静力学分析中的几何法或解析法

静力学分析中的几何法或解析法
静力学分析中的几何法或解析法

静力学分析中的几何法或解析法

作者:王晓鹍{摘要}:静力学研究的内容主要是研究作用于物体上力系的平衡。

通过静力学公理具体研究以下三个问题①物体的受力分析②力系的等效替换③力系的平衡条件。根据几何法的三步骤:确定受力体,画出脱离体和已知受力,解除约束体,画出受力方向的步骤。从而根据几何作图解决问题。至于解析法可以根据平衡力系中,合力必为零以及力多边形自行闭合的特点分析问题。

{关键词}

静力学二力平衡公理质点

{英文摘要}

{ the }: Statics study is the main content of research on object on the equilibrium of force system. The axioms of statics study the following three problems of objects in the stress analysis in power system equivalent substitution of the force equilibrium condition. According to the geometric method in three steps: determining force body, draw out of body and the known force, lift the restriction, draw the step stress direction.According to the geometry problem solving. As for the analytical method based on balanced force, force will be zero and the force polygon self closing characteristic analysis.

{ the }

Statics two force balance axiom particle

静力学是力学的一个分支,它主要研究物体在力的作用下处于平衡的规律,以及如何建立各种力系的平衡条件。平衡是物体机械运动的特殊形式,严格地说,物体相对于惯性参照系处于静止或作匀速直线运动的状态,即加速度为零的状态都称为平衡。对于一般工程问题,平衡状态是以地球为参照系确定的。静力学还

静力学实验

静力学一词是P·伐里农1725年引入的。按照研究方法,静力学分为分析静力学和几何静力学。分析静力学研究任意质点系的平衡问题,给出质点系平衡的充分必要条件(见虚位移原理)。几何静力学主要研究刚体的平衡规律,得出刚体平衡的充分必要条件,又称刚体静力学。几何静力学从静力学公理(包括二力平衡公理,增减平衡力系公理,力的平行四边形法则,作用和反作用定律,刚化公理)出发,通过推理得出平衡力系应满足的条件,即平衡条件;用数学方程表示,就构成平衡方程。静力学中关于力系简化和物体受力分析的结论,也可应用于动力学。借助达朗贝尔原理,可将动力学问题化为静力学问题的形式。静力学是材料力学和其他各种工程力学的基础,在土建工程和机械设计中有广泛的应用。

静力学是力学的一个分支,它主要研究物体在力的作用下处于平衡的规律,以及如何建立各种力系的平衡条件。

平衡是物体机械运动的特殊形式,严格地说,物体相对于惯性参照系处于静止或作匀速直线运动的状态,即加速度为零的状态都称为平衡。对于一般工程问题,平衡状态是以地球为参照系确定的。静力学还研究力系的简化和物体受力分析的基本方法。

发展简史

静力学一词是法国数学、力学家P.伐里农于1725年引入的。

静力学实验

从现存的古代建筑,可以推测当时的建筑者已使用了某些由经验得来的力学知识,并且为了举高和搬运重物,已经能运用一些简单机械(例如杠杆、滑轮和斜面等)。

静力学是从公元前三世纪开始发展,到公元16世纪伽利略奠定动力学基础为止。这期间经历了西欧奴隶社会后期,封建时期和文艺复兴初期。因农业、建筑业的要求,以及同贸易发展有关的精密衡量的需要,推动了力学的发展。人们在使用简单的工具和机械的基础上,逐渐总结出力学的概念和公理。例如,从滑轮和杠杆得出力矩的概念;从斜面得出力的平行四边形法则等。

阿基米德是使静力学成为一门真正科学的奠基者。在他的关于平面图形的平衡和重心的著作中,创立了杠杆理论,并且奠定了静力学的主要原理。阿基米德得出的杠杆平衡条件是:若杠杆两臂的长度同其上的物体的重量成反比,则此二物体必处于平衡状态。阿基米德是第一个使用严密推理来求出平行四边形、三角形和梯形物体的重心位置的人,他还应用近似法,求出了抛物线段的重心。

著名的意大利艺术家、物理学家和工程师达·芬奇是文艺复兴时期首先跳出中世纪烦琐科学人们中的一个,他认为实验和运用数学解决力学问题有巨大意义。他应用力矩法解释了滑轮的工作原理;应用虚位移原理的概念来分析起重机构中的滑轮和杠杆系统;在他的一份草稿中,他还分析了铅垂力奇力的分解;研究了物体的斜面运动和滑动摩擦阻力,首先得出了滑动摩擦阻力同物体的摩擦接触面的大小无关的结论。

对物体在斜面上的力学问题的研究,最有功绩的是斯蒂文,他得出并论证了力的平行四边形法则。静力学一直到伐里农提出了著名的伐里农定理后才完备起来。他和潘索多边形原理是图解静力学的基础。

图解静力学(Graphic statics),静力学中用作图方式求解问题的一种方法。所得结果的精确度虽不如数解法,但能迅速得出一目了然的答案,故在一般工程结构的设计中也常采用。用此法进行设计,便于随时调整原始数据和迅速找出计算过程中的错误,并可用以比较几种设计方案的长处和短处。

分析静力学是意大利数学家、力学家J.L.拉格朗日提出来的,他在大型著作《分析力学》中,根据虚位移原理,用严格的分析方法叙述了整个力学理论。虚位移原理早在1717年已由伯努利指出,而应用这个原理解决力学问题的方法的进一步发展和对它的数学研究却是拉格朗日的功绩。

我国古代科学家对静力学有着重大的贡献.春秋战国时期伟大的哲学家墨翟(公元前5世纪至4世纪)在他的代表作《墨经》中,对杠杆、轮轴和斜面作了分析,并明确指出“衡……长重者下,短轻者上”,提出了杠杆的平衡原理。

主要内容

静力学的基本物理量有两个:力、力偶。

静力学天平

力的概念是静力学的基本概念之一。经验证明,力对已知物体的作用效果决定于:力的大小(即力的强度);力的方向;力的作用点。通常称它们为力的三要素。力的三要素可以用一个有向的线段即矢量表示。

凡大小相等方向相反且作用线不在一直线上的两个力称为力偶,它对任用平面内任一点之矩与矩心位置无关,其大小为力乘以二力作用线间的距离,即力臂,方向由右手螺旋定则确定并垂直于二力所构成的平面。

力作用于物体的效应分为外效应和内效应。外效应是指力使整个物体对外界参照系的运动变化;内效应是指力使物体内各部分相互之间的变化。对刚体则不必考虑内效应。静力学只研究最简单的运动状态即平衡。如果两个力系分别作用于刚体时所产生的外效应相同,则称这两个力系是等效力系。若一力同另一力系等效,则这个力称为这一力系的合力。

静力学的全部内容是以几条公理为基础推理出来的。这些公理是人类在长期的生产实践中积累起来的关于力的知识的总结,它反映了作用在刚体上的力的最简单最基本的属性,这些公理的正确性是可以通过实验来验证的,但不能用更基本的原理来证明。

学科分类

静力学,按研究对象的不同,可分为质点静力学、刚体静力学、流体静力学等;按研究的方法可分为几何静力学(或初等静力学)和分析静力学。

几何静力学可以用解析法,即通过平衡条件式用代数的方法求解未知约束反作用力;也可以用图解法,即以力的多边形原理和伐里农——潘索提出的索多边形原理为基础,用几何作图的方法来研究静力学问题。分析静力学是拉格朗日提出来的,它以虚位移原理为基础,以分析的方法为主要研究手段。他建立了任意力学系统平衡的一般准则,因此,分析静力学的方法是一种更为普遍的方法。

静力学在工程技术中有着广泛的应用。例如对房屋、桥梁的受力分析,有效载荷的分析计算等。

参考文献

《静力学》(第2版)

静力学

作者:谢传锋

出版社:高等教育出版社

内容简介:本书是普通高等教育“十五”国家级规划教材,是在其第1版《静力学》、《动力学(I)》、《动力学(II)》的基础上修订而成。原第1版与单辉祖编著的《材料力学(I)》、《材料力学(II)》是教育部“高等教育面向21世纪教学内容和课程体系改革计划”的研究成果,是面向21

世纪课程教材和教育部工科力学“九五”规划教材,其中,《静力学》和《材料力学(I)》、《材料力学(II)》也是普通高等教育“九五”国家级重点教材。本书保持了原书的理论体系和特点,将原书中若干讲述过于简略的内容作了适当补充,增加和调整了例题和习题,并增加了思考题。使其更便于自学。全书分几何静力学和分析静力学两部分,包括质点的平衡、刚体的平衡、刚体系与构件的平衡、质点系的平衡等四章。本书与《动力学》(第2版)为一套教材,体现了模块式设课和教材特点,便于教学安排;克服了传统理论力学教材体系中的重复、繁琐的缺点;在一些内容中通过实例,应用计算机仿真与结果分析,介绍了计算技术在力学中的应用;充分利用前修课的基础,并注意与后续课的衔接,减少不必要的重复。本书可作为高等学校工科本科的专业的理论力学课程的教材,也可供高职高专、成人高校师生及有关工程技术人员参考。

相关学科

动力学、流体力学、分析力学、运动学、固体力学、材料力学、复合材料力学、流变学、结构力学、弹性力学、塑性力学、爆炸力学、磁流体

静力学五大公理

致谢

静力学测试题

静力学测试题 1、如图1所示,水平梁AB 用斜杆CD 支撑,A 、C 、D 三处均为光滑铰链连接。均质梁重1P 其上放置一重为2P 的电动机。如不计杆CD 的自重,试分别画出杆CD 和梁AB (包括电动机)的受力图。 图1 图2 2、如图2所示的三铰拱桥,由左、右两拱铰接而成。设各拱自重不计,在拱AC 上作用有载荷P 。试分别画出拱AC 和CB 的受力图。 3、画出下列各图中物体AB 的受力图。物体自重不计,所有接触处均为光滑接触。 图3 4、悬臂梁如图4所示,梁上作用有均布载荷q ,在B 端作用有集中力F =ql 和力偶为M =ql 2,梁长度为2l , q 和l 已知(力的单位为N ,长度单位为m )。求固定端的约束反力。 图4 图5 5、组合梁由AC 和CE 用铰链连接,载荷及支承情况如图5所示,已知:l =8 m ,F =5 kN,均布载荷集度q =2.5 kN/m ,力偶的矩M =5 kN·m 。求支座A 、B 、E 及中间铰C 的反力。 6、铆接薄钢板在孔心A 、B 和C 处受三力作用如图6,已知P 1=100N 沿铅垂方向,P 2=50N 沿AB 方向,P 3=50N 沿水平方向;求该力系的合成结果。 图6

7、图7所示简支梁受集中荷载P=20kN ,求图示两种情况下支座A 、B 的约束反力。 (a ) (b ) 图7 8、求图8所示平面力偶系的合成结果,其中:1 23200N, 200N, 480N F F F ===。图中长度单位为m 。 图8 图9 9、如图9所示平面桁架,各杆的长度均为1m ,载荷P 1 =100kN ,P 2 = 70kN 。求杆件1、2 、3的内力。 10、试求图10所示振动沉桩器中的偏心块的重心。已知:R100mm,r=l7mm,。b=13mm 。 图10 图11 11、已知N 1501 =F ,N 2002=F ,N 3003=F ,N 200'==F F 。如图11所示,求力系向点O 的简化结果,并求 力系合力的大小及其与原点O 的距离d 。 12、如图12,已知:F1 =40N, F2 = 80N, F3 = 40N, F4 = 110N ,单位尺寸:mm, M=2000N ?mm 。求:该平面任意力系向O 点的简化结果。 图12 图13 13、已知T 字形钢截面尺寸如图13所示,求截面的形心?

解析法证明平面几何经典问题--举例

五、用解析法证明平面几何问题----极度精彩!充分展现数学之美感!何妨一试? 例1、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引两条直线分别交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q .求证:AP =AQ .(初二) (例1图) (例2图) 例2、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、 BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 【部分题目解答】 例1、(难度相当于高考压轴题) ; ,、点的方程为:直线的方程为:设直线方程为:轴建立坐标系,设圆的为为原点,轴,为如图,以)(),(,AD ,,)-(2211222y x C y x B nx y mx y AB r a y x Y AO A x MN ===+ 、;则,、,C B )()(4433y x E y x D , 1 - ;12-2-)1,{)-(22 2212212222222+=+=+=++=+=m r a x x m am x x r a amx x m y r a y x mx y 由韦达定理知:得:(消去,1- ;1222 243243+=+=+n r a x x n an x x 同理得: ),-(---23 23 22x x x x y y y y CD = 方程为:直线 ,--Q 3 23 223Q y y y x y x x = 点横坐标:由此得 , --P 1 41441P y y y x y x x = 点横坐标:同理得 ,------1 41441323223P Q y y y x y x y y y x y x x x AQ AP ===;即证:,只需证明:故,要证明 N B

静力学基础 习题及答案

静力学基础 一、判断题 1.外力偶作用的刚结点处,各杆端弯矩的代数和为零。(× ) 2.刚体是指在外力的作用下大小和形状不变的物体。(√ ) 3.在刚体上加上(或减)一个任意力,对刚体的作用效应不会改变。(× ) 4.一对等值、反向,作用线平行且不共线的力组成的力称为力偶。(√ ) 5.固定端约束的反力为一个力和一个力偶。(× ) 6.力的可传性原理和加减平衡力系公理只适用于刚体。(√ ) 7.在同一平面内作用线汇交于一点的三个力构成的力系必定平衡。(× ) 8.力偶只能使刚体转动,而不能使刚体移动。(√ ) 9.表示物体受力情况全貌的简图叫受力图。(√ ) 10.图1中F对 O点之矩为m0 (F) = FL 。(× ) 图 1 二、选择题 1. 下列说法正确的是( C ) A、工程力学中我们把所有的物体都抽象化为变形体。 B、在工程力学中我们把所有的物体都抽象化为刚体。 C、稳定性是指结构或构件保持原有平衡状态。 D、工程力学是在塑性范围内,大变形情况下研究其承截能力。 2.下列说法不正确的是( A ) A、力偶在任何坐标轴上的投形恒为零。 B、力可以平移到刚体内的任意一点。 C、力使物体绕某一点转动的效应取决于力的大小和力作用线到该点的垂直距离。 D、力系的合力在某一轴上的投形等于各分力在同一轴上投形的代数和。 3.依据力的可传性原理,下列说法正确的是( D ) A、力可以沿作用线移动到物体内的任意一点。 B、力可以沿作用线移动到任何一点。 C、力不可以沿作用线移动。 D、力可以沿作用线移动到刚体内的任意一点。 4.两直角刚杆AC、CB支承如图,在铰C处受力F作用,则A、B两处约束力与x轴正向所成的夹角α、β分别为:

第二章 迭代法的一般原理

第二章 迭代法的一般原理 非线性方程组无论从理论上还是计算方法上,都比线性方程组复杂得多。一般的非线性方程组很难求出解析解,往往只能求出其数值解,且往往只能借助于迭代法。本章我们将讨论迭代法的一般原理、迭代法的一般构造及迭代收敛速度的衡量标准。 2-1 迭代法与不动点定理 设n n R R D →?:f ,考虑方程 ()0=x f (2-1) 若存在D *∈x ,使()0=*x f ,则称*x 为方程(2-1) 的解。 用迭代法求解(2-1) ,先将(2-1)化为等价的方程 ()x g x = (2-2) 这里映象n n R R D →?:g 。 方程(2-2)的解*x (即()**x g x =)称为映象g 的不动点。因此用迭代法解方程(2-1),就是求(2-2)中映象g 的不动点。这样以及g 是否存在不动点自然就是我们关心的问题。 定理2-1 若n n R R D →?:g 为有界闭集D D ?0上的严格非膨胀映象,()00D D ?g ,则g 在0D 内有唯一不动点。 证 唯一性 设g 在0D 内至少有两个不动点1x ,2x ,则 ()() 2121x x x g x g x x 21-≤-=-α 因1<α,所以由上式推得21x x =。唯一性得证。 记()()x g x x -=?,由g 及泛数的连续性可知1:R R D n →??连续。因0D 为有界闭集,故?在0D 上有最小值。设0D *∈x 为最小点,即

()()x g x x -=∈min 0 D x *? 则*x 为g 的不动点。因为若不然,则有()**x g x ≠,再由g 严格非膨胀,可得 ()()()()()***x g g x g x g -=?()()***x x g x ?=-< 这与*x 为?的最小点相矛盾,故*x 为g 的不动点。 注 定理中0D 的有界闭性、g 的压缩性和g 映0D 入自身,此3个条件缺一不可。例如,()x x x g 1+=在[)+∞=,D 10上严格非膨胀,但它在0D 中却没有不动点。 下面我们介绍在应用上非常广泛的不动点定理。 定理2-2 (Brouwer 不动点定理) 设n n R R D →?:g 在有解闭凸集D D ?0上连续,且()00D D G ?,则g 在0D 至少有一个不动点。 本定理在一维情形下叙述为:[]b a f ,: []b a ,→则f 在[]b a ,中至少有一个不动点。几何解释见图2-1。 x b a 图2-1 一维Brouwer 定理

解析法在几何中的应用 -

解析法在几何中的应用 姓名:周瑞勇 学号:201001071465 专业:物理学 指导教师:何巍巍

解析法在几何的应用 周瑞勇 大庆师范学院物理与电气信息工程学院 摘要:通过分析几何问题中的各要素之间的关系,用最简练的语言或形式化的符号来表达他们的关系,得出解决问题所需的表达式,然后设计程序求解问题的方法称为解析法。 关键词:几何问题,表达关系,表达式,求解问题 一前言 几何学的历史深远悠久,欧几里得总结前人的成果,所著的《几何原本》。一直是几何学的坚固基石,至今我国中学教学的几何课本仍未脱离他的衣钵。长期的教学实践证明,采用欧式体系学习几何是培养学生逻辑思维能力的行之有效的方法。 但是,事物都有两重性。实践同样证明,过多强调它的作为也是不适当的。初等几何的构思之难,使人们为此不知耗费了多少精力,往往为寻求一条神奇、奥秘的辅助线而冥思苦索。开辟新的途径,已是势在必行。近些年来,用解析法、向量法、复数法、三角法证明几何问题,受到越来越多的数学工作者的重视。 由于平面几何的内容,只研究直线和园的问题,所以我们完全可以用解析法来研究几何问题。解析法不仅具有几何的直观性,而且也还有证明方法的一般性。综合几何叙述较简,但构思困难,而解析法思路清晰,过程简捷,可以作为证明几何问题中一种辅助方法,两者课去唱补短,想得益彰。 二解析法概述 几何数学主要是从几何图形这个侧面去研究客观事物的,其基本元素是点,代数学则主要是从数量关系这个侧面来研究客观事物,其基本元素是数。笛卡尔综合了前人的成果,创立了坐标概念,把代数学和几何学结合起来,于是产生了以研究点的位置和一对有序实数的关系、方程和曲线以及有研究连续运动而产生

材料力学性能静拉伸试验报告

静拉伸试验 一、实验目的 1、测45#钢的屈服强度s σ、抗拉强度m R 、断后伸长率δ和断面收缩率ψ。 2、测定铝合金的屈服强度s σ、抗拉强度m R 、断后伸长率δ和断面收缩率ψ。 3、观察并分析两种材料在拉伸过程中的各种现象。 二、使用设备 微机控制电子万能试验机、0.02mm 游标卡尺、试验分化器 三、试样 本试样采用经过机加工直径为10mm 左右的圆形截面比例试样,试样成分分别为铝合金和45#,各有数支。 四、实验原理 按照我国目前执行的国家 GB/T 228—2002标准—《金属材料 室温拉伸试验方法》的规定,在室温1035℃℃的范围内进行试验。将试样安装在试验机的夹头当中,然后开动试验机,使试样受到缓慢增加的拉力(一般应变速率应≤0.1m/s ),直到拉断为止,并且利用试验机的自动绘图装置绘出材料的拉伸图。 试验机自动绘图装置绘出的拉伸变形L ?主要是整个试样,而不仅仅是标距部分的伸长,还包括机器的弹性变形和试样在夹头中的滑动等因素,由于试样开始受力时,头部在头内的滑动较大,故绘出的拉伸图最初一段是曲线。 塑性材料与脆性材料的区别: (1)塑性材料: 脆性材料是指断后伸长率5%δ≥的材料,其从开始承受拉力直至试样被拉断,变形都比较大。塑性材料在发生断裂时,会发生明显的塑性变形,也会出现屈服和颈缩等现象; (2)脆性材料: 脆性材料是指断后伸长率5%δ<的材料,其从开始承受拉力直至试样被拉断,变形都很小。并且,大多数脆性材料在拉伸时的应力—应变曲线上都没有明显的直线段,几乎没有塑性变形,在断裂前不会出现明显的征兆,不会出现屈服和颈缩等现象,只有断裂时的应力值—强度极限。 脆性材料在承受拉力、变形记小时,就可以达到m F 而突然发生断裂,其抗拉强度也远远 小于45钢的抗拉强度。同样,由公式0m m R F S =即可得到其抗拉强度,而根据公式,10 l l l δ-=。 五、实验步骤 1、试样准备 用笔在试样间距0L (10cm )处标记一下。用游标尺测量出中间横截面的平均直径,并且测出试样在拉伸前的一个总长度L 。 2、试验机准备:

《理论力学》静力学典型习题+答案

1-3 试画出图示各结构中构件AB的受力图 1-4 试画出两结构中构件ABCD的受力图

1-5 试画出图a和b所示刚体系整体各个构件的受力图 1-5a 1-5b

1- 8在四连杆机构的ABCD 的铰链B 和C 上分别作用有力F 1和F 2,机构在图示位置平衡。试求二力F 1和F 2之间的关系。 解:杆AB ,BC ,CD 为二力杆,受力方向分别沿着各杆端点连线的方向。 解法1(解析法) 假设各杆受压,分别选取销钉B 和C 为研究对象,受力如图所示: 由共点力系平衡方程,对B 点有: ∑=0x F 045cos 0 2=-BC F F 对C 点有: ∑=0x F 030cos 0 1=-F F BC 解以上二个方程可得:2 2163.13 62F F F ==

解法2(几何法) 分别选取销钉B 和C 为研究对象,根据汇交力系平衡条件,作用在B 和 C 点上的力构成封闭的力多边形,如图所示。 对B 点由几何关系可知:0245cos BC F F = 对C 点由几何关系可知: 0130cos F F BC = 解以上两式可得:2163.1F F = 2-3 在图示结构中,二曲杆重不计,曲杆AB 上作用有主动力偶M 。试求A 和C 点处的约束力。 解:BC 为二力杆(受力如图所示),故曲杆AB 在B 点处受到约束力的方向沿BC 两点连线的方向。曲杆AB 受到主动力偶M 的作用,A 点和B 点处的约束力必须构成一个力偶才能使曲杆AB 保持平衡。AB 受力如图所示,由力偶系作用下刚体的平衡方程有(设力偶逆时针为正): 0=∑M 0)45sin(100=-+??M a F A θ a M F A 354.0= 其中:31 tan =θ 。对BC 杆有:a M F F F A B C 354.0=== A ,C 两点约束力的方向如图所示。 2-4 F F

解析法巧解中考数学压轴题

解析法巧解中考压轴题 在平面几何题中,适当的建立直角坐标系,利用代数的方法解决几何问题,即解析法,有时会显得更简洁高效.现以近年中考压轴题为例,分析说明解析法之妙.例1 (2013泰州)如图1,在矩形ABCD中,点P在边CD上,且与C、D不重合,过点A作AP的垂线与CB的延长线相交于点Q,连结PQ,M为PQ中点. 若AD=10,AB=a,DP=8,随着a的大小的变化,点M的位置也在变化.当点M 落在矩形ABCD外部时,求a的取值范围. 分析本题将矩形、三角形、动点、参数相结合,考察学生利用相似解决问题的综合能力,难度较大,区分度高,按照参考答案给出的解题思路,如图2所示,当点M落在矩形ABCD外部时,须满足的条件是“BE>MN”.分别求出BE与MN的表达式,列不等式求解,即可求出a的取值范围. 由△ADP∽△ABQ,解得QB=4 5 a. 由△QBE∽△QCP,同样由比例关系得出BE= () 28 225 a a a - + . 又因为MN为QCP的中位线,得出 MN=1 2 PC= 1 2 (a-8). 再由BE>MN, 即 () 28 225 a a a - + () 1 8 2 a >- 得出a> . 当点M落在矩形ABCD外部时,a的取值范围为a>. 这种解法不仅要想到添加辅助线,还两次运用了相似比,计算量大,易出错.比较稳妥而简洁的做法是将图形放进直角坐标系中,利用数形结合的方法来解决此类问题. 一如何建立合适、恰当的坐标系呢通常需要考虑以下两点: 第一,让尽可能多的点落在直角坐标系上,这些点的坐标含有数字O,可以起到简化运算的功效; 第二,考虑图形的对称性,同样,也能起到简化运算的作用. 解答如图3所示,建立以B点为原点,BC方向为x轴正半轴,BA方向为y轴正半轴的直角坐标系.

静力学选择题

单项选择题 1、静力学中一般将被研究的物体看作是刚体,那么一物体是否能被看作是刚体,取决于。 (A)物体变形是否微小;(B)物体不变形; (C)物体是否坚硬;(D)研究是否需要考虑物体的变形。 2、下列说法正确的是() (A)处于平衡状态的物体可视为刚体;(B)变形微小的物体可视为刚体; (C)在任何情况下,任意两点的距离保持不变的物体为刚体。 3.作用和反作用定律的适用范围是。 (A)只适用于刚体;(B)只适用于变形体 (C)只适用于处于平衡状态的物体;(D)适用于任何物体 4、下列说法正确的是() (A)凡是合力都比分力大;(B)只有力才可以应用平行四边形法则合成;(C)凡是矢量都可以应用平行四边形法则合成。 5.力的可传性原理。 (A)适用于刚体;(B)适用于刚体和弹性体; (C)适用于所有物体;(D)只适用于平衡的刚体 6.三力平衡汇交定理是。 (A)共面不平行的三个力互相平衡必汇交于一点; (B)共面三力若平衡,必汇交于一点; (C)三力汇交于一点,则这三个力必互相平衡; (D)此三个力必定互相平行。 7、平面力系简化最终结果可能情况是。 (A)力、力偶或平衡;(B)力或平衡; (C)力偶或平衡;(D)力、力偶、力螺旋或平衡。

8、若刚体上作用一平面力系,力多边形自行封闭,则该刚体 。 (A )一定平衡; (B )一定不平衡; (C )不能确定。 9.如图所示,在刚体上的四个点上各作用一个大小相等的力,则该力系的简化结果为 。 (A )一个力; (B )一个力和一个力偶; (C )一个力偶; (D )平衡。 10、如图作用在同一平面内的四个力构成封闭的力多边形,下列说法正确的是( ) (A )由于力多边形封闭,因此刚体一定平衡; (B )仅由此力多边形无法判断刚体是否平衡; (C )若力多边形中各个力矢沿顺时针方向连成一周, 因此必合成为一顺时针的力偶,故刚体一定不平衡。 11、下列说法正确的是( ) (A )凡是力偶都不能用一力来平衡; (B )凡是力偶都能与一力平衡; (C )力偶有时能与一力来平衡。 12.如图所示的两个楔块A 、B 在m-m 处光滑接触,现在其两端沿轴线各加一个大 小相等、方向相反的力,则两个楔块的状态为 A 。 (A )A 、B 都不平衡; (B )A 平衡、B 不平衡; (C )A 不平衡、B 平衡; (D )A 、B 都平衡。 13.在刚体上作用3个大小相等的力,其力三角形如图所示,则该力系的简化结果 。 (A )必为一个力; (B )必为一个力和一个力偶; (C )必为一个力偶; (D )可能平衡或简化为一力偶。 B C F 1 F 2 F 3 A A B C D 第10题图

第56讲 解析法证几何题教学内容

第56讲解析法证 几何题

第56讲解析法证 几何题 解析法是利用代数方法解决几何问题的一种常用方法.其一般的顺序是:建立坐标系,设出各点坐标及各线的方程,然后根据求解或求证要求进行代数推算.它的优点是具有一般性与程序性,几何所有的平面几何问题都可以用解析法获解,但对于有些题目演算太繁. 此外,如果建立坐标系或设点坐标时处理不当,也可能增加计算量.建系设点坐标的一般原则是使各点坐标出现尽量多的0,但也不可死搬教条,对于一些“地位平等”的点、线,建系设点坐标时,要保持其原有的“对称性”. A类例题 收集于网络,如有侵权请联系管理员删除

斜边AB及直角边BC为边向三角形两 侧作正方形ABDE、CBFG. 求证:DC⊥FA. 分析只要证k CD·k AF=-1,故只要求点D的坐标. 证明以C为原点,CB为x轴正方向建立直角坐标 系.设A(0,a),B(b,0),D(x,y). 则直线AB的方程为ax+by-ab=0. 故直线BD的方程为bx-ay-(b·b-a·0)=0, 即bx-ay-b2=0. ED方程设为ax+by+C=0. 由AB、ED距离等于|AB|,得 |C+ab| =a2+b2, a2+b2 解得C=±(a2+b2)-ab. 如图,应舍去负号. 收集于网络,如有侵权请联系管理员删除

所以直线ED方程为ax+by+a2+b2-ab=0. 解得x=b-a,y=-b.(只要作DH⊥x轴,由△DBH≌△BAC就可得到这个结果). 即D(b-a,-b). 因为k AF=b-a b,k CD= -b b-a,而k AF·k CD=-1.所以 DC⊥FA. 例2.自ΔABC的顶点A引BC的垂线,垂足为D,在AD上任取一点H,直线BH交AC于E,CH交AB于F.试证:AD平分ED与DF所成的角. 证明建立直角坐标系,设A(0,a),B(b,0),C(c,0),H(0,h),于是 BH:x b+ y h=1 AC:x c+ y a=1 x

基于ABAQUS和EXCEL的泡棉静态力学性能分析

龙源期刊网 https://www.360docs.net/doc/3116821861.html, 基于ABAQUS和EXCEL的泡棉静态力学性能分析 作者:周万里黄攀 来源:《科技风》2017年第09期 摘要:手机中大量应用泡棉作为缓冲材料保护关键器件,不同泡棉的缓冲效果完全不 同,对器件的保护作用大小也不同。通过泡棉的单轴压缩和回弹实验测试可以得到材料的位移-力曲线,但有限元软件ABAQUS中需要的材料参数不能直接在该软件中拟合得到。故基于EXCEL的VB模块构建新公式和使用规划求解功能拟合材料参数。在ABAQUS中建立有限元模型验证了用EXCEL拟合材料的准确性和该分析方法的正确性。 关键词:泡棉;有限元;ABAQUS;hyperfoam;Mullins软化效应;EXCEL;规划求解 泡棉因为具有良好的密封性和可压缩性,在手机中被大量应用根据用途可以分为导电泡棉、缓冲泡棉、双面胶泡棉和防尘防水泡棉等,根据应用的位置可以分为LCM泡棉、摄像头泡棉、音腔泡棉、受话器泡棉等。不同的用途和位置对泡棉的要求完全不同。国内文献对泡棉的研究主要在后期仿真应用上和没有考虑泡棉的应力软化效应,没有详细介绍如何从基础实验数据中获取有限元仿真所需要的参数再到仿真应用的过程。 本文首先使用高精度试验机对泡棉进行单轴压缩和回弹实验,获取位移-力曲线;然后转换为名义应变-名义应力曲线。利用EXCEL的VB模块构建新公式,再把名义应变-名义应力 曲线输入到EXCEL表格,并使用规划求解功能拟合曲线获取基于ABAQUS的hyperfoam本构模型和Mullins软化效应的材料参数;最后通过建立有限元模型验证该本构模型和拟合方法的正确性。 1 压缩和回弹实验 使用高精度试验机对泡棉进行压缩和回弹实验。因为该泡棉太薄只有0.3mm的厚度,为 减小误差把4层泡棉叠加在一起进行测试。具体样品尺寸为25mmX25mmX0.3mmX4。 2 记录压缩和回弹数据 压缩试验机记录力的单位为g,位移为mm。 3 处理数据 因为前面有一段行程为空压,需要处理数据,减掉这部分位移并减少数据点。处理后的数据见下图:

静力学选择题与填空题

第一章 静力学基础 一. 填空题 1.理论力学的任务是研究物体作 的规律 2.平衡是指 . 3.力是物体之间 作用,这种作用使物体的 或 发生改变。 4.刚体是受力作用而 的物体。 5.刚体受到两个力作用而平衡的充分必要条件是 。 6.约束是指限制 的周围物体。 7.对刚体而言,力的三要素是 、 、 。 8.二力平衡原理适用于 。 9.在光滑圆柱形铰链约束中,如接触点不能确定,可用通过 的一对正交分力表示。 10.对刚体而言,力是 矢量。 二. 单项选择题 1. 图示系统受力F 作用而平衡。欲使A 支座约束力的作用线与AB 成60o角, 则斜面的倾角α应为______________。 (A ) 0o (B ) 30o (C ) 45o (D ) 60o 2.如图所示的两个楔块A 、B 在m-m 处光滑接触,现在其两端沿轴线各加一个大 小相等、方向相反的力,则两个楔块的状态为 。 (A )A 、B 都不平衡 (B )A 平衡、B 不平衡 (C )A 不平衡、B 平衡 (D )A 、B 都平衡 m

3.三力平衡定理是 。 (A )共面不平行的三个力互相平衡必汇交于一点 (B )共面三力若平衡,必汇交于一点 (C )三力汇交于一点,则这三个力必互相平衡。 (D )此三个力必定互相平行 4.作用和反作用定律的适用范围是 。 (A ) 只适用于刚体 (B ) 只适用于变形体 (C ) 只适用于处于平衡状态的物体 (D ) 适用于任何物体 5.一物体是否被看作刚体,取决于 。 (A ) 变形是否微小 (B ) 变形不起决定因素 (C ) 物体是否坚硬 (D ) 是否研究物体的变形 6.力的可传性原理 。 (A ) 适用于刚体 (B ) 适用于刚体和弹性体 (C ) 适用于所有物体 (D )只适用于平衡的刚体 第一章 平面汇交力系与平面力偶系 一、填空题 1.平面汇交力系平衡的几何条件是 。 2.同一平面内两力偶的等效条件是 。 3.研究平面汇交力系时, 采用两种方法, 即 和 。 4.平面汇交力系的合力= F R 。 5.一个力F 在某轴上的分力是 量、投影是 量。 6.合力投影定理在x 方向的表达式是 。 7.已知力F 与x 轴正向的夹角900 < < ? ,则= F x 。 8.运用平衡方程求得的约束力结果为负时,说明 。

高中竞赛数学讲义第56讲解析法证几何题

第56讲 解析法证 几何题 解析法是利用代数方法解决几何问题的一种常用方法.其一般的顺序是:建立坐标系,设出各点坐标及各线的方程,然后根据求解或求证要求进行代数推算.它的优点是具有一般性与程序性,几何所有的平面几何问题都可以用解析法获解,但对于有些题目演算太繁. 此外,如果建立坐标系或设点坐标时处理不当,也可能增加计算量.建系设点坐标的一般原则是使各点坐标出现尽量多的0,但也不可死搬教条,对于一些“地位平等”的点、线,建系设点坐标时,要保持其原有的“对称性”. A 类例题例1.如图,以直角三角形ABC 的斜边A B 及直角边B C 为边向三角形两侧作正方形ABDE 、CBFG . 求证:DC ⊥FA . 分析 只要证k C D ·k AF =-1,故只要求点D 的坐标. 证明 以C 为原点,CB 为x 轴正方向建立直角坐标系.设A (0,a ),B (b ,0),D (x ,y ). 则直线AB 的方程为ax +by -ab =0. 故直线BD 的方程为bx -ay -(b ·b -a ·0)=0, 即bx -ay -b 2=0. ED 方程设为ax +by +C =0. 由AB 、ED 距离等于|AB |,得 |C +ab | a 2+b 2=a 2+b 2, 解得C =±(a 2+b 2)-ab . 如图,应舍去负号. 所以直线ED 方程为ax +by +a 2+b 2-ab =0. 解得x =b -a ,y =-b .(只要作DH ⊥x 轴,由△DBH ≌△BAC 就可得到这个结果). 即D (b -a ,-b ). 因为k AF =b -a b ,k CD =-b b -a ,而k AF ·k CD =-1.所以DC ⊥FA . 例2.自ΔABC 的顶点A 引BC 的垂线,垂足为D ,在AD 上任取一点H ,直线BH 交AC 于E ,CH 交AB 于F . 试证:AD 平分ED 与DF 所成的角. 证明 建立直角坐标系,设A (0,a ),B (b ,0),C (c ,0),H (0,h ),于是 BH :x b +y h =1 AC :x c +y a =1 过BH 、AC 的交点E 的直线系为: λ(x b +y h -1)+μ(x c +y a -1)=0. 以(0,0)代入,得λ+μ=0. y x H F E D C B A y x O A B C D E F G

静力学分析中的几何法或解析法

静力学分析中的几何法或解析法 作者:王晓鹍{摘要}:静力学研究的内容主要是研究作用于物体上力系的平衡。 通过静力学公理具体研究以下三个问题①物体的受力分析②力系的等效替换③力系的平衡条件。根据几何法的三步骤:确定受力体,画出脱离体和已知受力,解除约束体,画出受力方向的步骤。从而根据几何作图解决问题。至于解析法可以根据平衡力系中,合力必为零以及力多边形自行闭合的特点分析问题。 {关键词} 静力学二力平衡公理质点 {英文摘要} { the }: Statics study is the main content of research on object on the equilibrium of force system. The axioms of statics study the following three problems of objects in the stress analysis in power system equivalent substitution of the force equilibrium condition. According to the geometric method in three steps: determining force body, draw out of body and the known force, lift the restriction, draw the step stress direction.According to the geometry problem solving. As for the analytical method based on balanced force, force will be zero and the force polygon self closing characteristic analysis. { the } Statics two force balance axiom particle 静力学是力学的一个分支,它主要研究物体在力的作用下处于平衡的规律,以及如何建立各种力系的平衡条件。平衡是物体机械运动的特殊形式,严格地说,物体相对于惯性参照系处于静止或作匀速直线运动的状态,即加速度为零的状态都称为平衡。对于一般工程问题,平衡状态是以地球为参照系确定的。静力学还

高二数学几何解析法

几何解析法 教学要求:更进一步熟练运用两点间的距离公式、定比分点的坐标公式、线段的中点坐标公式,掌握用解析法研究几何问题。 教学重点:解析法的运用。 教学难点:如何抓住几何特征建系、设点、列式。 教学过程: 一、复习准备: 1. λ= = = ; 2.定比分点???==__________y x 、中点??? ==__________y x 、重心G ???==_____ _____ y x 二、讲授新课: 1.教学解析法例题: ①出示例:正方形ABCD 中,过顶点D 作DE ∥CA ,|CE|=|CA|,且CE 交边DA 于F ,求证:|AE|=|AF|。 ②分析:本题用解析法证明时,如何建立直角坐标系?如何设各点的坐标? → 由几何特点设A(0,1)、B(1,1)、C(1,0),E(x ,-x)后,如何求 B E F D C

F 点的坐标?(由所点E 、C 的坐标及F 的x 坐标,求出F 分EC 的定比,再求F 的y 坐标) ③师生共同写出证明过程。 ④讨论:如何用几何方法证明? 2.练习: 用解析法证明:到三角形三个顶点的 距离的平方和最小的点是三角形的重 心。 解法:建系设点→列出距离平方和的 式子→分拆成两个二次函数研究。 3、小结: 解析法步骤(建系设点→列式→求解);注意抓住几何特征建系、设点、列式。 三、巩固练习: 1.已知A(-1,1)、B(2,-1),求满足下列条件的点P : ① 反向延长AB 到P ,使|BP|=35|AB|; ② 点P 在直线AB 上,又在x 轴上。 (解法关键:计算λ) 2. 设P 、A 、B 、C 是同一直线上任意四点,求证:PA ×BC +PB ×CA +PC ×AB =0 3.课堂作业:书P47、 1、3题。 A B x

瓦楞结构材料瓦楞方向静力学性能的研究

瓦楞结构材料瓦楞方向静力学性能的研究瓦楞结构材料,因其无污染、可再生、质量轻、刚度好、缓冲吸能、易加工成型、可回收且成本低廉,在造船、汽车、建筑、航空航天、铁路运输和包装等行业有着广泛的应用。目前对瓦楞结构材料的研究主要集中在平压方向的力学性能上,而在实际应用中瓦楞结构材料常在其瓦楞方向上承载。因此研究瓦楞结构材料瓦楞方向的力学性能,对于促进其应用具有十分重要的意义。瓦楞结构材料是由瓦楞芯材和面材复合而成。根据瓦楞形状不同,瓦楞可分为U、V和UV形。瓦楞楞型有A、C、B和E型。通过静态拉伸试验对瓦楞原纸的物理性能进行了测定,得到相关物理参数,为有限元模拟提供基材的力学参数。对瓦楞结构材料进行静态压缩试验,验证有限元模型的可靠性。建立不同种类的瓦楞结构材料的有限元静力学分析模型,并使用试验结果验证模型的可靠性。基于此,通过能量效率法分别研究不同楞型和楞形瓦楞结构材料的力学性能,深入分析它们对瓦楞结构材料瓦楞方向静力学性能的影响。不同楞型、楞形和壁厚的瓦楞结构材料,瓦楞方向的变形模式都是呈现自上而下的折曲变形,应力应变曲线形态都是由弹性、屈服、平台和密实化四个阶段组成,能量效率曲线都是呈现先增大后减小的变化趋势。对于任一楞型的瓦楞结构材料,瓦楞方向的初始峰应力、平均抗压强度、最大能量吸收效率、密实化单位体积能量吸收和密实化比能量吸收随着壁厚的增大而增大。对于任一壁厚的瓦楞结构材料,A、C、B和E楞瓦楞的初始峰应力、平均抗压强度、密实化单位体积能量吸收和密实化比能量吸收依次增大。对于

U、V和UV任一楞形的瓦楞结构材料,其瓦楞方向的初始峰应力、平均抗压强度、最大能量吸收效率、密实化单位体积能量吸收和密实化比能量吸收随着壁厚的增大而增大。它们之间的相互关系,可拟合为一定的关系曲线,基于计算结果给出了相关经验公式。对于任一壁厚的瓦楞结构材料,U、V和UV形瓦楞的初始峰应力、平均抗压强度、密实化单位体积能量吸收和密实化比能量吸收总是呈现出V形瓦楞 最小,U形瓦楞最大,UV形瓦楞介于两者之间的规律。综上所述,楞型、楞形和壁厚对瓦楞结构材料瓦楞方向的静力学性能,影响较大,相关 规律可以为瓦楞结构材料在缓冲包装设计方面提供指导性参考与帮助。

闸式剪板机力学性能分析与优化

闸式剪板机力学性能分析与优化* 王 勇1,朱世凡1,陈 胜1,王 奇1,于 珺2,陈达兵2 (1.合肥工业大学机械工程学院,安徽合肥230009;2.马鞍山市中亚机床制造有限公司,安徽马鞍山243131) 摘 要:剪板机结构力学性能对剪切精度具有重要影响三以6×3200型数控闸式剪板机为对象,基于数值模拟方法对上刀架进行了静力学分析和瞬态动力学分析,得到了剪切过程中的最大等效应力与最大变形;对机架进行了模态分析,给出了剪板机系统可能发生共振的固有频率和相应振型;基于分析结果对闸式剪板机结构进行了优化三 关键词:闸式剪板机 静力学分析 动力学分析 模态分析 优化设计 中图分类号:TP13 文献标识码:A 文章编号:1002-6886(2019)02-0001-04 Analysis and optimization of mechanical properties of braking-type plate shearing machine WANG Yong,ZHU Shifan,CHEN Sheng,WANG Qi,YU Jun,CHEN Dabing Abstract:The mechanical properties of shearing machine have important influence on the shearing accuracy.Based on the numerical simulation method,the static analysis and transient dynamic analysis of the upper tool holder are carried out for the6×3200numerical control gate shear machine.The maximum equivalent stress and maximum deformation in the shearing process are obtained.The modal analysis of the frame is carried out to obtain the natural frequency and corresponding vibra?tion mode of the shearing machine.Based on the analysis results,the structure of the brake shearing machine is optimized. Keywords:braking-type plate shearing machine,statics analysis,dynamic analysis,modal analysis,optimization design 0 引言 与摆式剪板机相比,闸式剪板机从结构上避免了游隙的存在并可调节剪切角,具有更高的效率二精度和可靠性三但闸式剪板机在剪切宽厚板或高强度薄板时,仍存在机床变形影响剪切精度等问题三现有文献多研究剪切参数对剪切精度的影响[1]二剪板机组控制系统设计与自动化改造[2-3]或者以有限的 离散点模拟剪切过程[4],有关闸式剪板机的力学性能分析与结构优化的研究目前尚少见三本文通过机床的静动态特性分析,模拟剪板机剪切过程,获得连续的剪切数据,并给出优化方案三 1 静力学分析 以一款6×3200型数控闸式剪板机为例,其结构模型如图1所示三工作时,滚柱丝杠驱动的后挡料装置调节剪切长度,压料油缸将被剪板料压紧,设置刀刃间隙和剪切角等剪切参数后,两端的液压缸驱动上下刀刃相对运动完成板料的剪切三 仿真分析时,忽略过渡圆角二螺纹孔等[5],将简化的三维模型导入到有限元分析软件中,上刀架两侧面作固定约束,设置绑定接触模拟上刀架零部件的焊接和螺纹固定[6]三 图1 6×3200闸式剪板机结构模型 根据诺沙里公式[7]: P=0.6σbδs h2tanα1+ z tanα 0.6δs+ 1 1+10δsσ b y2 ? è ? ? ? ? ÷ ÷ x (1) 四1四

解析法教学文档

解析法 一、 方法介绍 解析法是把几何问题转化为代数问题来处理的更一般方法,用解析法解平面几何题时,要特别注意选择适当的坐标系,同时还要灵活利用几何图形的性质及代数、三角知识的综合运用。 二、 例题精讲 例1、 如图,O 是正方形ABCD 内的一点,且?=∠=∠15OCB OBC ,求证:OAD ?是等边三角形。 例2、在锐角三角形ABC ?中,AB 上的高CE 与AC 上的高BD 相交与点H ,以DE 为直径的圆分别交 AB 、AC 于F 、G 两点,FG 与AH 相交与点 已知25=BC ,20=DB ,7=BE ,求AK A B B C A D

例3、 知直线l 与⊙O 相离,l OP ⊥于点P ,Q 是l 上异于P 的一点,QB QA ,分别 切⊙O 于B A ,。直线AB 交OP 于点K 。BQ PN ⊥于点N ,AQ PM ⊥于点M 。求证:MN 平分线段PK 。 练习 1、 设M 、N 分别是ABC ?的边AC 、BC 上的点,且?=∠90ACB 。设AN 与BM 交 于点L 。证明:AML ?、BNL ?的垂心与点C 三点共线。 l C B A N M

2、 一张纸上画有半径为R 的⊙O 和圆内一定点A ,且a OA =,折叠纸片,使圆周上某点 A '刚好与点A 重合,这样的每一种折法,都留下一条直线折痕,当A '取遍圆周上所有点时,求所有折痕所在直线的点的集合。 3以ABC ?的边BC 为直径作半圆,与AC AB ,分别交于点D 和E ,过D 、E 作BC 的垂线,垂足分别为G F ,,线段DG 、EF 交于点M 。求证:BC AM ⊥。 4如图,在四边形ABCD 中,对角线AC 平分∠BAD 。在CD 上取一点E ,BE 与AC 相交于F ,延长DF 交BC 于G 。求证:∠GAC =∠EAC . G F C B A C B

张力腿平台的整体设计及拟静力性能分析

第38卷 第5期2009年10月 船海工程SH IP &OCEA N ENG IN EERI NG V ol.38 N o.5 O ct.2009 收稿日期:2009-02-25修回日期:2009-04-30 基金项目:国家自然科学基金(50538050);国家863 计划(2006A A09A 103,2006A A09A 104)。 作者简介:闫功伟(1982-),男,博士生。研究方向:深水海洋平台的动力响应。E -mail:yango ng wei_hit@qq.co m DOI:10.3963/j.issn.1671-7953.2009.05.034 张力腿平台的整体设计及拟静力性能分析 闫功伟1 ,欧进萍 1,2 (1.哈尔滨工业大学土木工程学院,哈尔滨150090;2.大连理工大学土木水利学院,辽宁大连116024)摘 要:结合南海海域条件对传统式张力腿平台进行整体设计,计算平台所受各种环境荷载的大小,并采用拟静力分析法分析此平台的非线性运动响应,考虑平台水平漂移和下沉的非线性关系以及张力腿预张力、横截面面积、就位长度和立柱横截面面积等参数对平台运动响应的影响。 关键词:张力腿平台;整体设计;拟静力分析;非线性运动响应 中图分类号:U 674.38;T E952 文献标志码:A 文章编号:1671-7953(2009)05-0142-04 张力腿平台(tension leg platform,T LP),是一种垂直系泊的顺应式平台,通过数条张力腿与海底相接,具有半固定、半顺应的运动特征。它可以分为三部分:平台本体、张力腿系统和基础部分。平台本体的主要运动形式[1]有横荡、纵荡、垂荡、横摇、纵摇、首摇。整个结构的频率跨越海浪的一阶频率谱两端,从而避免了结构和海浪能量集中的频率发生共振,使平台结构受力合理,动力性能良好。 TLP 的结构形式发展倾向于多元化、小型化,以适应于不同油藏条件及边际油田的开发。按平台本体形式[2]不同可以分为传统式张力腿平台(CT LP)、海星式张力腿平台(seastar TLP)、迷你式张力腿平台(M OSES T LP)和延伸式张力腿平台(ETLP)。T LP 示意见图1、2 。 结合我国南海海域海况条件,开展了CT LP 平台的整体方案设计。 1 T LP 的整体设计 TLP 平台的整体设计[3] 需要做以下几方面的工作:1根据平台的功能要求,确定出比较合理的平台总体尺度;o规划设备位置,均衡平台中心;?进行张力腿的张力估算;?确定出设计能力界限。 平台总体规划流程见图3,中间框内4 项工 图3 TLP 总体设计规划流程 作是一个小循环,需要反复调整以达到设计要求。1.1 TLP 环境荷载的确定 风、浪、流等海洋环境参数选用文献[4]提供数据。考虑两种工况:工况1,1年一遇环境条件;工况2,100年一遇环境条件。 1)平台风荷载计算。作用于平台上体各部分的风力F 应按下式计算: F 风=C h C s S p (1) 式中:p )))风压,kPa ; S )))平台在正浮或倾斜状态时受风构件 的正投影面积,m 2; C h )))受风构件的高度系数,其值可根据 构件高度h(构件形心到设计水面的垂直距离)由规范查表确定; 142

相关文档
最新文档