乙醇的生物合成
乙醇

乙醇一、简介(1)按生产使用的原料可分为淀粉质原料发酵酒精(一般有薯类、谷类和野生植物等含淀粉质的原料,在微生物作用下将淀粉水解为葡萄糖,再进一步由酵母发酵生成酒精);糖蜜原料发酵酒精(直接利用糖蜜中的糖分,经过稀释杀菌并添加部分营养盐,借酵母的作用发酵生成酒精);和亚硫酸盐纸浆废液发酵生产酒精(利用造纸废液中含有的六碳糖,在酵母作用下发酵成酒精,主要产品为工业用酒精。
也有用木屑稀酸水解制作的酒精)。
(2)按生产的方法来分,可分为发酵法酒精和合成法酒精两大类。
(3)按产品质量或性质来分,又分为高纯度酒精、无水酒精、普通酒精和变性酒精。
(4)按产品系列(BG384-81)分为优级、一级、二级、三级和四级。
其中一、二级相当于高纯度酒精及普通精馏酒精。
三级相当于医药酒精,四级相当于工业酒精。
新增二级标准是为了满足不同用户和生产的需要,减少生产与使用上的浪费,促进提高产品质量而制订的。
二、名称1、化学名称乙醇2、商品名称酒精、酒精;乙醇(发醇法);无水酒精;无水乙醇;无水乙醇(药用);绝对酒精;95%乙醇;酒精95%;食用酒精;食用乙醇;变性乙醇;调香级食用酒精三、系统编号CAS编号:64-17-5EINECS号:200-578-6InChI编码:InChI=1/C2H6O/c1-2-3/h3H,2H2,1H3危规编号:32061危险品运输编号:UN 1170/1986/1987四、物质颜色性状1、颜色在常温、常压下,易燃无色透明液体,2、性状3、相态液体4、臭味性有特殊香味,略带刺激性,5、挥发性易挥发五、化学结构1、化学组成乙醇分子是由是由C、H、O 三种原子构成(乙基和羟基两部分组成),可以看成是乙烷分子中的一个氢原子被羟基取代的产物,也可以看成是水分子中的一个氢原子被乙基取代的产物。
乙醇分子中的羰键(碳氧键)和羟键(氢氧键)比较容易断裂。
C、O原子均以sp3杂化轨道成键、极性分子。
乙醇是乙烷一个氢原子被羟基替换后的产物,俗称酒精。
生物质合成气发酵生产乙醇的工艺分析

生物质合成气发酵生产乙醇的工艺分析生物质合成气(Biomass gasification)是一种将复杂的有机废弃物转化为可再生能源的技术。
这种技术能够将废弃物变成气体,通常是一种被称为合成气或者生物质合成气的混合气体。
该气体主要由一氧化碳、氢气、二氧化碳和甲烷等组成,这些气体可以用来产生能源。
生物质合成气发酵生产乙醇是一种以生物质合成气作为发酵原料,通过发酵过程将其转化为乙醇的生产工艺。
生产出来的乙醇可以作为化学品、燃料和溶剂。
生物质合成气发酵生产乙醇已经成为了一种被广泛应用的生产技术。
1.生物质合成气的制备生物质合成气的制备是将生物质通过热化学反应,将其分解成气体。
反应发生在一个密闭的容器内,该容器中储存的是无氧环境。
反应大致分为以下三个阶段:(1)压缩阶段:压缩过程会在容器内形成高压、高温和高密度的气体,这些气体在容器内占据了很小的空间。
(2)热解阶段:在高温和高压下,生物质内部的化学键被破坏。
其中的碳和氢可以和氧气化合,生成一氧化碳和氢气。
热解过程会产生太多的热量,这些热量可以用来支持后续的反应。
(3)效应阶段:在这个阶段,化学反应生成的气体会进行一系列的复杂化学反应,此过程被称为效应。
其结果是生成了一种复合气体,即生物质合成气。
生物质合成气主要由一氧化碳、氢气、二氧化碳和少量的甲烷等组成。
与其他生产气体相比,生物质合成气中的一氧化碳和氢气比例较高,约占70%。
这使得生物质合成气成为一种良好的发酵原料,可以生产出高浓度乙醇。
2.环境和设备对于生产乙醇的工艺而言,其生产过程会产生大量的热能和二氧化碳。
因此需要选择一个具有良好的环保设备的生产工艺。
发酵反应需要在特定的温度和压力下进行,在此之前,一定要对条件进行预先准备。
恒温箱是必要的设备之一。
由于发酵反应需要在恒定的温度下进行,恒温箱被用来维持反应温度。
操作人员需要根据反应过程中的变化来调整恒温箱中的温度设定。
多级恒压式氧气阀门的使用很重要,该阀门可以调节反应过程中的压力水平,以保证反应的顺利进行。
合成生物学构建复杂代谢途径的成功案例集锦

合成生物学构建复杂代谢途径的成功案例集锦合成生物学是一门迅速发展的交叉学科,旨在利用工程化的方法设计和构建新的生物系统,以满足特定的需求。
其中,构建复杂代谢途径是合成生物学的重要研究方向之一。
本文将为您介绍几个成功的合成生物学构建复杂代谢途径的实例。
1. 合成乙醇生产菌乙醇是一种重要的工业化学品和可再生能源。
合成乙醇生产菌的构建是合成生物学的一个典型案例。
科学家们利用合成生物学的方法,将酵母菌的代谢途径进行优化和改造,成功地将酵母菌转变为能够高效合成乙醇的生产菌。
通过改造非乙醇代谢途径,提高酵母菌对底物的利用效率,并增加乙醇产率,从而实现了乙醇生产的工业化。
2. 合成人胰岛素合成人胰岛素的研究也是合成生物学领域的一项重大突破。
胰岛素是一种重要的药物,用于治疗糖尿病。
科学家利用合成生物学的技术,通过改造大肠杆菌的代谢途径,成功合成了与人胰岛素相似的蛋白质。
这项研究的成功不仅使得合成胰岛素的生产更加便捷和经济,也为糖尿病患者提供了更好的治疗选择。
3. 生物柴油的合成生物柴油是一种环境友好型的燃料,可以有效减少温室气体的排放。
合成生物学的方法被用于构建合成生物柴油的代谢途径。
科学家们通过改造细菌和酵母菌的代谢途径,使其能够将植物油脂转化为生物柴油。
这种方法不仅可以减少对传统石油资源的依赖,还能够降低生产过程中的碳排放量。
4. 合成奎宁奎宁是一种重要的抗疟疾药物,传统的奎宁生产需要依赖于植物提取,存在产量低、工艺复杂等问题。
合成生物学的方法为奎宁的生产提供了新的途径。
科学家通过构建酵母菌的代谢途径,成功合成了奎宁的前体化合物。
这一研究成果为奎宁的大规模生产提供了新的思路和途径。
5. 合成人工维生素C维生素C是人体所需的一种重要维生素,但人体无法自主合成,必须从外部获得。
由于维生素C的生物合成途径复杂,合成维生素C成为了科学家们的研究热点。
利用合成生物学的方法,科学家们通过改造葡萄糖代谢途径,成功地合成了维生素C。
合成气生物发酵法一步制无水乙醇

合成气生物发酵法一步制无水乙醇English Answer:The one-step synthesis of anhydrous ethanol from syngas via biological fermentation is a promising approach for the production of renewable fuels and chemicals. This process involves the conversion of syngas, a mixture of carbon monoxide (CO) and hydrogen (H2), into ethanol using genetically engineered microorganisms. The key challengesin this process include the development of microorganisms with high ethanol production efficiency, metabolic engineering strategies to optimize ethanol synthesis, and the integration of fermentation and downstream processesfor efficient ethanol recovery and purification.Here are some specific research areas and strategies that can be pursued to address these challenges:1. Strain engineering for improved ethanol production: The development of robust and efficient microbial strainsis crucial for the successful implementation of this process. This involves metabolic engineering strategies to enhance the expression of key enzymes involved in ethanol synthesis, such as alcohol dehydrogenase and aldehyde dehydrogenase. Additionally, engineering the metabolic pathways to redirect carbon flux towards ethanol production can further improve the overall yield.2. Optimization of fermentation conditions: The fermentation conditions, including temperature, pH, and substrate concentration, play a significant role in ethanol production. Optimization of these parameters through high-throughput experimentation and modeling approaches can enhance the efficiency of the fermentation process.3. Integration of fermentation and downstream processes: Efficient ethanol recovery and purification are crucial for the economic viability of the process. The integration of fermentation with downstream processes, such asdistillation, extraction, and membrane separation, can improve the overall yield and purity of the final product.The successful implementation of this process has the potential to revolutionize the biofuel industry and contribute to the development of a sustainable and low-carbon economy.中文回答:合成气生物发酵法一步制无水乙醇是一项很有前景的可再生燃料和化学品生产方法。
生物质资源转化与利用 第八章 生物质燃料乙醇技术

物理法
化学法 纤维素的预处理方法
物理-化学法 生物法
物理法
物理法包括机械粉碎、蒸汽爆破、辐射、微波处理、冷冻、 挤压热解等,这些处理的目的在于降低纤维素结晶度,破坏 木质素、半纤维素结合层。 机械粉碎是传统方法,经过粉碎,物料的结构发生变化,结 晶度下降,表面积增大,有利于酶对纤维素的进攻。缺点是 能耗大。 蒸汽爆破法被认为是最有效的预处理方法之一,原理是水蒸 气在高温高压下,渗入细胞壁内部,发生水解作用,使α-和 β-烯丙醚键断裂,破坏了结合层结构,然后突然降压,由此 产生强大的爆破力,使物料破碎。经过蒸汽爆破后,再用碱 性过氧化氢处理,纤维素的聚合度和结晶度显著降低。
纤维素原料 纤维素原料是地球上最有潜力的乙醇 生产原料,主要有农作物秸秆、森林 采伐和木材加工剩余物、柴草等。
燃料乙醇的优点
可再生能源,资源丰富 减少排放 提高汽油的辛烷值和抗爆性 积碳减少 增加含氧量,使汽油充分燃烧
燃料乙醇的缺点
保质期短(一个月)
分层,打不着火
蒸发潜热大 热值低
淀粉质原料 主要有甘薯、木薯、玉米、马 铃薯、大麦、大米、高粱等。
生物乙醇应用状况 :燃料乙醇的 糖质原料 主 生产工艺已经比较成熟,目前巴 要是甘蔗、 西、美国等国家的燃料乙醇生产 甜菜等。 已经实现规模化、产业化。
燃料乙醇 主要原料
其它原料 如造纸厂的硫酸 盐纸浆废液、淀 粉厂的甘薯淀粉 渣和马铃薯淀粉 渣等。
8.2.5 发酵
乙醇发酵是不需要氧气的过程,所以要求发酵在密闭条件 下进行,如果有空气存在,酵母就不完全进行乙醇发酵, 而是部分进行呼吸作用,使乙醇量减少。 乙醇发酵主要经历4个阶段和12个反应 第一阶段:葡萄糖到1,6-二磷酸果糖 第二阶段:1,6-二磷酸果糖降解为3-磷酸甘油醛 第三阶段: 3-磷酸甘油醛经5步反应生成丙酮酸 第四阶段:乙醇的生成
乙醇的制备pdf

技术概况第二代生物乙醇是指相对于玉米乙醇(第一代生物乙醇)而言,以生物质(农林作物废料,即木质纤维素)为原料生产的生物乙醇,包括纤维素乙醇和纤维乙醇的制备 ------第二代生物乙醇素生物汽油两种产品。
技术原理1. 纤维素乙醇目前已经建有示范装置和工业装置的纤维素乙醇生产技术有以下4种: a. 硫酸/酶-水解发酵技术首先把生物质原料用酸分解为半纤维素糖浆(木糖和其他5碳糖)和纤维渣(纤维素和木质素),二者分离以后糖浆用专用的酵母发酵为稀乙醇,纤维素用工业酶分解并发酵为稀乙醇,最后通过蒸馏得到燃料级纤维素 乙醇。
生物质残渣用作锅炉燃料生产工艺用蒸汽。
b. 硫酸水解-发酵技术用浓硫酸作催化剂,把纤维素和半纤维素原料转化为葡萄糖和木糖,收率是用稀硫酸和酶水解的1.5-3.0倍。
首先把原料干燥到水分少于10%,然后与75%的浓硫酸接触,在85℃左右和常压下蒸煮30min,再把水解得到的6碳糖、5碳糖与酸和木质素及其他固体物分离。
木质素和其他固体物用作锅炉燃料生产工艺用蒸汽和工厂用电。
约98%的酸和100%的糖在模拟移动床色谱分离器中回收。
酸循环使用,糖通过酵母连续发酵转化为乙醇(6碳糖100%转化,5碳糖20%转化)。
该工艺的关键技术一是用浓硫酸进行水解,二是用色谱分离回收酸,而不是中和并处理废料。
c.酸水解-发酵-酯化-加氢技术1—生物质:硬木、软木、柳枝草、玉米秸秆;2—化学分级分离;3—糖液;4—发酵;5—乙酸;6—生产酯;7—乙酸乙酯;8—乙酸乙酯外销;9—加氢;10—乙醇外销;11—氢气;12—气化;13—残渣去气化以废木材等为原料,通过酸水解得到葡萄糖和木糖溶液,然后用乙酸菌发酵把糖转化为乙酸,接着再酯化得到乙酸乙酯,乙酸乙酯(全部或部分)加氢得到乙醇。
氢气由酸水解得到的木质素气化生产。
由于用乙酸菌发酵把所有糖都转化为乙酸,不产生CO和其他副产物,因此碳没有2损失。
常规工艺是通过酵母发酵生产乙醇,每生产1个分子乙醇放出1个分子CO。
生化问答题

请列举细胞内乙酰CoA的代谢去向。
答案要点:三羧酸循环;乙醛酸循环;从头合成脂肪酸;酮体代谢;合成胆固醇等。
酿酒业是我国传统轻工业的重要产业之一,其生化机制是在酿酒酵母等微生物的作用下从葡萄糖代谢为乙醇的过程。
请写出在细胞内葡萄糖转化为乙醇的代谢途径。
答案要点:在某些酵母和某些微生物中,丙酮酸可以由丙酮酸脱羧酶催化脱羧变成乙醛,该酶需要硫胺素焦磷酸为辅酶。
乙醛继而在乙醇脱氢酶的催化下被NADH还原形成乙醇。
葡萄糖+2Pi+2ADP+2H+ 生成2乙醇+2CO2+2ATP+2H2O(6分)脱氢反应的酶:3-磷酸甘油醛脱氢酶(NAD+),醇脱氢酶(NADH+H+)(2分)底物水平磷酸化反应的酶:磷酸甘油酸激酶,丙酮酸激酶(Mg2+或K+)(2分)试述mRNA、tRNA和rRNA在蛋白质合成中的作用。
答案要点:①mRNA是遗传信息的传递者,是蛋白质生物合成过程中直接指令氨基酸掺入的模板。
(3分)②.tRNA在蛋白质合成中不但为每个三联体密码子译成氨基酸提供接合体,还为准确无误地将所需氨基酸运送到核糖体上提供运送载体。
(4分) ③. rRNA与蛋白质结合组成的核糖体是蛋白质生物合成的场所(3分)。
为什么说三羧酸循环是糖、脂、蛋白质三大物质代谢的共同通路!!!!!!!!!哪些化合物可以被认为是联系糖、脂、蛋白质和核酸代谢的重要环节!!!!!!!!!为什么答案要点:①三羧酸循环是糖、脂、蛋白质三大物质代谢的共同氧化分解途径(2分);三羧酸循环为糖、脂、蛋白质三大物质合成代谢提供原料(1分),要举例(2分)。
②列举出糖、脂、蛋白质、核酸代谢相互转化的一些化合物(3分),糖、脂、蛋白质、核酸代谢相互转化相互转化途径(2分)写出天冬氨酸在体内彻底氧化成CO2和H20的反应历程,注明其中催化脱氢反应的酶及其辅助因子,并计算1mol天冬氨酸彻底氧化分解所净生成的ATP 的摩尔数。
答案及要点:天冬氨酸+α酮戊二酸--→(谷草转氨酶)草酰乙酸+谷氨酸谷氨酸+NAD+H2O→(L谷氨酸脱氢酶)α酮戊二酸+NH3+NADH 草酰乙酸+GTP→(Mg、PEP羧激酶)PEP+GDP+CO2PEP+ADP→(丙酮酸激酶)丙酮酸+ATP 丙酮酸+NAD+COASH→(丙酮酸脱氢酶系)乙酰COA+NADH+H+CO2 乙酰COA+3NAD+FAD+GDP+Pi+2H2O→(TCA循环)2CO2+COASH+3NADH+3H+FADH2+GTP ①耗1ATP 生2ATP5NADH+1FADH2+1GTP=1ATP净生成1+2+2.5×5+1.5×1=15ATP②耗1ATP生成2ATP+3NADH+1FADH+1NADPH净生成1+2+2.5×4+1•5×1=12.5ATP 脱氢反应的酶:L-谷氨酸脱氢酶(NAD+),丙酮酸脱氢酶系(CoA,TPP,硫辛酸,FAD,Mg2+),异柠檬酸脱氢酶(NAD+,Mg2+),a-酮戊二酸脱氢酶系(CoA,TPP,硫辛酸,NAD+,Mg2+),琥珀酸脱氢酶(FAD,Fe3+),苹果酸脱氢酶(NAD+)。
有机化学中的醇与醚的合成

有机化学中的醇与醚的合成有机化学作为化学的一个重要分支,研究的是碳氢化合物及其衍生物的结构、性质和反应。
其中,醇和醚是有机化合物中常见的两类官能团,它们在生物、药物、农药等领域具有重要的应用价值。
本文将重点讨论有机化学中醇与醚的合成方法。
一、醇的合成
醇是含有羟基(-OH)官能团的有机化合物,在合成中使用广泛。
下面介绍几种常见的醇合成方法:
1. 烷烃氧化法:烷烃氧化是醇的一种重要合成途径,其中最常见的是烷烃的氧化裂解反应。
例如,乙烷氧化可生成乙醇。
2. 烯烃水化法:烯烃通过水合反应可以生成醇。
例如,乙烯经过水合反应可以制备乙醇。
3. 羧酸还原法:羧酸的还原反应也是醇的常见合成方法。
例如,乙酸经过还原反应可以生成乙醇。
二、醚的合成
醚是含有氧桥(-O-)官能团的有机化合物,通常可以由醇和卤代烷基的缩合反应来合成。
下面介绍几种常见的醚合成方法:
1. 醇缩合法:醇和卤代烷基经过缩合反应可以生成醚。
例如,甲醇和溴乙烷经过缩合反应可以制备甲基乙基醚。
2. 醇脱水法:醇经过脱水反应也可以生成醚。
例如,乙醇在酸性条件下脱水反应可以生成乙醚。
3. 醇与醚之间转化法:醇可以通过醚化反应转化为醚。
例如,在酸催化条件下,乙醇可以与甲醇发生醚化反应生成乙基甲醚。
综上所述,有机化学中的醇与醚是重要的有机化合物,在实际合成中有着广泛的应用。
通过实验室合成或生物合成等方法,我们可以合成出各种类型的醇和醚化合物,为化学领域的发展和应用提供了有力支持。
希望本文对读者有所帮助,欢迎交流讨论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乙醇的生物合成
一.实验目的
1.了解酿酒的原理,学习酿酒的方法,掌握白酒就精度的测定方法。
2.掌握用白酒制工业酒精的原理和方法。
3.掌握固体酒精制备的原理和方法。
4.巩固蒸馏、分馏、测密度等多种基本操作。
二.实验原理
1.酿酒原理
n C
6H
12
O
6
O
C
2
H
5
O H C O
C
6
H
12
O
6
C
6
H
12
O
6
O
2
酒药,也称(曲,酒饼),是一种保存微生物的固体培养的。
在干燥条件下微生物处于休眠状态,活性可保持不变。
制曲酿酒技术是我国独特的创举和发明。
我国的曲药是糖化和发酵同时进行的。
曲药中富含曲霉、酵母菌和少量细菌等多种微生物。
曲霉能分泌大量淀粉酶,使淀粉糖化和液化,为下一步的发酵作好物质准备;酵母菌产生酒化酶,使糖发酵产酒;发酵条件控制得好、消毒严格,可避免细菌的大量繁殖,防止酒酸败。
造成酸败的主要菌是乳酸菌和醋酸菌。
2.分离原理
95%酒精生成凝胶状固体酒精(硬脂酸钠形成三维刚性空间网络结构,此空间网络结构内有很多空隙,可包含大量酒精和水而硬度不发生较大变化),或用醋酸钙为固化剂,用硝化纤维作为凝固剂。
三.主要药品与仪器
药品:糯米,米,酒曲,CaO,NaOH, 硬脂酸(醋酸钙)
仪器:全套磨口玻璃仪器,电炉,电热套,天平,移液管(10ml),洗耳球,阿贝折光仪,小纸杯,不锈钢盒。
四.实验步骤
1.制娘酒
(1)蒸饭:使糯米的淀粉受热吸水糊化,以有利于糖化发酵的正常进行。
质量要求:达到饭粒外部不糊烂,内部不白心的要求,没有团块,外硬内软。
糊化:使米的B-淀粉结晶构造破坏而a化。
(2)摊凉(散凉,使饭团散开)
(3)拌药(30—360C)要均匀,(或称接种,拌曲)
(4)落缸(“搭成凹形窝”)开始糖化和发酵,前期主要是酵母的增殖,霉菌繁殖等,需氧发酵时间7天。
(5)加红曲煮:过滤得娘酒,留下一部分,余下蒸馏制白酒。
2.白酒的制备
(1)蒸饭:米饭
(2)摊凉
(3)拌药(加药量为娘酒的2倍)
(4)落缸:固态培菌糖化
通常在入缸后,夏天为16—20小时,冬天需2h。
品温至34—370C,这时可闻到香味,饭层高度下降,并有糖化液流入穴内,糖化率达到70—80%。
这时应立即加水。
若过早加水,则由于酶系形成不充分,会影响出酒率:如果延长培菌糖化时间,则出酒率也较低。
且成品酒酸度过高而风味差。
(5)半固态发酵
培菌糖化后,根据室温,品温及水温,加入为原料量120—125%的水,使品温为34—370C。
在正常情况下,加水拌匀后的酒醅,其糖化为9—10%,总酸度不超过0.7,酒度为2—3%。
(6)蒸馏:测酒精度(体积百分数,测密度换算)
注:发酵好坏可用“黄水”判断:
黄水现酸味:说明温度过高。
收率抵。
黄水现甜味:发酵不完全,收率低。
黄水现苦味:说明曲量太大,用水不足,卫生差,收率低。
黄水现馊味:卫生差,质量差。
黄水现涩味:糖化发酵好的标志,这种母糟产酒质量好,出酒率高。
(7)原酒贮存
贮存一年以上,再化验,勾兑。
(存化,氧化,还原,脂化反应)
3.工业酒精制备
4.无水乙醇制备(P98,附氧化钙制备无水乙醇)
5.固体酒精的制备
余下工业酒精制备固体酒精 配方一
95%C 2H 5OH 90g+饱和醋酸钙10g ,搅拌,瞬时就凝结成米糕固体。
配方二
95%C 2H 5OH 90g
硬脂酸 30g
滴加NaOH 水溶液1.5g (30%)搅拌5min,倾入模具中。
95%C 2H 5OH 硬脂酸 6.5g NaOH 1 (配成酒精溶液0.1g/ml )。