∠EDM+∠CDE=180°,∴∠EPC=∠EDM,在ΔEPC和ΔEDM中,PE=ED∠EPC=∠EDM PC=DM,ΔEPC≌ΔEDM(SAS),∴EC=EM,∠PEC=∠DEM,∵∠PEC+∠CED=∠DEP=60°,∴∠CEM=∠DEM+∠CED=60°,∴ΔCEM是等边三角形,∴∠ECD=60°,∠ACE=180°-∠ECD-∠ACB=180°-60°-60°=60°,即点E在∠ACD的角平分线上运动,在射线CD上截取CP =CP,连接EP ,在ΔCEP和ΔCEP 中,PC=P C∠PCE=∠P CE=60°CE=CE,ΔCEP≌ΔCEP (SAS),∴PE=P E,由三角形三边关系可知,BE+P E≥BP ,即当点E与点C重合,BE+P E=BP 时,PE+BE有最小值BP ,∵BP =BE+CP =BC+CP=3+2=5,∴BE+PE=BE+P E≥BP =5,∴BE+PE最小值为5.【点睛】本题考查三角形综合,全等三角形的判定,正确添加辅助线、掌握相关图形的性质定理是解题的关键.【类型二共顶点的等腰直角三角形】90°.(1)【猜想】:如图1,点E在BC上,点D在AC上,线段BE与AD的数量关系是,位置关系是.(2)【探究】:把△DCE绕点C旋转到如图2的位置,连接AD,BE,(1)中的结论还成立吗?说明理由;(3)【拓展】:把△DCE绕点C在平面内自由旋转,若AC=5,CE=22,当A,E,D三点在同一直线上时,则AE的长是.【答案】(1)BE=AD,BE⊥AD(2)成立,理由见解析(3)21+2或21-2【分析】(1)利用等腰直角三角形的性质得出AC=BC,EC=DC,再作差,得出BE=AD,再用∠ACB= 90°,即可得出结论;(2)先由旋转的旋转得出∠BCE=∠ACD,进而判断出△BCE≌△ACD SAS,得出BE=AD,∠CAD=∠CBE,AC与BE交于M,AD与BE交于N,利用全等的性质和对顶角相等进而得出∠MAN+∠AMN=90°,即可得出结论;(3)分两种情况,①当点E在线段AD上时,如图3,过点C作CM⊥AD于M,求出CM=EM=12DE= 2,再用勾股定理求出AM,利用线段的加减即可得出结论;②当点D在线段AE上时,如图4,过点C作CN⊥AE于N,求出CM=EM=12DE=2,再由勾股定理求出根据勾股定理得,AN,利用线段的加减即可得出结论.【详解】(1)∵△ABC和△DCE都是等腰直角三角形,∴AC=BC,EC=DC,∴AC-DC=BC-EC,∴BE=AD,点E在BC上,点D在AC上,且∠ACB=90°,∴BE⊥AD,故:BE=AD,BE⊥AD;(2)成立;如图2,AC与BE交于M,AD与BE交于N,由题意可知:∵∠ACB=∠DCE=90°,∴∠ACB+∠ACE=∠DCE+∠CE,∴∠BCE=∠ACD,在△BCE与△ACD中:BC=AC∠BCE=∠ACD CE=CD∴△BCE≌△ACD SAS,∴BE=AD,∠CAD=∠CBE,又∵∠ACB=90°,∠BMC=∠AMN,在△ANM中,∴∠MAN+∠AMN=∠CBE+∠BMC=90°,∴∠ANM=90°,∴BE⊥AD,所以结论成立;(3)①当点E在线段AD上时,如图3,过点C作CM⊥AD于M,∵△DCE是等腰直角三角形,且CE=22,∴DE=CE2+CD2=4,∵CM⊥AD,∴CM=EM=12DE=2,在Rt△ACM中,AC=5,∴AM=AC2-CM2=52-22=21,∴AE=AM-EM=21-2;②当点D在线段AE上时,如图4,过点C作CN⊥AE于N,∵△DCE是等腰直角三角形,且CE=22,∴DE=CE2+CD2=4,∵CN⊥AD,∴CN =NE =12DE =2,在Rt △ACN 中,AC =5,∴AN =AC 2-CN 2=52-22=21,∴AE =AN +NE =21+2,综上,AE 的长为21-2或21+2,故答案为:21-2或21+2.【点睛】此题是几何变换综合题,主要考查了等腰直角三角形的性质,旋转的旋转,全等三角形的判定和性质,勾股定理,作出辅助线构造出直角三角形是解本题的关键.【变式训练】1(2023·全国·九年级专题练习)如图,在等腰直角三角形ABC 和DEC 中,∠BCA =∠DCE =90°,点E 在边AB 上,ED 与AC 交于点F ,连接AD .(1)求证:△BCE ≌△ACD ;(2)求证:AB ⊥AD .【答案】(1)见解析(2)见解析【分析】(1)根据∠BCA =∠DCE =90°,可得∠BCE =∠ACD ,再由等腰直角三角形的性质可得BC =AC ,CE =CD ,可证明△BCE ≌△ACD ,即可求证;(2)根据△BCE ≌△ACD ,可得∠B =∠CAD ,从而得到∠CAD +∠CAE =90°,即可求证.【详解】(1)证明:∵∠BCA =∠DCE =90°,∴∠BCE +∠ECA =∠ECA +∠ACD =90°,∴∠BCE =∠ACD ,∵△ABC 和△DEC 是等腰直角三角形,∴BC =AC ,CE =CD ,在△BCE 和△ACD 中,BC =AC∠BCE =∠ACD CE =CD,∴△BCE ≌△ACD SAS ;(2)证明:∵△BCE ≌△ACD ,∴∠B =∠CAD ,∵∠ACB =90°,∴∠B +∠CAE =90°,∴∠CAD +∠CAE =90°,即∠DAE =90°,∴AB ⊥AD .【点睛】本题主要考查了全等三角形的判定和性质,等腰直角三角形的性质,熟练掌握全等三角形的判定和性质,等腰直角三角形的性质是解题的关键.2(2023春·八年级课时练习)(1)问题发现:如图1,△ABC与△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,则线段AE、BD的数量关系为,AE、BD所在直线的位置关系为;(2)深入探究:在(1)的条件下,若点A,E,D在同一直线上,CM为△DCE中DE边上的高,请判断∠ADB 的度数及线段CM,AD,BD之间的数量关系,并说明理由.【答案】(1)AE=BD,AE⊥BD;(2)∠ADB=90°,AD=2CM+BD;理由见解析【分析】(1)延长AE交BD于点H,AH交BC于点O.只要证明△ACE≌△BCD SAS,即可解决问题;(2)由△ACE≌△BCD,结合等腰三角形的性质和直角三角形的性质,即可解决问题.【详解】解:(1)如图1中,延长AE交BD于点H,AH交BC于点O,∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∴∠ACE+∠ECB=∠BCD+∠ECB=90°,∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD,∠CAE=∠CBD,∵∠CAE+∠AOC=90°,∠AOC=∠BOH,∴∠BOH+∠CBD=90°,∴∠AHB=90°,∴AE⏊BD.故答案为:AE=BD,AE⏊BD.(2)∠ADB=90°,AD=2CM+BD;理由如下:如图2中,∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,∴∠CDE=∠CED=45°,∴∠AEC=180°-∠CED=135°,由(1)可知:△ACE≌△BCD,∴AE=BD,∠BDC=∠AEC=135°,∴∠ADB=∠BDC-∠CDE=135°-45°=90°;在等腰直角三角形DCE中,CM为斜边DE上的高,∴CM=DM=ME,∴DM=2CM,∴AD=DE+AE=2CM+BD.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题.3(2023·山东枣庄·统考二模)感知:如图①,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点B在线段AD上,点C在线段AE上,我们很容易得到BD=CE,不需证明.(1)探究:如图②,将△ADE绕点A逆时针旋转α(0<α<90°),连接BD和CE,此时BD=CE是否依然成立?若成立,写出证明过程;若不成立,说明理由.(2)应用:如图③,当△ADE绕点A逆时针旋转,使得点D落在BC的延长线上,连接CE.求:①∠ACE的度数;②若AB=AC=32,CD=3,则线段DE的长是多少?【答案】(1)BD=CE成立,证明见解析(2)①45° ②310【分析】(1)只需要利用SAS证明△ABD≌△ACE即可证明BD=CE;(2)①由等腰直角三角形的性质得到∠ABC=∠ACB=45°,再证明△ABD≌△ACE即可得到∠ABD=∠ACE=45°;②先由勾股定理得到BC=6,由全等三角形的性质得到∠ACE=∠ABD=45°,BD=CE,则∠BCE=90°,CE=9;则DE=CE2+CD2=310.【详解】(1)解:BD=CE成立,证明如下:∵△ABC和△ADE都是等腰直角三角形,∴AB=AC,AD=AE,由旋转的性质可得∠BAD=∠CAE,∴△ABD≌△ACE SAS,∴BD=CE;(2)解:①∵△ABC和△ADE都是等腰直角三角形,∴∠ABC=∠ACB=45°,∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵AB=AC,∠BAD=CAE,AD=AE,∴△ABD≌△ACE SAS,∴∠ABD=∠ACE=45°;②∵AB=AC=32,∴BC=AB2+AC2=6,∵△ACE≌△ABD,∴∠ACE=∠ABD=45°,BD=CE,∴∠BCE=∠ACB+∠ACE=90°,CE=BD=BC+CD=6+3=9;∴DE=CE2+CD2=92+32=310.【点睛】本题主要考查了全等三角形的性质与判定,勾股定理,等腰直角三角形的性质,熟知全等三角形的性质与判定条件是解题的关键.【类型三共顶点的一般等腰三角形】1(2023春·山东泰安·七年级校考开学考试)如图,△ABC与△CDE都是等腰三角形,AC=BC,CD=CE,∠ACB=∠DCE=42°,AD、BE相交于点M.(1)试说明:AD=BE;(2)求∠AMB的度数.【答案】(1)见解析(2)42°【分析】(1)由“SAS”可证△ACD≌△BCE,可得BE=AD;(2)根据全等三角形的性质可得∠CAD=∠CBE,再利用三角形内角和定理计算∠AMB.【详解】(1)解:证明:∵∠ACB=∠DCE,∴∠ACD=∠BCE,在△ACD和△BCE中,CA=CB∠ACD=∠BCE CD=CE,∴△ACD≌△BCE(SAS),∴AD=BE;(2)∵△ACD≌△BCE,∴∠CAD=∠CBE,∵∠BAC+∠ABC=180°-42°=138°,∴∠BAM+∠ABM=∠BAC-∠CAD+∠ABC+∠CBE=∠BAC+∠ABC=138°,∴∠AMB=180°-138°=42°.【点睛】本题考查了全等三角形的判定和性质,三角形内角和,证明三角形全等是解题的关键.【变式训练】1(2023秋·辽宁抚顺·八年级统考期末)如图,已知△ABC中,AB≠AC≠BC.分别以AB、AC为腰在AB左侧、AC右侧作等腰三角形ABD.等腰三角形ACE,连接CD、BE.(1)如图1,当∠BAD=∠CAE=60°时,①△ABD、△ACE的形状是;②求证:BE=DC.(2)若∠BAD=∠CAE≠60°,①如图2,当AB=AD,AC=AE时,BE=DC是否仍然成立?请写出你的结论并说明理由;②如图3,当AB=DB,AC=EC时,BE=DC是否仍然成立?请写出你的结论并说明理由.【答案】(1)①等边三角形;②证明见解析(2)①成立,理由见解析;②不成立,理由见解析【分析】(1)①根据有一个内角是60度的等腰三角形是等边三角形即可求解;②根据等边三角形的性质可得AB=AD,AE=AC,∠DAB=∠CAE=60°,证明△BAE≌△DAC,根据全等三角形的性质即可证明;(2)①证明△BAE≌△DAC,根据全等三角形的性质即可得出结论;②根据已知可得△BAE与△DAC不全等,即可得出结论.【详解】(1)①∵△ABD是等腰三角形,△ACE是等腰三角形,∠BAD=∠CAE=60°∴△ABD、△ACE是等边三角形,故答案为:等边三角形.②证明:∵△ABD、△ACE是等边三角形,∴AB=AD,AE=AC,∠DAB=∠CAE=60°,∵∠DAC=∠DAB+∠BAC,∠BAE=∠CAE+∠BAC,∴∠DAC=∠BAE,在△BAE与△DAC中,∵AB=AD∠BAE=∠DAC AE=AC,∴△BAE≌△DAC SAS.∴BE=DC.(2)①当AB=AD,AE=AC时,成立.理由:如图,∵AB=AD,∠BAE=∠DAC,AE=AC,∴△BAE≌△DAC SAS,∴BE=DC;②当AB=DB,AC=EC时,不成立.理由:如图,∵∠BAD=∠CAE≠60°,∴AB=DB≠AD,AC=EC≠AE,∴△BAE与△DAC不全等,∴BE≠DC.【点睛】本题考查全等三角形的判定与性质,等腰三角形的性质,等边三角形的判定与性质等,熟练掌握全等三角形的判定与性质是解题的关键.2(2023秋·全国·八年级专题练习)定义:顶角相等且顶点重合的两个等腰三角形叫做“同源三角形”,我们称这两个顶角为“同源角”.如图,△ABC 和△CDE 为“同源三角形”,AC =BC ,CD =CE ,∠ACB 与∠DCE 为“同源角”.(1)如图1,△ABC 和△CDE 为“同源三角形”,试判断AD 与BE 的数量关系,并说明理由.(2)如图2,若“同源三角形”△ABC 和△CDE 上的点B ,C ,D 在同一条直线上,且∠ACE =90°,则∠EMD =°.(3)如图3,△ABC 和△CDE 为“同源三角形”,且“同源角”的度数为90°时,分别取AD ,BE 的中点Q ,P ,连接CP ,CQ ,PQ ,试说明△PCQ 是等腰直角三角形.【答案】(1)AD =BE ,详见解析(2)45(3)详见解析【分析】(1)由“同源三角形”的定义可证∠ACD =∠BCE ,然后根据SAS 证明△ACD ≌△BCE 即可;(2)由“同源三角形”的定义和∠ACE =90°可求出∠DCE =ACB =45°,由(1)可知△ACD ≌△BCE ,得∠ADC =∠BEC ,然后根据“8”子三角形即可求出∠EMD 的度数;(3)由(1)可知△ACD ≌△BCE ,可得∠CAQ =∠CBP ,BE =AD .根据SAS 证明△ACQ ≌△BCP ,可得CQ =CP ,∠ACQ =∠BCP ,进而可证结论成立.【详解】(1)AD =BE .理由:因为△ABC 和△CDE 是“同源三角形”,所以∠ACB =∠DCE ,所以∠ACD =∠BCE .在△ACD 和△BCE 中,AC =BC ,∠ACD =∠BCE ,CD =CE ,所以△ACD ≌△BCE SAS .所以AD =BE .(2)∵△ABC 和△CDE 是“同源三角形”,∴∠ACB =∠DCE .∵∠ACE =90°,∴∠DCE =ACB =45°.由(1)可知△ACD ≌△BCE ,∴∠ADC =∠BEC .∵∠MOE =∠COD ,∴∠EMD =∠DCE =45°.故答案为:45;(3)由(1)可知△ACD ≌△BCE ,所以∠CAQ =∠CBP ,BE =AD .因为AD ,BE 的中点分别为Q ,P ,所以AQ =BP .在△ACQ 和△BCP 中,CA =CB ,∠CAQ =∠CBP ,AQ =BP ,所以△ACQ ≌△BCP SAS ,所以CQ =CP ,∠ACQ =∠BCP .又因为∠BCP +∠PCA =90°,所以∠ACQ +∠PCA =90°.所以∠PCQ =90°,所以△PCQ 是等腰直角三角形.【点睛】本题考查了新定义,全等三角形的判定与性质,等腰直角三角形的判定,三角形内角和定理等知识,熟练掌握全等三角形的判定与性质是解答本题的关键.3(2023春·辽宁丹东·七年级统考期末)(1)如图1,两个等腰三角形△ABC 和△ADE 中,AB =AC ,AD =AE ,∠BAC =∠DAE ,连接BD ,CE .则△ADB ≌,此时线段BD 和线段CE 的数量关系式;(2)如图2,两个等腰直角三角形△ABC 和△ADE 中,AB =AC ,AD =AE ,∠BAC =∠DAE =90°,连接BD ,CE ,两线交于点P ,请判断线段BD 和线段CE 的关系,并说明理由;(3)如图3,分别以△ABC 的两边AB ,AC 为边向△ABC 外作等边△ABD 和等边△ACE ,连接BE ,CD ,两线交于点P .请直接写出线段BE 和线段CD 的数量关系及∠PBC +∠PCB 的度数.【答案】(1)△AEC ,BD =CE ;(2)BD =CE 且BD ⊥CE ;(3)CD =BE ,∠PBC +∠PCB =60°【分析】(1)先判断出∠DAB =∠EAC ,进而判断出△ADB ≌△AEC ,即可得出结论;(2)先判断出△DAB ≌△EAC ,得出BD =CE ,∠DBA =∠ECA ,进而判断出∠DBC +∠ECB ,即可得出结论;(3)先判断出△ACD ≌△AEB ,得出CD =BE ,∠ADC =∠ABE ,进而求出∠BPD =60°,最后用三角形外角的性质,即可得出结论.【详解】解:(1)∵∠DAE =∠BAC ,∴∠DAE +∠BAE =∠BAC +∠BAE .即∠DAB =∠EAC ,在△ADB 和△AEC 中,AD =AE∠DAB =∠EAC AB =AC,∴△ADB ≌△AEC SAS ,∴BD =CE ,故答案为:△AEC ,BD =CE ;(2)BD =CE 且BD ⊥CE ;理由如下:∵∠DAE =∠BAC =90°,∴∠DAE +∠BAE =∠BAC +∠BAE .即∠DAB =∠EAC .在△DAB 和△EAC 中,AD =AE∠DAB =∠EAC AB =AC,∴△ADB ≌△AEC SAS ,∴BD =CE ,∠DBA =∠ECA ,∵∠ECA +∠ECB +∠ABC =90°,∴∠DBA +∠ECB +∠ABC =90°,即∠DBC +∠ECB =90°,∴∠BPC =180°-(∠DBC +∠ECB )=90°,∴BD ⊥CE ,综上所述:BD =CE 且BD ⊥CE ;(3)如图3所示,BE =CD ,∠PBC +∠PCB =60°,理由如下:∵△ABD 和△ACE 是等边三角形,∴AD =AB ,AC =AE ,∠ADB =∠ABD =∠BAD =∠CAE =60°,∴∠BAD +∠BAC =∠CAE +∠BAC ,∴∠CAD =∠EAB ,在△ACD 和△AEB 中,AD =AB ∠CAD =∠EAB AC =AE,∴△ACD ≌△AEB (SAS ),∴CD =BE ,∠ADC =∠ABE ,∴∠BPD =180°-∠PBD -∠BDP=180°-∠ABE -∠ABD -∠BDP=180°-∠ABD -∠ABE +∠BDP=180°-∠ABD -∠ADC +∠BDP=180°-∠ABD -∠ADB=60°,∴∠PBC +∠PCB =∠BPD =60°.【点睛】此题是三角形综合题,主要考查了等腰三角形的性质,等腰直角三角形的性质,等边三角形的性质,三角形的内角和定理,三角形外角的性质,判断出△ADB ≌△AEC 是解本题的关键.。

初二数学手拉手模型

初二数学手拉手模型

初二数学中的“手拉手”模型如图1:两个公共顶点并且顶角相等的等腰三角形所组成的图形具有很特别的性质,我们形象地称其为“手拉手”模型;在这个图形种蕴含这两个全等三角形,而且这两个全等三角形可以看成其中一个绕着顶点旋转顶角地度数后变成另外一个。

在图1中,只需要连结BD,CE则容易证明△ABD≌△ACE;同时△ACE可以看成△ABD绕着点A顺时针旋转∠BAC的度数得到。

熟悉手拉手模型对于解题是十分有帮助的。

下面以一些初二阶段的考题为例子一起来巩固强化一下这个模型。

例1(15石狮八年级期末26题)△ABC和△ADE都是等腰三角形,其中AB=AC,AD=AE,且∠BAC=∠DAE.(1)如图1,连结BE、CD,求证:CD=BE;(2)如图2,连结BD、CD,若∠BAC=∠DAE=60°,CD⊥AE,AD=3,CD=4,求BD的长;(3)如图3,若∠BAC=∠DAE=90°,以点A为旋转中心旋转△ABC,使得点C恰好落在斜边DE上,试探究、、之间的数量关系,并加以证明.本分析:本题就是一道典型的手拉手模型问题,这边的两个等顶角共定点的等腰三角形是△ABC和△AED,因此图形中一定存在着两个全等的可以看成旋转得到的三角形。

有了这个理念就不难想到第二题连结BE;第三题连结BE,得到全等三角形,第二题中两个全等三角形是△ABE与△ACD;第三问全等的三角形是△ABE与△ACD。

发现全等在本题中是关键;例如第二题、三题就是通过全等把已知条件集中到同一个直角三角形中;利用勾股定理求解。

例2:如图3,在三角形ABC中AB=AC,∠BAC=90°,P是BC上的一点,证明:BP²+CP²=2AP²分析:这个题目中并没有直接的“手拉手”模型;但是题目中有一个已知的等腰直角三角形ABC,要证明的式子中有一个线段AP是以A为端点的,因此我们可以考虑以AP为直角边,构造以点A为顶点的另一个等腰直角三角形APD,这样就出现“手拉手”模型了,而模型中存在的两个旋转三角形也随之显现,能把相关线段集中到同一个直角三角形中。

勾股定理(手拉手模型)(人教版)

勾股定理(手拉手模型)(人教版)

人教版八年级下册期中备考提升训练勾股定理➢知识点睛旋转结构(手拉手:等线段共端点,考虑旋转,借助全等整合条件.常见手拉手模型举例如图,△ABC,△ADE 均为等边三角形,则出现了AB=AC,AD=AE 等线段共端点的结构,所以连接BD,CE,可以证明△ABD≌△ACE,即把△ABD 绕点A 逆时针旋转60°得到△ACE.➢精讲精练1.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB=∠DCE=90°,△ACB的顶点A在△ECD 的斜边D E 上.若A E=8,AD=15,则A B= ,AC= .2.如图,在△ABC 中,∠BAC=90°,AB=AC,点D 在BC 边上,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,AF 平分∠DAE 交BC 于F,连接BE.若D F=10,BE=6,则A B 的长为.117 3. 如图,已知 CA =CB ,CF =CE ,∠ACB =∠FCE =90°,且 A ,F ,E 三点共线,AE 与 CB 交于点 D .(1) 求证:AF 2+AE 2=AB 2;(2) 若 A C = ,BE =3,则 C E = .4. 如图,E 是正方形 ABCD 对角线 CA 的延长线上任意一点,以线段 AE 为边作一个正方形 AEFG ,线段 GB 与线段 ED ,AD 分别交于点 H ,M .(1) 求证:ED =GB ;(2) 判断 ED 与 GB 的位置关系,并说明理由;(3) 若 AB =2,AE = ,则 G B =.225.(1)如图1,O 是等边△ABC 内一点,连接OA,OB,OC,且OA=3,OB=4,OC=5,将△BAO 绕点B 顺时针旋转后得到△BCD,连接OD.①旋转角是度;②线段O D 的长为;③求∠BDC 的度数.(2)如图2 所示,O 是等腰直角△ABC(∠ABC=90°)内一点,连接OA,OB,OC,∠AOB=135°,OA=1,OB=2,求OC 的长.小明同学借用了图1 的方法,将△BAO 绕点B 顺时针旋转后得到△BCD,请你继续用小明的思路解答,或是选择自己的方法求解.36.如图,△ABC 是等腰直角三角形,∠BAC=90°,点D 为直线BC 上的动点(不与点B,C 重合),连接AD,将线段AD 绕点A 逆时针旋转90°,得到线段AE,连接DE.(1)如图1,当点D在线段B C 上时,请直接写出线段D B,DC,DE 之间的数量关系:.(2)如图2,当点D 在BC 延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由.(3)如图3,当点D 在CB 延长线上时,若∠DAB=30°,BD=2,请直接写出AB 的长.47.如图,在Rt△ABC 中,∠ACB=90°,AC=BC,CD⊥AB 于点D,点E 是直线AC 上一动点,连接DE,过点D 作FD⊥ED,交直线BC 于点F.(1)如图1,当点E 在线段AC 上时,①求证:△CDE≌△BDF;②直接写出B F2,CF2,DF2 之间的数量关系:.(2)如图2,当点E 在线段AC 的延长线上时,判断(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)58.某数学兴趣小组开展了一次课外活动,过程如下:如图1,正方形ABCD 中,AB=6,将三角板放在正方形ABCD 上,使三角板的直角顶点与D 点重合,三角板的一边交AB 于点P,另一边交BC 的延长线于点Q.(1)求证:DP=DQ;(2)如图2,小明在图1 的基础上作∠PDQ 的平分线DE 交BC 于点E,连接PE,他发现PE 和QE 存在一定的数量关系,请猜测他的结论并予以证明.(3)如图3,固定三角板直角顶点在D 点不动,转动三角板,使三角板的一边交AB 的延长线于点P,另一边交BC 的延长线于点Q,仍作∠PDQ 的平分线DE 交BC 延长线于点E,连接PE,若AB:AP=3:4,请帮小明算出△DEP 的面积(直接写出答案即可).6 参考答案:。

手拉手模型(压轴题专项讲练)(人教版)(解析版)—2024-2025学年八年级数学上册(苏科版)

手拉手模型(压轴题专项讲练)(人教版)(解析版)—2024-2025学年八年级数学上册(苏科版)

手拉手模型(压轴题专项讲练)【典例1】(1)问题发现:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来,则形成一组全等的三角形,我们把具有这种规律的图形称为“手拉手”图形,如图1,△ABC和△ADE是顶角相等的等腰三角形,即AB=AC,AD=AE,且∠BAC=∠DAE,分别连接BD,CE.求证:BD=CE;(2)类比探究:如图2,△ABC和△ADE都是等腰三角形,即AB=AC,AD=AE,且∠BAC=∠DAE=90°,B,C,D在同一条直线上.请判断线段BD与CE存在怎样的数量关系及位置关系,并说明理由.(3)问题解决:如图3,若△ACB和△DCE均为等腰直角三角形,且CA=CB,CD=CE,∠ACB=∠DCE=90°,点A,D,E在同一条直线上,CM为△DCE中DE边上的高,连接BE,若AE=7,BE=2,请直接写出四边形ABEC的面积.本题是三角形综合题,主要考查了全等三角形的判定和性质、等腰三角形、等腰直角三角形的性质、三线合一等性质,熟练掌握三角形的有关性质是解题的关键.(1)根据三角形全等的判定和性质即可解答.(2)根据(1)问中,“手拉手”全等的证明,可得△BAD≌△CAE(SAS),利用全等的性质可得BD=CE,∠ACE=∠ABC,又因为△ABC是等腰直角三角形,可得∠ABC=∠ACB=∠ACE=45°,从而可知∠BCE=90°,即BD⊥CE.(3)由△DCE是等腰直角三角形,CM为△DCE中DE边上的高,可证得CM=12DE=12(AE―AD),根据(1)问中,“手拉手”全等的证明,可得△ACD≌△BCE,从而得AD=BE,即可求出CM的长,最后求出四边形ABEC的面积.(1)证明:∵∠BAC=∠DAE∴∠BAC―∠CAD=∠DAE―∠CAD即∠BAD=∠CAE在△ABD和△ACE中AB=AC∠BAD=∠CAE,AD=AE∴△ABD≌△ACE(SAS)∴BD=CE.(2)BD与CE的数量关系是BD=CE,位置关系是BD⊥CE.理由如下:∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD和△CAE中,AB=AC∠BAD=∠CAE,AD=AE∴△BAD≌△CAE(SAS),∴BD=CE,∠ACE=∠ABC,∵△ABC是等腰三角形且∠BAC,∴∠ABC=∠ACB=45°,∴∠ACE=∠ABC=45°,∴∠BCE=∠ACB+∠ACE=45°+45°=90°,∴BD⊥CE.(3)解:由(1)的方法得,△ACD≌△BCE,∴AD=BE,∠CAD=∠CBE,∵△CDE是等腰直角三角形,∴∠CDE=∠CED=45°,∵CD=CE,CM⊥DE,∴DM=ME,∵∠DCE=90°,∴DM =ME =CM ,∴ CM =12DE =12(AE ―AD)=12(AE ―BE)=12×(7―2)=2.5.∵∠ACB =90°,∴∠CAD +∠EAB +∠CBA =90°,∴∠CBE +∠EAB +∠CBA =90°,∴∠AEB =90°,即四边形ABEC 的面积=S △ACE +S △AEB =12AE·CM +12AE·BE =12×7×2.5+12×7×2=634.1.(23-24七年级下·贵州毕节·期末)在△BCD 中,∠BCD <120°,分别以BC 、CD 和BD 为边在△BCD 外部作等边三角形ABC 、等边三角形CDE 和等边三角形BDF ,连结AD 、BE 和CF 交千点P ,则以下结论中①AD =BE =CF ;②∠BEC =∠ADC ;③∠DPE =∠EPC =∠CPA =60°;④PB +PC +PD =BE .正确的有( )A .1个B .2个C .3个D .4个【思路点拨】证明△ABD≌△CBF (SAS),△ACD≌△BCE (SAS),可得∠BAD =∠BCF ,∠CAD =∠CBE ,进一步可判断①②,证明∠APC =60°,求出∠BPC =120°,进一步可判断③,在PA 上截取PG =PB ,连接BG ,证明∠BGA =∠BPC =120°,再证△BAG≌△BCP (AAS),可得PC =GA ,进而可得PA =PB +PC ,进一步可判断④.【解题过程】解:∵△ABC ,△BDF是等边三角形,∴BA=BC,BD=BF,∠ABC=∠DBF=60°,∴∠ABD=∠CBF,∴△ABD≌△CBF(SAS),∴∠BAD=∠BCF,AD=CF,同理可得△ACD≌△BCE(SAS),∴∠CAD=∠CBE,AD=BE,∠BEC=∠ADC,∴AD=BE=CF,故①②符合题意;∵∠BAD+∠CAD=60°,∴∠BAD+∠CBE=60°,∵∠ABC=60°,∴∠BAD+∠ABC+∠CBE=∠BAD+∠ABE=120°,∴∠BPA=60°=∠DPE,同理可得∠APC=60°,∴∠BPC=120°,∠EPC=60°,∴∠DPE=∠EPC=∠CPA=60°,故③符合题意;如图,在PA上截取PG=PB,连接BG,∴△BPG是等边三角形,∴∠BGP=60°,∴∠BGA=120°,∴∠BGA=∠BPC,又∵∠BAG=∠BCP,AB=CB,∴△BAG≌△BCP(AAS),∴PC=GA,∴PA =PG +GA =PB +PC ,∵AD =BE ,∴PB +PC +PD =PA +PD =AD =BE ;故④符合题意;故选D2.(2023·吉林长春·模拟预测)两个大小不同的等腰直角三角板按图1所示摆放,将两个三角板抽象成如图2所示的△ABC 和△AED ,其中∠BAC =∠EAD =90°,点B 、C 、E 依次在同一条直线上,连结CD .若BC =4,CE =2,则△DCE 的面积是 .【思路点拨】本题考查了全等三角形的判定与性质、等腰直角三角形的性质等知识,根据SAS 证明△ACD≌△ABE ,由全等三角形的性质得出∠ACD =∠B ,CD =BE ,则可得出答案.【解题过程】解:∵∠BAC =∠EAD =90°,∴∠BAC +∠CAE =∠EAD +∠CAE ,即∠BAE =∠CAD ,在△ABD 和△ACD 中,AB =AC ∠BAE =∠CAD AD =AE,∴△ACD≌△ABE (SAS),∴∠ACD =∠B ,CD =BE ,∵∠B =45°,∴∠ACD =45°,∴∠BCD =∠ACB +∠ACD =90°,∵BC =4,CE =2,∴BE =6,∴CD =6,∴S △DCE =12CE ⋅DC =12×2×6=6,故答案为:6.3.(24-25八年级上·吉林长春·阶段练习)已知:如图,△ABC 和△DEC 都是等边三角形,D 是BC 延长线上一点,AD 与BE 相交于点P ,AC 与BE 相交于点M ,AD 与CE 相交于点 ,连接MN ,PC ,则下列四个结论:①∠BMC =∠BMA ;②∠APB =60°;③AN =BM ;④PC 平分∠BPD .其中,正确的是 (只填写序号)【思路点拨】当M 是AC 的中点或者BM 平分∠ABC 时,∠BMC =∠BMA ,故①错误;根据等边三角形的性质得CA =CB,CD =CE ,∠ACB =60°,∠DCE =60°,则∠ACE =60°,可得△ACD≌△BCE (SAS),故∠CAD =∠CBE ,再判断△ACN≌△BCM (ASA),所以AN =BM ;可以判断③正确,根据三角形内角和定理可得∠CAD +∠CDA =60°,而∠CAD =∠CBE ,则∠CBE +∠CDA =60°,然后再利用三角形内角和定理即可得到∠BPD =120°,故∠APB =②正确;作CH ⊥BE 于H ,CQ ⊥AD 于Q ,由△ACD≌△BCE 得到∠CAD =∠CBE ,即可证明△AQC≌△BHC (AAS),故CQ =CH ,根据角平分线的判定定理即可得到PC 平分∠BPD ,进而可以判断④正确.【解题过程】证明:∵△ABC 是等边三角形,∴当M 是AC 的中点或者BM 平分∠ABC 时,∴∠BMC =∠BMA ,但题中M 的位置不确定,∴∠BMC 和∠BMA 不一定相等,故①错误;∵△ABC 和△DEC 都是等边三角形,∴CA =CB,CD =CE ,∠ACB =60°,∠DCE =60°,∴∠ACE =60°,∴∠ACD =∠BCE =120°,在△ADC 和△BCE 中,CA =CB ∠ACD =∠BCE CD =CE∴△ACD≌△BCE (SAS),∴∠CAD =∠CBE ,在△ACN 和△BCM 中,∠ACN =∠BCM CA =CB ∠CAN =∠CBM,∴△ACN≌△BCM (ASA),∴AN =BM ,故③正确;∵∠CAD +∠CDA =60°,而∠CAD =∠CBE ,∴∠CBE +∠CDA =60°,∴∠BPD =120°,∴∠APB =60°,故②正确;作CH ⊥BE 于H ,CQ ⊥AD 于Q∵△ACD≌△BCE ,∴AC =BC ,∠CAD =∠CBE又∵∠BHC =∠AQC =90°∴△AQC≌△BHC (AAS)∴CQ =CH ,又∵∠CHP =∠CQP =90°,∴CP平分∠BPD,故④正确.综上所述:正确的是②③④.故答案为:②③④.4.(23-24九年级上·河南周口·期中)如图,△ABC和△ECD都是等边三角形,直线AE,BD交于点F.(1)如图1,当A,C,D三点在同一直线上时,∠AFB的度数为______,线段AE与BD的数量关系为______.(2)如图2,当△ECD绕点C顺时针旋转α(0°≤α≤360°)时,(1)中的结论是否还成立?若不成立,请说明理由:若成立,请就图2给予证明.(3)若AC=4,CD=3,当△ECD绕点C顺时针旋转一周时,请直接写出BD长的取值范围.【思路点拨】本题考查了等边三角形性质的运用,全等三角形的判定及性质的运用,以及旋转的性质,解答时证明三角形全等是关键.(1)利用等边三角形的性质证明△ACE≌△BCD,结合三角形的外角就可以得出结论;(2)同(1)中方法证明△ACE≌△BCD,得出AE=BD,∠2=∠3,再根据三角形的内角和得出∠AFB=60°;(3)当B、C、D三点共线时得出BD的最大和最小值,即可得出结论.【解题过程】(1)解:∵△ABC是等边三角形,∴AC=BC,∠ACB=60°,∵△ECD是等边三角形,∴CE=CD,∠DCE=60°,∴∠ACB=∠DCE=60°∴∠ACB+∠BCE=∠DCE+∠BCE,即∠ACE =∠BCD ,在△ACE 和△BCD 中,AC =BC ∠ACE =∠BCD CE =CD∴△ACE≌△BCD ,∴AE =BD ,∠CAE =∠CBD ,∵∠AFB =∠CAE +∠BDC ,且∠ACB =60°∴∠AFB =∠CBD +∠BDC =∠ACB =60°(2)(1)中结论仍成立,∵△ABC 是等边三角形,∴AC =BC ,∠ACB =60°,∵△ECD 是等边三角形,∴CE =CD ,∠DCE =60°,∴∠ACB =∠DCE =60°∴∠ACB +∠1=∠DCE +∠1,即∠ACE =∠BCD ,在△ACE 和△BCD 中,AC =BC ∠ACE =∠BCD CE =CD∴△ACE≌△BCD ,∴AE =BD ,∠2=∠3,∵∠AFB +∠3=∠ACB +∠2,且∠ACB =60°,∴∠AFB =60°;(3)∵△ABC是等边三角形,∴AC=BC=4,当旋转α=60°时,B、C、D三点共线,此时BD=BC+CD=7,当旋转α=240°时,B、C、D三点共线,此时BD=BC―CD=1;∴1≤BD≤7.5.(23-24七年级下·四川成都·期中)数学模型可以用来解决一类问题,是数学应用基本途径.通过探究图形的变化规律,再结合其他数学知识的内在联系,最终可以获得宝贵的数学经验,并将其运用到更广阔的数学天地.(1)发现问题:如图1,在△ABC和△AEF中,AB=AC,AE=AF,∠BAC=∠EAF=30°,连接BE,CF,延长BE交CF于点D.则BE与CF的数量关系:__________,∠BDC=;(2)类比探究:如图2,在△ABC和△AEF中,AB=AC,AE=AF,∠BAC=∠EAF=120°,连接BE,CF,延长BE,FC交于点D.请猜想BE与CF的数量关系及∠BDC的度数,并说明理由;(3)拓展应用:在△ABC和△AEF中,AB=AC,AE=AF,∠BAC=∠EAF=90°,连接BE,CF,将△AEF 绕它们共同的顶点A旋转一定的角度后,若B,E,F三点刚好在同一直线上,求此时∠AFC的度数.【思路点拨】本题考查全等三角形的判定,等腰三角形以及等腰直角三角形的判定与性质,灵活运用相关知识成为解题的关键.(1)设AC交BD于点G,由∠BAC=∠EAF=30°可得∠BAE=∠CAF=30°+∠CAE,而AB=AC、AE=AF,即可根据“SAS”证明△ABE≌△ACF,所以BE=CF,∠ABE=∠ACF,则∠BDC=∠AGD―∠ACF=∠AGD―∠ABE=∠BAC=30°即可解答;(2)根据等腰三角形的性质,利用SAS证明△ABE≌△ACF可得BE=CF,∠AEB=∠AFC,然后再根据等腰三角形的性质即可解答;(3)根据等腰直角三角形的性质,利用SAS证明△ABE≌△ACF可得∠AFC=AEB,AE=AF,再说明∠AEB=135°即可.【解题过程】(1)解:如图1,设AC 交BD 于点G ,∵∠BAC =∠EAF =30°,∴∠BAE =∠CAF =30°+∠CAE ,在△ABE 和△ACF 中,AB =AC ∠BAE =∠CAF AE =AF,∴△ABE≌△ACF (SAS),∴∠ABE =∠ACF ,BE =CF ,∴∠BDC =∠AGD ―∠ACF =∠ACD ―∠ABE =∠BAC =30°.故答案为:BE =CF ,30.(2)解:BE =CF ,∠BDC =60°,理由如下:∵∠BAC =∠EAF =120°,∴∠BAC ―∠EAC =∠EAF ―∠EAC ,即∠BAE =∠CAF ,在△ABE 和△ACF 中,AB =AC ∠BAE =∠CAF AE =AF,∴△ABE≌△ACF (SAS),∴BE =CF ,∠AEB =∠AFC ,∵∠EAF =120°,AE =AF ,∴∠AEF =∠AFE =30°,∴∠BDC =∠BEF ―∠EFD =∠AEB +30°―(∠AFC ―30°)=60°.(3)解:如图3所示:∵△ABC和△AEF都是等腰三角形,∴∠CAB=∠EAF=90°,AB=AC,AE=AF,∴∠CAB―∠CAE=∠FAE―∠CAE,即:∠BAE=∠CAF,∴△BAE≌△CAF(SAS),∴∠AFC=AEB,AE=AF,∵∠EAF=90°,∴∠AEF=45°,∴∠AEB=180°―∠AEF=135°,∴∠AFC=∠AEB=135°.6.(2024·河南·一模)如图,(1)问题发现:如图①,△ABC和△EDC都是等边三角形,点B、D、E在同一条直线上,连接AE.①∠AEC的度数为______;②线段AE、BD之间的数量关系为______;(2)拓展探究:如图②,△ABC和△EDC都是等腰直角三角形,∠ACB=∠DCE=90°,点B、D、E在同一条直线上,CM为△EDC中DE边上的高,连接AE,试求∠AEB的度数及判断线段CM、AE、BE之间的数量关系,并说明理由;(3)解决问题:如图③,△ABC和△EDC都是等腰三角形,∠ACB=∠DCE=36°,点B、D,E在同一条直线上,请直接写出∠EAB+∠ECB的度数.【思路点拨】本题考查了全等三角形的判定与性质,等边三角形的性质,等腰三角形的性质,灵活运用这些性质是解题的关键.(1)①根据等边三角形的性质可得∠BDC =120°,证明△ECA≌△DCB (SAS),根据全等三角形的性质即可求解;②根据全等三角形的性质即可解答;(2)证明△ECA≌△DCB (SAS),根据等腰直角三角形的性质可得∠CDB =135°,进而得到∠CEA =∠CDB =135°,∠AEB =∠CEA ―∠CEB ,即可得到∠AEB 的度数;由△DCE 是等腰直角三角形,CM 为△EDC 中DE 边上的高,可得BE =AE +2CM ,即可得到线段CM 、AE 、BM 之间的数量关系;(3)证明△ECA≌△DCB (SAS),得到∠CEA =∠CDB =108°,推出∠EAC +∠ECA =72°,最后根据∠EAB +∠ECB =∠EAC +∠CAB +∠ECA +∠ACB ,即可求解.【解题过程】(1)解:①∵ △ABC 和△EDC 都是等边三角形,∴ CE =CD ,CA =CB ,∠ECD =∠ACB =60°,∴ ∠BDC =180°―∠EDC =120°,∴ ∠ECD ―∠ACD =∠ACB ―∠ACD ,即∠ECA =∠DCB ,在△ECA 和△DCB 中,CE =CD ∠ECA =∠DCB CA =CB, ∴ △ECA≌△DCB (SAS),∴ ∠AEC =∠BDC =120°,故答案为:120°;②∵ △ECA≌△DCB ,∴ AE =BD ,故答案为:AE =BD ;(2)解:∵ △ABC 和△EDC 都是等腰直角三角形,∠ACB =∠DCE =90°,EC =DC,AC =BC,∠ECD =∠ACB =90°,∠CDE =∠CED =45°,∴∠ECD ―∠ACD =∠ACB ―∠ACD ,∴∠ECA =∠DCB ,在△AEC 与△BDC 中,EC =DC ∠ECA =∠DCB AC =BC,∴△AEC≌△BDC(SAS),∴∠AEC =∠BDC,AE =BD,∵∠CDE=45°,点B、D、E在同一条直线上,∴∠BDC=135°,∴∠AEC=∠BDC=135°,∴∠AEB=∠AEC―∠CEB=135°―45°=90°,∵△EDC都是等腰直角三角形,CM⊥DE,∴CM=EM=MD,∴ED=2CM,∴BE=BD+DE=AE+2CM,∠AEB的度数为90°,线段CM、AE、BE之间的数量关系为:BE=AE+2CM;(3)解:根据(1)(2)中结论可知:△AEC≌△BDC,得∠AEC=∠BDC,∵△ABC和△EDC都是等腰三角形,∠ACB=∠DCE=36°,=72°,∴∠CDE=∠ABC=180°―36°2∴∠AEC=∠BDC=180°―72°=108°,∴∠AEC+∠ABC=108°+72°=180°,∴∠EAB+∠ECB=360°―180°=180°.7.(23-24八年级上·重庆万州·阶段练习)(1)问题情境如图1,△ABC和△ADE都是等边三角形,连接BD,CE,求证:△ABD≌△ACE.(2)迁移应用如图2,△ABC和△ADE都是等边三角形,A,B,E三点在同一条直线上,M是AD的中点,N是AC的中点,P在BE上,△MNP是等边三角形,求证:P是BE的中点.(3)拓展创新如图3,P是线段BE的中点,BE=9,在BE的下方作等边△PFH(P,F,H三点按逆时针顺序排列,△PFH的大小和位置可以变化),连接EF,BH.当EF+BH的值最小时,直接写出等边△PFH 边长的最小值.【思路点拨】(1)证出∠BAD=∠CAE,根据SAS证明△ABD≌△ACE;(2)在AE 上取点K ,使得AK =AM ,连接KM ,证明△AMN≌△KMP(SAS),由全等三角形的性质得出AN =KP ,证出EP =BP ,则可得出结论;(3)作∠EPQ =60°, 使PQ =PE ,连接QE,QB ,证明△EPF≌△QPH(SAS),由全等三角形的性质得出EF =QH ,则EF +BH =QH +BH ,当点H 在线段QB 上时,EF +BH 的值最小,由直角三角形的性质可得出答案.【解题过程】(1)证明:∵△ABC 和△ADE 都是等边三角形,∴∠BAC =∠DAE =60°,AB =AC , AD =AE ,∴∠BAC ―∠ACD =∠DAE ―∠ACD ,∴∠BAD =∠CAE ,在△BAD 和△CAE 中AB =AC ∠BAD =∠CAE AD =AE,∴△BAD≌△CAE(SAS);(2)证明: 在AE 上取点K ,使得AK =AM ,连接KM ,∵△ABC 和△ADE 都是等边三角形.∴∠DAE =60°,AD =AE ,AC =AB ,∴△AMK 是等边三角形,∴AM =MK =AK ,∠AMK =60°,∵△MPN 是等边三角形,∴MN =MP ,∠PMN =60°,∴∠PMN =∠KMA ,∴∠PMN ―∠AMP =∠KMA ―∠AMP ,即∠AMN =∠KMP ,在△AMN 和△KMP中AM =KM∠AMN =∠KMP MN =MP,∴△AMN≌△KMP(SAS),∴AN =KP ,∴AM =AK =AP +AN ,∵M 为AD 的中点, 点N 为AC 的中点,∴AE =AD =2AM ,AB =AC =2AN ,设AP =x ,AN =y ,则AK =x +y ,AB =2y ,∴AE =2AK =2x +2y ,BP =AB +AP =x +2y ,∴EP =AE ―AP =x +2y ,∴ EP =BP ,∴点P 为BE 的中点;(3)作∠EPQ =60°,使PQ =PE ,连接EQ,QB ,∵△PFH 是等边三角形,∴ PF =PH ,∠FPH =60°,∴∠EPF =∠QPH ,∴△EPF≌△QPH (SAS),∴EF =QH ,∴EF +BH =QH +BH ,当点H 在线段QB 上时,EF +BH 的值最小,此时PH ⊥BQ ,PH 的值最小,∵PQ =PB =PE ,∴∠PBQ =∠PQB =30°,在Rt △PBH 中,PH =12PB =14BE =94,即当EF +BH 的值最小时,△PFH 边长的最小值为 94.8.(23-24七年级下·陕西咸阳·期末)【问题提出】(1)如图1,在△ABC 和△AEF 中,AB =AC ,AE =AF ,∠BAC =∠EAF =30°,连接BE ,CF ,BE 交AC 于点O ,延长BE 交CF 于点D .①试说明:BE =CF ;②求∠BDC 的度数.【问题探究】(2)如图2,在△ABC 和△AEF 中,AB =AC ,AE =AF ,∠BAC =∠EAF =120°,连接BE ,CF ,延长BE ,FC 交于点D ,请猜想BE 与CF 的数量关系及∠BDC 的度数,并说明理由.【思路点拨】(1)①利用SAS 证明△ABE≌△ACF ,即可得出结论;②由全等三角形的性质以及三角形外角的性质可得出结论;(2)利用SAS 证明△ABE≌△ACF ,由全等三角形的性质即可得出BE =CF ;然后,根据等腰三角形的性质,三角形的内角和定理以及三角形外角的性质即可求出∠BDC 的度数.【解题过程】解:(1)①∵∠BAC =∠EAF =30°,∴∠BAC +∠CAE =∠EAF +∠CAE ,即∠BAE =∠CAF ,在△ABE 和△ACF 中,AB =AC ∠BAE =∠CAF AE =AF,∴△ABE≌△ACF (SAS),∴BE =CF ;②如图,设AC 与BD 交于点O ,∵△ABE≌△ACF ,∴∠ABE =∠ACF ,∵∠AOE =∠ABE +∠BAC ,∠AOE =∠ACF +∠BDC ,∴∠BDC =∠BAC =30°;(2)BE =CF ,∠BDC =60°,理由如下:∵∠BAC =∠EAF =120°,∴∠BAC ―∠EAC =∠EAF ―∠EAC ,即∠BAE =∠CAF ,在△ABE 和△ACF 中,AB =AC ∠BAE =∠CAF AE =AF,∴△ABE≌△ACF (SAS),∴BE =CF ,∠AEB =∠AFC ,∵∠EAF =120°,AE =AF ,∴∠AEF =∠AFE =12(180°―∠EAF )=12×(180°―120°)=30°,∴∠BDC =∠BEF ―∠EFD=(∠AEB +∠AEF )―(∠AFC ―∠AFE )=∠AEB ―∠AFC +∠AEF +∠AFE=∠AEF +∠AFE=30°+30°=60°.9.(23-24七年级下·安徽宿州·期末)已知,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边在AD的右侧作等腰直角△ADE,∠DAE=90°,AD=AE.(1)如果AB=AC,∠BAC=90°.①如图1,当点D在线段BC上时(与点B不重合),请直接写出线段CE与BD之间的数量关系:___________,位置关系:___________;(只写结论,不用证明)②如图2,当点D在线段BC的延长线上时,①中的结论是否仍然成立?若不成立,请说明理由;若成立,写出结论并加以论证;(2)如果AB≠AC,∠BAC<90°,点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CE⊥BD (点C,E重合除外)?请写出条件,并借助图3简述CE⊥BD成立的理由.【思路点拨】本题主要考查了等腰直角三角形的旋转.熟练掌握等腰直角三角形的判断和性质,旋转性质,全等三角形(1)①根据等腰直角三角形性质得到∠B=∠ACB=45°,推出∠BAD=∠CAE,得到△ABD≌△ACE(SAS),得到CE=BD,∠ACE=∠B=45°,得到∠BCE=90°,CE⊥BD;②根据等腰直角三角形性质得到∠B=∠ACB=45°,推出∠BAD=∠CAE,推出△ABD≌△ACE(SAS),得到CE=BD,∠ACE=∠B=45°,得到∠BCE=90°,即得CE⊥BD;(2)当∠ACB=45°时,CE⊥BD.过点A作AF⊥AC交CB的延长线于点F,得到△AFC是等腰直角三角形,根据∠DAE=90°,AD=AE,推出∠FAD=∠CAE,得到△FAD≌△CAE(SAS),得到∠ACE=∠F=45°,得到∠BCE=90°,即得CE⊥BD.【解题过程】(1)①当AB=AC,∠BAC=90°时,∠B=∠ACB=45°,∵∠DAE=90°,AD=AE,∴∠BAD+∠CAD=∠CAD+∠CAE=90°,∴∠BAD=∠CAE,∴△ABD≌△ACE(SAS),∴CE=BD,∠ACE=∠B=45°,∴∠BCE=∠ACB+∠ACE=90°,∴CE⊥BD;故答案为:CE=BD,CE⊥BD;②CE=BD,CE⊥BD仍然成立,理由:∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵∠DAE=90°,AD=AE,∴∠BAD―∠CAD=∠CAE―∠CAD=90°,∴∠BAD=∠CAE,∴△ABD≌△ACE(SAS),∴CE=BD,∠ACE=∠B=45°,∴∠BCE=∠ACB+∠ACE=90°,∴CE⊥BD;(2)当∠ACB=45°时,CE⊥BD,理由:如答图,过点A作AF⊥AC交CB F,则∠FAC=90°,∵∠ACB=45°,∴∠F=90°―∠ACB=45°,∴AC=AF,∵∠DAE=90°,AD=AE,∴∠FAD+∠DAC=∠CAE+∠DAC=90°,∴∠FAD=∠CAE,∴△FAD≌△CAE(SAS),∴∠ACE=∠F=45°,∴∠BCE=∠ACB+∠ACE=90°,∴CE⊥BD.10.(23-24七年级下·河南郑州·期中)【综合实践】如果两个等腰三角形的顶角相等,且顶角的顶点互相重合,则称此图形为“手拉手全等模型”.因为顶点相连的四条边,可以形象地看作两双手,所以通常称为“手拉手模型”.(1)【初步把握】如图1,△ABC与△ADE都是等腰三角形,AB=AC,AD=AE,且∠BAC=∠DAE,则有△ABD≌;线段BD和CE的数量关系是;(2)【深入研究】如图2,△ABC和△ADE是都是等腰三角形,即AB=AC,AD=AE,且∠BAC=∠DAE=90°,B,C,D BD与CE存在怎样的数量关系及位置关系,并说明理由;(3)【拓展延伸】如图3,直线l1⊥l2,垂足为点O,l2上有一点M在点O右侧且OM=4,点N是l1上一个动点,连接MN,在MN下方作等腰直角三角形NMP,MN=MP,∠NMP=90°,连接OP.请直接写出线段OP的最小值及此时ON的长度.【思路点拨】本题考查四边形综合应用,涉及全等三角形判定与性质,等腰直角三角形性质等,解题的关键是掌握全等三角形判定定理.(1)由∠BAC=∠DAE,可得∠BAD=∠CAE,根据SAS可得△ABD≌△ACE,则可得出结论;(2)由∠BAC=∠DAE=90°,得∠BAD=∠CAE,即可证△ABD≌△ACE(SAS),有BD=CE,∠ACE=∠ABC,而△ABC是等腰三角形且∠BAC=90°,知∠ABC=∠ACB=45°,故∠ACE=∠ABC=45°,即可得∠BCE=∠ACB+∠ACE=45°+45°=90°,BD⊥CE;(3)证明∠O′MO=45°,当OP有最小,即O′P′最小,即垂线段最短,当O′P′⊥y轴时,O′P′最小,则可得出答案.【解题过程】(1)∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△ABD和△ACE中,AB=AC∠BAD=∠CAE,AD=AE∴△ABD≌△ACE(SAS);故答案为:△ACE;BD=CE;(2)解:BD与CE的数量关系是BD=CE,位置关系是BD⊥CE ∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△ABD和△ACE中,AB=AC∠BAD=∠CAE,AD=AE∴△ABD≌△ACE(SAS),∴BD=CE,∠ACE=∠ABC,∵△ABC是等腰三角形且∠BAC=,∴∠ABC=∠ACB=45°,∴∠ACE=∠ABC=45°,∴∠BCE=∠ACB+∠ACE=45°+45°=90°,∴BD⊥CE;(3)∵△MNP是等腰直角三角形,∴∠MNP=∠NPM=45°,将△OPM绕M点顺时针旋转90°得△O′P′M(N与P′重合),连接OO′,∴△PMO≌△P′MO′,∴MO=MO′,OP=O′P′,∴∠O′MO=45°,当OP有最小,即O′P′最小,当O′P′⊥y轴时,由∠O′OP′=45°,∠O′P′O=90°,∴O′P′=OM=4,ON=OP′=4,∴ON=4,OP最小值为4.11.(23-24七年级下·浙江宁波·期末)【基础巩固】(1)如图1,在△ABC与△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,求证:△AEC≌△ADB;【尝试应用】(2)如图2,在△ABC与△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°,B、D、E 三点在一条直线上,AC与BE交于点F,若点F为AC中点,①求∠BEC的大小;②CE=2,求△ACE的面积;【拓展提高】(3)如图3,△ABC与△ADE中,AB=AC,DA=DE,∠BAC=∠ADE=90°,BE与CA 交于点F,DC=DF,△BCF的面积为32,求AF的长.【思路点拨】(1)由SAS证△AEC≌△ADB即可;(2)①同(1)得△AEC≌△ADB (SAS),得∠AEC =∠ADB =135°,即可得出结论;②过点A 作AG ⊥DE 于点G ,证△AGF≌△CEF (ASA),得AG =CE =2,GF =EF ,再由等腰直角三角形的性质得DG =EG =AG =2,则GF =EF =1,然后由三角形面积关系即可得出结论;(3)连接CE ,同(2)得△CDE≌△FDA (SAS),则CE =AF ,∠DCE =∠DFA =135°,得∠ACE =90°,再证△ACE≌△BAF (SAS),得CE =AF ,S △ACE =S △BAF ,然后证CE∥AB ,得S △ABE =S △ABC =12AC 2,进而由S △ABC +S △ACE ―S △ABE ―S △CEF =S △BCF ,得AC ⋅AF ―AF ⋅CF =64,则AF 2=64,即可得出结论.【解题过程】(1)证明:∵∠BAC =∠DAE ,∴∠BAC ―∠BAE =∠DAE ―∠BAE ,即∠CAE =∠BAD ,在△AEC 和△ADB 中,AC =AB ∠CAE =∠BAD AE =AD,∴△AEC≌△ADB (SAS);(2)解:①∵AD =AE ,∠DAE =90°,∴∠ADE =∠AED =45°,∴∠ADB =180°―∠ADE =180°45°=135°,同(1)得:△AEC≌△ADB (SAS),∴∠AEC =∠ADB =135°,∴∠BEC =∠AEC ―∠AED =135°―45°=90°;②如图2,过点A 作AG ⊥DE 于点G ,则∠FGA =90°,由①可知,∠FEC =90°,∴∠FGA =∠FEC,∵点F 为AC 中点,∴AF =CF ,又∵∠AFG =∠CFE ,∴△AGF≌△CEF (AAS),∴AG =CE =2,GF =EF ,∵AD =AE ,∠DAE =90°,∴DG =EG =AG =2,∴GF =EF =12EG =1,∴S △ACE =2S △CEF =2×12CE ⋅EF =2×1=2;(3)解:如图3,连接CE ,同(2)得:△CDE≌△FDA (SAS),∴CE =AF ,∠DCE =∠DFA =135°∴∠ACE =∠DCE ―∠ACB =135°―45°=90°,在△ACE 和△BAF 中,AC =AB ∠ACE =∠BAF =90°CE =AF,∴△ACE≌△BAF (SAS),∴S △ACE =S △BAF ,∵∠ACE =∠BAC ,∴CE∥AB ,∴S △ABE =S △ABC =12AC ⋅AB =12AC 2,∵S △ABC +S △ACE ―S △ABE ―S △CEF =S △BCF ,∴ 1AC 2+1AC ⋅CE ―1AC 2―1CE ⋅CF =32,∴AC⋅AF―AF⋅CF=64,∴AF(AC―CF)=64,∴AF2=64,∴AF=8,负值舍去,即AF的长为8.12.(2023·甘肃张掖·模拟预测)在学习全等三角形的知识时,数学兴趣小组发现这样一个模型:它是由两个共顶点且顶角相等的等腰三角形构成.在相对位置变化时,始终存在一对全等三角形.通过查询资料,他们得知这种模型称为“手拉手模型”.兴趣小组进行了如下操作:(1)观察猜想:如图①,已知△ABC,△ADE均为等边三角形,点D在边BC上,且不与点B、C重合,连接CE,易证△ABD≌△ACE,进而判断出AB与CE的位置关系是___________(2)类比探究:如图②,已知△ABC、△ADE均为等边三角形,连接CE、BD,若∠DEC=60°,试说明点B,D,E在同一直线上;(3)解决问题:如图③,已知点E△ABC的外部,并且与点B位于线段AC的异侧,连接AE、BE、CE.若∠BEC=60°,AE=3,CE=2,请求出BE的长.【思路点拨】本题考查了等边三角形的判定与性质,全等三角形的判定与性质等知识,解题的关键是:(1)利用SAS证明△BAD≌△CAE,可求出∠BAC=∠ACE=60°,利用平行线的判定即可得出结论;(2)利用SAS证明△BAD≌△CAE,可得出∠ADB=∠AEC=120°,进而得出∠ADB+∠ADE=180°,即可得证;(3)在线段BE上取一点H,使得BH=CE,设AC交BE于点O,先利用外角的性质证明∠ABH=∠ACE,再利用SAS证明△ABH≌△ACE,得出∠BAH=∠CAE,AH=AE,则可证明△AEH是等边三角形,得出AE=EH,即可求解.【解题过程】(1)解:AB∥CE,理由如下:∵△ABC 、△ADE 都是等边三角形,∴AB =AC ,AD =AE ,∠BAC =∠DAE =∠B =60°,∴∠BAC ―∠DAC =∠DAE ―∠DAC ,即∠BAD =∠CAE ,在△BAD 和△CAE 中,AB =AC ∠BAD =∠CAE AD =AE,∴△BAD≌△CAE (SAS),∴∠B =∠ACE =60°,∴∠BAC =∠ACE =60°,∴AB∥CE ;故答案为:AB∥CE ;(2)证明:∵△ABC 、△ADE 都是等边三角形,∴AB =AC ,AD =AE ,∠BAC =∠DAE =∠ADE =60°,∴∠BAC ―∠DAC =∠DAE ―∠DAC ,即∠BAD =∠CAE ,∵∠AED =60°,∠DEC =60°,∴∠AEC =120°,在△BAD 和△CAE 中,AB =AC ∠BAD =∠CAE AD =AE,∴△BAD≌△CAE (SAS),∴∠ADB =∠AEC =120°,∴∠ADB +∠ADE =180°,∴点B ,D ,E 在同一直线上;(3)解:如图③,在线段BE 上取一点H ,使得BH =CE ,设AC 交BE 于点O ,∵△ABC是等边三角形,∴AB=BC,∠BAC=60°,∵∠BEC=60°,∴∠BAO=∠OEC=60°,∵∠AOB=∠EOC,∴∠ABH=∠ACE,在△ABH和△ACE中,AB=AC∠ABH=∠ACE,BH=CE∴△ABH≌△ACE(SAS),∴∠BAH=∠CAE,AH=AE,∴∠HAE=∠BAC=60°,∴△AEH是等边三角形,∴AE=EH,∴BE=BH+EH=EC+AE,即BE=AE+EC,∵AE=3,CE=2,∴BE=3+2=5.13.(23-24八年级上·河北沧州·期末)在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),把线路AD绕着点A逆时针旋转至AD=AE),使得∠DAE=∠BAC,连接DB、CE.(1)如图1,点D在线段BC上,如果∠BAC=90°,则∠BCE=__________度.Array(2)如图2,当点D在线段BC上,如果∠BAC=60°,则∠BCE=__________度.(3)如图3,设∠BAC =α,∠BCE =β,当点D 在线段BC 上移动时,α,β的数量关系是什么?请说明理由.(4)设∠BAC =α,∠BCE =β,当点D 在直线BC 上移动时,请直接写出α,β的数量关系,不用证明.【思路点拨】(1)由“SAS ”可证△BAD≌△CAE ,得∠ABC =∠ACE =45°,可求∠BCE 的度数;(2)由“SAS ”可证△BAD≌△CAE ,得∠ABC =∠ACE =60°,可求∠BCE 的度数;(3)由“SAS ”可证△BAD≌△CAE 得出∠ABD =∠ACE ,再用三角形的内角和即可得出结论;(4)由“SAS ”可证△BAD≌△CAE 得出∠ABD =∠ACE ,再用三角形的内角和即可得出结论.【解题过程】(1)解:∵∠BAC =90°,∴∠DAE =∠BAC =90°,∵AB =AC ,AD =AE ,∴∠B =∠ACB =45°,∠ADE =∠AED =45°,∵∠DAE =∠BAC ,∴∠BAD =∠CAE ,在△BAD 和△CAE 中,AB =AC ∠BAD =∠CAE AD =AE,∴△BAD≌△CAE (SAS),∴∠ACE =∠B =45°,∴∠BCE =∠ACB +∠ACE =90°,故答案为:90;(2)∵∠BAC =60°,∴∠DAE =∠BAC =60°,∵AB =AC ,AD =AE,∴∠B=∠ACB=60°,∠ADE=∠AED=60°,∵∠DAE=∠BAC,∴∠BAD=∠CAE,在△BAD和△CAE中,AB=AC∠BAD=∠CAE,AD=AE∴△BAD≌△CAE(SAS),∴∠ACE=∠B=60°,∴∠BCE=∠ACB+∠ACE=120°,故答案为:120;(3)α+β=180°,理由如下:∵AB=AC,AD=AE,∠DAE=∠BAC,∴∠BAD=∠CAE,在△BAD和△CAE中,AB=AC∠BAD=∠CAE,AD=AE∴△BAD≌△CAE(SAS),∴∠ACE=∠B,∴∠ACE+∠ACB=∠B+∠ACB,∵∠BCE=∠ACB+∠ACE=β,∴∠B+∠ACB=β,∵∠BAC=α,∠BAC+∠B+∠ACB=180°,∴α+β=180°;(4)如图4,当点D在BC的延长线上时,α+β=180°,证明方法同(3);如图5,当点D 在CB 的延长线上时,α=β,理由如下:∵∠DAE =∠BAC ,∴∠DAB +∠BAE =∠EAC +∠BAE ,∴∠DAB =∠EAC ,在△BAD 和△CAE 中,AB =AC ∠BAD =∠CAE AD =AE,∴△BAD≌△CAE (SAS),∴∠ABD =∠ACE ,∵∠ABD =∠BAC +∠ACB ,∠ACE =∠BCE +∠ACB ,∴∠BAC =∠BCE ,∵∠BAC =α,∠BCE =β,∴α=β.综上,α+β=180°或α=β.14.(24-25九年级上·广东深圳·开学考试)【初步感知】(1)如图1,已知△ABC 为等边三角形,点D 为边BC 上一动点(点D 不与点B ,点C 重合).以AD 为边向右侧作等边△ADE ,连接CE .求证:△ABD≌△ACE;【类比探究】(2)如图2,若点D 在边BC 的延长线上,随着动点D 的运动位置不同,线段EC ,AC ,CD 之间的数量关系为__________,请证明你的结论.【拓展应用】(3)如图3,在等边△ABC 中,AB =5,点P 是边AC 上一定点且AP =2,若点D 为射线BC 上动点,以DP 为边向右侧作等边△DPE ,连接CE ,BE .请问:PE +BE 是否有最小值?若有,请求出其最小值;若没有,请说明理由.【思路点拨】本题考查三角形综合,全等三角形的判定,等边三角形的判定与性质,掌握相关知识是解题的关键.(1)由△ABC 和△ADE 是等边三角形,推出AB =AC ,AD =AE ,∠BAC =∠DAE =60°,又因为∠BAC =∠DAE ,则∠BAC ―∠DAC =∠DAE ―∠DAC ,即∠BAD =∠CAE ,利用SAS 证明△ABD≌△ACE 即可;(2)证明△ABD≌△ACE (SAS),得出CE =BD ,结合AC =BC ,则CE =BD =BC +CD =AC +CD ;(3)在射线BC 上截取PC =DM ,连接EM ,易证△EPC≌△EDM ,则EC =EM ,∠CEM =∠PED =60°,得出△CEM 是等边三角形,则∠ECM =60°,即点E 在∠ACD 角平分线上运动,在射线CD 上截取CP ′=CP ,连接EP ′,证明△CEP≌△CEP ′(SAS),得出PE =P ′E ,推出BE +PE =BE +P ′E ,由三角形三边关系可得,BE +P ′E ≥BP ′,即当点E 与点C 重合时,BE +P ′E =BP ′时,BE +PE 有最小值BP ′.【解题过程】(1)证明:∵ △ABC 和△ADE 是等边三角形,∴ AB =AC ,AD =AE ,∠BAC =∠DAE =60°.∵ ∠BAC =∠DAE ,∴ ∠BAC ―∠DAC =∠DAE ―∠DAC ,即∠BAD =∠CAE .在△ABD 和△ACE 中,AB =AC ∠BAD =∠CAE AD =AE,∴△ABD≌△ACE(SAS).(2)解:EC=AC+CD,∵△ABC和△ADE是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°.∵∠BAC=∠DAE,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE.在△ABD和△ACE中,AB=AC∠BAD=∠CAE,AD=AE∴△ABD≌△ACE(SAS).∴CE=BD,∵AC=BC,∴CE=BD=BC+CD=AC+CD.(3)解:有最小值,在射线BC上截取PC=DM,连接EM,,∵△ABC和△DPE是等边三角形,∴PE=ED,∠DPE=∠ACB=60°,∴∠ACD=180°―∠ACB=120°,∴∠ACD+∠DEP=180°,∵∠PCE+∠CEP+∠EPC=180°,∠ECD+∠CDE+∠CED=180°,∴∠ECD+∠CDE+∠CED+∠PCE+∠CEP+∠EPC=360°,∵∠PCE+∠ECD+∠CEP+∠CED―∠ACD+∠DEP=180°,∴∠EPC+∠CDE=180°,∴∠EPC=∠EDM,在△EPC和△EDM 中,PE=ED∠EPC=∠EDM,PC=DM∴△EPC≌△EDM(SAS),∴EC=EM,∠PEC=∠DEM,∵∠PEC+∠CED=∠DEP=60°,∴∠CEM=∠DEM+∠CED=60°,∴△CEM是等边三角形,∴∠ECM=60°,∴∠ECD=60°,∠ACE=180°―∠ECD―∠ACB=60°,即点E在∠ACD角平分线上运动,在射线CD上截取CP′=CP,连接EP′,在△CEP和△CEP′中,PC=P′C,∠PCE=∠P′CECE=CE∴△CEP≌△CEP′(SAS),∴PE=P′E,∴BE+PE=BE+P′E,由三角形三边关系可得,BE+P′E BP′,即当点E与点C重合时,BE+P′E=BP′时,BE+PE有最小值BP′,∵AP=2,AC=BC=AB=5,∴PC=AC―AP=3,∴BE+PE=BE+P′E=BP′=BE+CP′=BC+CP=5+3=8∴BE+PE的最小值为8.15.(23-24七年级下·陕西西安·期末)问题发现:学习三角形全等的知识时,小明发现重合两个等腰直角三角形的顶点会产生一对新的全等三角形.如图1,Rt△ABC中,∠BAC=90°,AB=AC,点D在边BC上,连接AD,以AD为边作△ADE,使∠DAE=90°,AD=AE,请连接图中标有字母的点,补全图形,直接写出一对全等三角形和∠BCE的度数.问题探究:小明想,如果将上图中的等腰直角三角形换成等边三角形,那么这组全等三角形是否还存在?如图2,△ABC和△ADE是等边三角形,点B,D,E在同一直线.(1)证明:△ABD≌△ACE .(2)探索线段BE ,AE ,CE 三者间的数量关系,写出结论并说明理由.问题拓展:经过上面的探究,小明联想到几天前一道不会的题,请你帮小明再想一想,是否有新的发现.如图3,边长为a 的等边△ABC 中,D 是AC 中点,BD =b ,E 是线段BD 上一动点,连接AE ,在AE 右侧作等边△AEF ,连接FD ,求△AFD 周长的最小值(用含a ,b 的代数式表示),并直接写出取最小值时∠AFD 的度数.【思路点拨】问题发现:由∠BAC =90°,∠DAE =90°,得到∠BAD =∠CAE ,可证明△ABD≌△ACE ,推出∠ABD =∠ACE ,由Rt △ABC 中,∠BAC =90°,AB =AC ,可得∠ABC =∠ACB =45°,得到∠ACE =45°,即可求解;问题探究:(1)由△ABC 和△ADE 是等边三角形,得到∠BAC =∠DAE =60°,AB =BC =AC ,AD =AE =DE ,推出∠BAD =∠CAE ,即可证明;(2)由△ABD≌△ACE 可得BD =CE ,推出BE =DE +BD =AE +CE ;问题拓展:证明△ABE≌△ACF ,得到∠ACF =∠ABE ,由于∠ABE 是定值,所以∠ACF 为定值,P 在一条固定的线段上运动,延长CF 至点P ,使得BD =CP ,推出点F 在线段CP 上运动,以直线CP 为对称轴,作点A 的对称点A ′,得到AC =A ′C ,AF =A ′F ,根据三角形的三边关系可得AF +DF =A ′F +FD ≥A ′D ,令A ′D 与CP 交于点F ′,则有AF ′+F ′D =A ′D ,根据全等三角形的性质,等边三角形的判定与性质推出DA ′=BD ,得到C △AFD =AF +DF +AD ≤AF ′+DF ′+AD =DA ′+AD ,可求出△AFD 周长的最小值;延长AF ′交A ′C 于点D ′,由∠AF ′D =180°―∠ADF ′―∠F ′AD 可求出此时∠AFD 的度数.【解题过程】解:问题发现:∵ ∠BAC =90°,∠DAE =90°,∴ ∠BAC ―∠DAC =∠DAE ―∠DAC ,即∠BAD =∠CAE ,在△BAD 和△CAE 中,AB =AC ∠BAD =∠CAE AD =AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵Rt△ABC中,∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∴∠ACE=45°,∴∠BCE=∠ACB+∠ACE=45°+45°=90°;问题探究:(1)∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,AB=BC=AC,AD=AE=DE,∴∠BAC―∠DAC=∠DAE―∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,AB=AC∠BAD=∠CAE,AD=AE∴△ABD≌△ACE(SAS);(2)BE=AE+CE,理由如下:∵△ABD≌△ACE,∴BD=CE,∵AE=DE,∴BE=DE+BD=AE+CE;问题拓展:连接CF,∵△ABC和△AEF是等边三角形,∴∠BAC=∠EAF=60°,AB=BC=AC,AE=AF=EF,∴∠BAC―∠EAD=∠EAF―∠EAD,即∠BAE=∠CAF,在△BAE和△CAF中,AB=AC∠BAE=∠CAF,AF=AE∴△ABE≌△ACF(SAS)∴∠ACF=∠ABE,由于∠ABE是定值,所以∠ACF为定值,P在一条固定的线段上运动,如图3,延长CF至点P,使得BD=CP,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理(手拉手模型)专题
知识点睛
旋转结构(手拉手模型):等线段共端点,考虑旋转,借助全等整合条件.常见手拉手模型举例
如图,△ABC,△ADE均为等边三角形,则出现了AB=AC,AD=AE等线段共端点的结构,所以连接BD,CE,可以证明△ABD≌△ACE,即把
△ABD绕点A逆时针旋转60°得到△ACE.
精讲精练
1.如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,△ACB
的顶点A在△ECD的斜边DE上.若AE=8,AD=15,则AB=_________,AC=_________.
2.如图,在△ABC中,∠BAC=90°,AB=AC,点D在BC边上,连接AD,过
点A作AE⊥AD,并且始终保持AE=AD,AF平分∠DAE交BC于F,连接BE.若DF=10,BE=6,则AB的长为_________.
3.如图,已知CA=CB,CF=CE,∠ACB=∠FCE=90°,且A,F,E三点共线,
AE与CB交于点D.
(1)求证:AF2+AE2=AB2;
(2)若AC=17,BE=3,则CE=_________.
4.如图,E是正方形ABCD对角线CA的延长线上任意一点,以线段AE为边
作一个正方形AEFG,线段GB与线段ED,AD分别交于点H,M.
(1)求证:ED=GB;
(2)判断ED与GB的位置关系,并说明理由;
(3)若AB=2,AE=2,则GB=___________.
5.(1)如图1,O是等边△ABC内一点,连接OA,OB,OC,且OA=3,OB=4,
OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.
①旋转角是__________度;
②线段OD的长为__________;
③求∠BDC的度数.
(2)如图2所示,O是等腰直角△ABC(∠ABC=90°)内一点,连接OA,OB,OC,∠AOB=135°,OA=1,OB=2,求OC的长.
小明同学借用了图1的方法,将△BAO绕点B顺时针旋转后得到△BCD,请你继续用小明的思路解答,或是选择自己的方法求解.
6.如图,△ABC是等腰直角三角形,∠BAC=90°,点D为直线BC上的动点(不
与点B,C重合),连接AD,将线段AD绕点A逆时针旋转90°,得到线段AE,连接DE.
(1)如图1,当点D在线段BC上时,请直接写出线段DB,DC,DE之间的数量关系:________________.
(2)如图2,当点D在BC延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由.
(3)如图3,当点D在CB延长线上时,若∠DAB=30°,BD=2,请直接写出AB的长.
7.如图,在Rt△ABC中,∠ACB=90°,AC=BC,CD⊥AB于点D,点E是直线
AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.
(1)如图1,当点E在线段AC上时,
①求证:△CDE≌△BDF;
②直接写出BF2,CF2,DF2之间的数量关系:___________.
(2)如图2,当点E在线段AC的延长线上时,判断(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.
(3)若动点E满足
1
2
EA
AC ,直接写出
DF
DC的值:___________.
8.某数学兴趣小组开展了一次课外活动,过程如下:如图1,正方形ABCD中,
AB=6,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合,三角板的一边交AB于点P,另一边交BC的延长线于点Q.
(1)求证:DP=DQ;
(2)如图2,小明在图1的基础上作∠PDQ的平分线DE交BC于点E,连接PE,他发现PE和QE存在一定的数量关系,请猜测他的结论并予以证明.(3)如图3,固定三角板直角顶点在D点不动,转动三角板,使三角板的一边交AB的延长线于点P,另一边交BC的延长线于点Q,仍作∠PDQ的平分线DE交BC延长线于点E,连接PE,若AB:AP=3:4,请帮小明算出△DEP的面积(直接写出答案即可).。

相关文档
最新文档