使用74HC595实现IO口的扩展
玻璃外墙自动清洁机器人(验证机)_本科毕业设计论文

本科毕业论文(设计)题目:玻璃外墙自动清洁机器人(验证机)学院:物理与电子科学学院专业:电子信息科学与技术诚信承诺我谨在此承诺:本人所写的毕业论文《玻璃外墙自动清洁机器人(验证机)》均系本人独立完成,没有抄袭行为,凡涉及其他作者的观点和材料,均作了注释,若有不实,后果由本人承担。
承诺人(签名):2013 年 4 月20 日玻璃外墙自动清洁机器人(验证机)摘要:本文主要介绍了玻璃外墙自动清洁机器人的设计背景、设计思路、制作过程、工作原理、验证过程以及使用方向。
由于限于实验室条件以及对设计思路可行性的不确定性,所以决定先做一个验证机,即验证方案的可行性和对后期产品的设计提供方案。
玻璃外墙机器人在制造过程中主要使用了以下器件和材料,方管铝合金,自攻螺丝钉,铝板,DC5V步进电机,超大吸盘,微型抽气机,8mm丝杆,5mm空气导管,无线模块,5V直流电源模块,74HC595以及单片机。
玻璃外墙机器人主要是由铝合金搭建主框架,这样可以在不降低机器人强度的情况下减轻重量。
机器人铝合金结合部以铝片加自攻螺丝钉加固,运动部分使用8mm丝杆加齿轮以控制运动,动力则采用DC5V步进电机的转动带动机器人运转,在工作时,以微型抽气机抽出超大吸盘内的空气以使机器人吸在玻璃墙幕上,整个机器人使用51单片机来控制驱动,使用74HC595对单片机的I/O口进行扩展,机器人用220V交流电转5V直流电源模块供电,以确保步进电机能达到额定电流,提供强劲的动力,再用无线模块控制机器人的状态,使得机器人稳定有序的工作。
可以适合全玻璃结构的建筑体以及建筑中部分的玻璃墙面的清洁工作,它可以在无人干预的情况下完成指定玻璃墙面的清洁,替代传统的人工室外清理,。
使用玻璃外墙自动清洁机器人可以最大化的降低人的危险和劳动强度,提高工作效率,降低成本。
它还具有越障功能,对于有起伏有其他装饰材料的玻璃墙幕同样适合,同时它还能转弯,不光能垂直上下,还能向左向右移动真正做到清洁无死角。
74hc595工作原理

74hc595工作原理
74HC595是一个8位移位寄存器,通过串行输入和并行输出实现数据在多个器件之间的传输。
其工作原理如下:
1. 初始化:将ST_CP(存储器件时钟)和SH_CP(移位寄存器时钟)置为低电平,并将OE(输出使能)置为高电平。
2. 数据输入:将数据通过SER(串行输入)引脚输入到第一个74HC595的串行输入端。
3. 移位寄存器时钟:将SH_CP引脚从低电平变为高电平,数据会从SER引脚移位到移位寄存器中,每一次时钟上升沿移位一位。
4. 存储器件时钟:将ST_CP引脚从低电平变为高电平,在上升沿时,移位寄存器中的数据会被存储到存储器件中。
5. 并行输出:存储器件中的数据可以通过QA-QH引脚并行输出,每个引脚代表一个位,QH为最高有效位。
6. 循环移位:可以通过将OE引脚置为低电平,再进行一次存储器件时钟和移位寄存器时钟的操作,实现数据循环移位的效果。
总的来说,74HC595通过移位寄存器实现数据的串行输入和并行输出,可以通过控制时钟信号的触发来移位、存储和输出
数据。
这使得它可以扩展微控制器的IO口数量,广泛应用于LED显示、数码管显示、驱动继电器等数字控制场景中。
74HC595芯片对单片机IO口的扩展原理与应用

2020年第4期信息与电脑China Computer & Communication软件开发与应用74HC595芯片对单片机IO 口的扩展原理与应用杨恒敏(江苏联合职业技术学院扬州分院,江苏 扬州 225003)摘 要:单片机在使用过程中存在IO 端口有限的性能缺陷,笔者针对利用74HC595芯片扩展单片机IO 口的基本原理进行了详细分析,围绕流水灯效果、电子游戏扑克机、16×32LED 点阵显示器3个层面,探讨了单片机IO 口扩展的具体设计方案与实现路径,以期为顺利解决单片机IO 口紧缺问题提供借鉴。
关键词:74HC595芯片;单片机;IO 口扩展中图分类号:TP368.1 文献标识码:A 文章编号:1003-9767(2020)04-120-03Expanding Principle and Application of 74HC595 Chip to IO Port of SingleChip MicrocomputerYang Hengmin(Yangzhou Branch of Jiangsu Union Technical Institute, Yangzhou Jiangsu 225003, China)Abstract: There are limited performance defects of IO ports in the use of single-chip microcomputers. This article analyzesthe basic principles of using 74HC595 chip to expand the single-chip IO ports. At the level, the specific design scheme and implementation path of the expansion of the IO port of the single-chip microcomputer are discussed, in order to provide a reference for the smooth solution of the shortage of the IO port of the single-chip microcomputer.Key words: 74HC595 chip; single chip microcomputer; IO port expansion0 引言当前在使用单片机的过程中常面临IO 端口紧缺的问题,74HC595芯片作为一种通用位移缓存器,可实现8位串行输入/输出或并行输出,其电路连接方式与代码编程较为简单、驱动能力较强,并且凭借存储寄存器可保障在移位过程中并排输出端口数据不变,易于实现对单片机IO 口的扩展,具备良好的应用价值。
使用74HC595实现IO口的扩展

使用74HC595实现I/O口的扩展一、实验目的1. 了解74HC595〔串入并出〕基本原理和使用2. 了解数码管的基本原理和驱动方式3. 学会使用74HC595来驱动静态数码管二、实验器材C51单片机开发板〔含74HC595芯片,静态数码管〕1块8PIN排线1根数据线1根三、实验原理1.数码管数码管是一种半导体发光器件,其基本单元是发光二极管。
数码管按段数分为七段数码管和八段数码管〔还有一种“米”字型的数码管,其段数更多〕,八段数码管比七段数码管多一个发光二极管单元〔多一个小数点显示〕,其基本原理是:将所有LED的一端〔正极、负极均可〕连在一起作为一个公共端,然后通过分别控制这组LED的另一个端口来使部分LED点亮,从而达到显示一定字形的目的。
〔1〕数码管的分类按能显示多少个“8”可分为1位、2位、4位等等数码管;按发光二极管单元连接方式分为共阳极数码管和共阴极数码管。
共阳数码管是指将所有发光二极管的阳极接到一起形成公共阳极(COM)的数码管。
共阳数码管在应用时应将公共极COM接到+5V,当某一字段发光二极管的阴极为低电平时,相应字段就点亮。
当某一字段的阴极为高电平时,相应字段就不亮。
共阴数码管是指将所有发光二极管的阴极接到一起形成公共阴极(COM)的数码管。
共阴数码管在应用时应将公共极COM接到地线GND上,当某一字段发光二极管的阳极为高电平时,相应字段就点亮。
当某一字段的阳极为低电平时,相应字段就不亮。
我们在实际使用中一定要搞清楚数码管是共阴极的还是共阳极的。
〔2〕数码管段、位引脚的确定〔以4位8段数码管为例〕数码管引脚测量分三步:极性判断〔共阳极还是共阴极〕、公共端判断〔位选端口〕、段码端判断〔段选端口〕。
首先要确定数码管是共阴极还是共阳极的:找一个3到5V的直流电源,准备几个1K或者几百欧姆的电阻。
将电源的正极串接一个电阻后连在数码管的任意一个脚上,然后将电源的负极逐个接到数码管的其余引脚上,观察数码管的某一段是否会点亮,如果全部引脚试过都没有亮的,那么将电源正极〔串电阻〕换一个引脚再试,直到有一个LED发光,这时固定电源负极不动,电源正极〔串电阻〕逐个接到数码管的其余引脚上,如果有8段LED都亮,说明该数码管是共阴极的。
74HC595做IO口扩展

是并行数据输出口,即储寄存器的数据输出口
Q7'
串行输出口,其应该接 SPI 总线的 MISO 接口
STcp(Rck) 存储寄存器的时钟脉冲输入口
SHcp(Sck) 移位寄存器的时钟脉冲输入口
OE 非 (G)
输出使能端
MR 非(sclr) 芯片复位端
Ds
串行数据输入端
else IO0CLR = spi_ds; data <<= 1; IO0SET = spi_shcp; } IO0SET = spi_stcp; }
74HC595 简单工作原理
74HC595 是具有 8 位移位寄存器和一个存储器,三态输出功能。 移位寄存器和存储器是分 别的时钟。数据在 SCHcp 的上升沿输入,在 STcp 的上升沿进入的存储寄存器中去。如果两 个时钟连在一起,则移位寄存器总是比存储寄存器早一个脉冲。移位寄存器有一个串行移 位输入(Ds),和一个串行输出(Q7’),和一个异步的低电平复位,存储寄存器有一个并 行 8 位的,具备三态的总线输出,当使能 OE 时(为低电平),存储寄存器的数据输出到 总线。
附子程序:
void hc595send_data(uint8 data)//要传输的数据,建议用数组的方法来查询 {
uint8 i; IO0CLR = spi_stcp; 12 脚 for(i=0;i<8;i++) {
IO0CLR = spi_shcp; 11 脚 if((data&0x80)!=0)IO0SET = spi_ds;
程序说明: 每当 spi_shcp 上升沿到来时,spi_ds 引脚当前电平值在移位寄存器中左移一位,在下一个 上升沿到来时移位寄存器中的所有位都会向左移一位,同时 Q7'也会串行输出移位寄存器 中高位的值,这样连续进行 8 次,就可以把数组中每一个数(8 位的数)送到移位寄存器; 然后当 spi_stcp 上升沿到来时,移位寄存器的值将会被锁存到锁存器里,并从 Q1~7 引脚 输出。
74hc595的引脚功能和作用

74hc595的引脚功能和作用描述74HC59574HC595是硅结构的CMOS器件,兼容低电压TTL电路,遵守JEDEC标准。
74HC595是具有8位移位寄存器和一个存储器,三态输出功能。
移位寄存器和存储器是分别的时钟。
数据在SHcp 的上升沿输入,在STcp的上升沿进入的存储寄存器中去。
如果两个时钟连在一起,则移位寄存器总是比存储寄存器早一个脉冲。
移位寄存器有一个串行移位输入(Ds),和一个串行输出(Q7’),和一个异步的低电平复位,存储寄存器有一个并行8位的,具备三态的总线输出,当使能OE时(为低电平),存储寄存器的数据输出到总线。
8位串行输入/输出或者并行输出移位寄存器,具有高阻关断状态。
三态。
[编辑本段]特点8位串行输入/8位串行或并行输出存储状态寄存器,三种状态输出寄存器可以直接清除100MHz的移位频率[编辑本段]输出能力并行输出,总线驱动;串行输出;标准中等规模集成电路595移位寄存器有一个串行移位输入(Ds),和一个串行输出(Q7’),和一个异步的低电平复位,存储寄存器有一个并行8位的,具备三态的总线输出,当使能OE时(为低电平),存储寄存器的数据输出到总线。
[编辑本段]参考数据CPD决定动态的能耗,PD=CPD×VCC×f1+∑(CL×VCC2×f0) F1=输入频率,CL=输出电容f0=输出频率(MHz)Vcc=电源电压[编辑本段]引脚说明符号引脚描述Q0…Q7 15,1,7 并行数据输出GND 8 地Q7’9 串行数据输出MR 10 主复位(低电平)SHCP 11 移位寄存器时钟输入STCP 12 存储寄存器时钟输入OE 13 输出有效(低电平)DS 14 串行数据输入VCC 16 电源[编辑本段]功能表输入输出功能SHCP STCP OE MR DS Q7’Qn ××L ↓×L NC MR为低电平时仅仅影响移位寄存器×↑L L ×L L 空移位寄存器到输出寄存器××H L ×L Z 清空移位寄存器,并行输出为高阻状态↑×L H H Q6 NC 逻辑高电平移入移位寄存器状态0,包含所有的移位寄存器状态移入,例如,以前的状态6(内部Q6”)出现在串行输出位。
基于arduino的74HC595扩展I

基于arduino的74HC595扩展I/O口方案辽工电子2013.5.174HC595内部原理图图注:G在实际使用中可以悬空,但将导致输出电压不稳。
可以常为低电平,即开通状态。
图示时序图传送的数据是“010”,两种时序图其结果是一样的,因为74595是上升沿读数的。
在arduino上的程序为(蓝色字体代码固定,可做循环):#define CLK 12//NO.11#define SER 13//NO.14#define RCK 11//NO.12#define G 10//NO.13#define RCLR 9//NO.10void setup() {pinMode(CLK, OUTPUT);pinMode(SER, OUTPUT);pinMode(RCK, OUTPUT);pinMode(G, OUTPUT);pinMode(RCLR, OUTPUT);}void loop() {digitalWrite(RCLR, HIGH); //un use it digitalWrite(G, HIGH); //close itdigitalWrite(RCK, LOW); //twice clkis still low//begin send itdigitalWrite(CLK, LOW);digitalWrite(SER, LOW);delay(1);digitalWrite(CLK, HIGH);delay(1); //1digitalWrite(CLK, LOW);digitalWrite(SER, HIGH);delay(1);digitalWrite(CLK, HIGH);delay(1); //2digitalWrite(CLK, LOW);digitalWrite(SER, LOW);delay(1);digitalWrite(CLK, HIGH);delay(1); //3//end itdigitalWrite(G, LOW); //open itdigitalWrite(RCK, HIGH); //give oneanotherdelay(1);digitalWrite(RCK, LOW); //return itwhile(1);//it's real end}这样输出的结果为0100,0000。
74hc595的引脚功能和作用

描述74HC59574HC595是硅结构的CMOS器件,兼容低电压TTL电路,遵守JEDEC标准。
74HC595是具有8位移位寄存器和一个存储器,三态输出功能。
移位寄存器和存储器是分别的时钟。
数据在SHcp的上升沿输入,在STcp的上升沿进入的存储寄存器中去。
如果两个时钟连在一起,则移位寄存器总是比存储寄存器早一个脉冲。
移位寄存器有一个串行移位输入(Ds),和一个串行输出(Q7’),和一个异步的低电平复位,存储寄存器有一个并行8位的,具备三态的总线输出,当使能OE时(为低电平),存储寄存器的数据输出到总线。
8位串行输入/输出或者并行输出移位寄存器,具有高阻关断状态。
三态。
[编辑本段]特点8位串行输入/8位串行或并行输出存储状态寄存器,三种状态输出寄存器可以直接清除100MHz的移位频率[编辑本段]输出能力并行输出,总线驱动;串行输出;标准中等规模集成电路595移位寄存器有一个串行移位输入(Ds),和一个串行输出(Q7’),和一个异步的低电平复位,存储寄存器有一个并行8位的,具备三态的总线输出,当使能OE时(为低电平),存储寄存器的数据输出到总线。
[编辑本段]参考数据CPD决定动态的能耗,PD=CPD×VCC×f1+∑(CL×VCC2×f0) F1=输入频率,CL=输出电容f0=输出频率(MHz)Vcc=电源电压[编辑本段]引脚说明符号引脚描述Q0…Q7 15,1,7 并行数据输出GND 8 地Q7’ 9 串行数据输出MR 10 主复位(低电平)SHCP 11 移位寄存器时钟输入STCP 12 存储寄存器时钟输入OE 13 输出有效(低电平)DS 14 串行数据输入VCC 16 电源[编辑本段]功能表输入输出功能SHCP STCP OE MR DS Q7’ Qn × × L ↓ × L NC MR为低电平时仅仅影响移位寄存器× ↑ L L × L L 空移位寄存器到输出寄存器×× H L × L Z 清空移位寄存器,并行输出为高阻状态↑ × L H H Q6 NC 逻辑高电平移入移位寄存器状态0,包含所有的移位寄存器状态移入,例如,以前的状态6(内部Q6”)出现在串行输出位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
使用74HC595实现I/O口的扩展一、实验目的1. 了解74HC595(串入并出)基本原理和使用2. 了解数码管的基本原理和驱动方式3. 学会使用74HC595来驱动静态数码管二、实验器材C51单片机开发板(含74HC595芯片,静态数码管)1块8PIN排线1根数据线1根三、实验原理1. 数码管数码管是一种半导体发光器件,其基本单元是发光二极管。
数码管按段数分为七段数码管和八段数码管(还有一种“米”字型的数码管,其段数更多),八段数码管比七段数码管多一个发光二极管单元(多一个小数点显示),其基本原理是:将所有LED的一端(正极、负极均可)连在一起作为一个公共端,然后通过分别控制这组LED的另一个端口来使部分LED点亮,从而达到显示一定字形的目的。
(1)数码管的分类按能显示多少个“8”可分为1位、2位、4位等等数码管;按发光二极管单元连接方式分为共阳极数码管和共阴极数码管。
共阳数码管是指将所有发光二极管的阳极接到一起形成公共阳极(COM)的数码管。
共阳数码管在应用时应将公共极COM接到+5V,当某一字段发光二极管的阴极为低电平时,相应字段就点亮。
当某一字段的阴极为高电平时,相应字段就不亮。
共阴数码管是指将所有发光二极管的阴极接到一起形成公共阴极(COM)的数码管。
共阴数码管在应用时应将公共极COM接到地线GND上,当某一字段发光二极管的阳极为高电平时,相应字段就点亮。
当某一字段的阳极为低电平时,相应字段就不亮。
我们在实际使用中一定要搞清楚数码管是共阴极的还是共阳极的。
(2)数码管段、位引脚的确定(以4位8段数码管为例)数码管引脚测量分三步:极性判断(共阳极还是共阴极)、公共端判断(位选端口)、段码端判断(段选端口)。
首先要确定数码管是共阴极还是共阳极的:找一个3到5V的直流电源,准备几个1K或者几百欧姆的电阻。
将电源的正极串接一个电阻后连在数码管的任意一个脚上,然后将电源的负极逐个接到数码管的其余引脚上,观察数码管的某一段是否会点亮,如果全部引脚试过都没有亮的,那么将电源正极(串电阻)换一个引脚再试,直到有一个LED发光,这时固定电源负极不动,电源正极(串电阻)逐个接到数码管的其余引脚上,如果有8段LED都亮,说明该数码管是共阴极的。
相反,按住电源正极不动,电源负极逐个接到数码管的其余引脚上,如果有8个数码管全亮,那么该数码管是共阳极的。
确定了数码管的极性后,下面该确定数码管的位选端口了。
仍旧按照第一步的测量方法,如果测量过程中发现当一个引脚固定后,逐个连接到其余端口上的时候,会有一个数码管的所有段都被点亮了,那么这个固定端就是一个位选端。
依照这种方法依次找出其余的3个位选端即可。
最后确定段选端口,根据数码管的极性将电源正极(串电阻)或负极固定在一个位选端上,然后将电源的另一端逐个连接数码管的位选端口以外的引脚,当接到一个引脚上数码管的哪一段点亮,就能够确定该引脚对应那一段了,依次量出全部8段分别对应那个引脚。
经过上面的步骤后,我们就完成了数码管引脚的确定,其实在实际使用过程中,操作熟练的话是不必经过这么繁琐的步骤来确定数码管的引脚的。
(3)数码管的驱动方式:数码管要正常显示,就要用驱动电路来驱动数码管的各个段码,从而显示出我们要的数字,根据数码管的驱动方式的不同,可以分为静态式和动态式两类。
①静态显示驱动:静态驱动也称直流驱动。
静态驱动是指将公共端接到电源正极或者电源地上,每个数码管的每一个段码都由一个单片机的I/O端口进行驱动,或者使用如BCD码二-十进制译码器译码进行驱动。
静态驱动的优点是编程简单,显示亮度高,缺点是占用I/O端口多,如驱动5个数码管静态显示则需要5×8=40根I/O端口来驱动,要知道一个89S51单片机可用的I/O端口才32个呢:),实际应用时必须增加译码驱动器进行驱动,增加了硬件电路的复杂性。
②动态显示驱动:数码管动态显示接口是单片机中应用最为广泛的一种显示方式之一,动态驱动是将所有数码管的8个显示笔划"a,b,c,d,e,f,g,dp"的同名端连在一起,另外为每个数码管的公共极COM增加位选通控制电路,位选通由各自独立的I/O线控制,当单片机输出字形码时,所有数码管都接收到相同的字形码,但究竟是那个数码管会显示出字形,取决于单片机对位选通COM端电路的控制,所以我们只要将需要显示的数码管的选通控制打开,该位就显示出字形,没有选通的数码管就不会亮。
通过分时轮流控制各个数码管的的COM端,就使各个数码管轮流受控显示,这就是动态驱动。
在轮流显示过程中,每位数码管的点亮时间为1~2ms,由于人的视觉暂留现象及发光二极管的余辉效应,尽管实际上各位数码管并非同时点亮,但只要扫描的速度足够快,给人的印象就是一组稳定的显示数据,不会有闪烁感,动态显示的效果和静态显示是一样的,能够节省大量的I/O端口,而且功耗更低。
在实际使用中,通常都是采用动态显示驱动的方法。
在本实例中我们采用的静态驱动的方法。
2. 74HC595功能描述在本实例中我们使用了一片74HC595来驱动8位数码管的位选端口,下面就简单介绍一下74HC595的功能。
74HC595是带锁存功能的三态输出的8位串行输入/并行输出的移位寄存器。
由于它自带锁存器,所以其数据在移位寄存器中的移位与锁存器的输出是独立的,当数据移位时,可以保持锁存器输出的数据不改变,等所有8位数据全部串入完成移位操作后,一次性的将数据打入锁存器中,从而实现了并行输出的同步改变。
另外该芯片可以进行级联,能够实现8Xn个并口扩展。
下图是74HC595的逻辑功能表74HC595管脚描述:QA--QH: 八位并行输出端,可以直接控制数码管的8个段。
QH': 级联输出端。
我将它接下一个595的SI端。
SI: 串行数据输入端。
74595的控制端说明:/SCLR(10脚): 复位引脚,低电平时将移位寄存器的数据清零。
一般情况下接Vcc。
SCK(11脚):时钟引脚,上升沿时数据寄存器的数据移位。
QA-->QB-->QC-->...-->QH;下降沿移位寄存器数据不变。
(脉冲宽度:5V时,大于几十纳秒就行了。
RCK(12脚):锁存引脚,上升沿时移位寄存器的数据进入数据存储寄存器,下降沿时存储寄存器数据不变。
通常将RCK置为低电平,当移位结束后,在RCK端产生一个正脉冲(5V时,大于几十纳秒就行了),更新显示数据。
/G(13脚): 使能引脚。
高电平时禁止输出(高阻态)。
如果单片机的引脚不紧张,用一个引脚控制它,可以方便地产生闪烁和熄灭效果。
比通过数据端移位控制要省时省力,通常可以直接接地GND。
A(14脚):数据串入引脚。
74595的主要优点是具有数据存储寄存器,在移位的过程中,输出端的数据可以保持不变。
这在串行速度慢的场合很有用处,数码管没有闪烁感。
74HC595还具有SPI功能,但在本例中我们先不使用,我们直接用单片机的普通I/O口模拟74HC595的时序来实现数据的串入并出功能。
从74HC595的逻辑功能表中我们可以分析出74HC595的工作过程:数据的串入和内部数据移位的操作由SCLK控制。
SCLK 的上升沿将移位寄存器中的数据由Qa向Qh依次移动一位,同时将数据线上的电平打入Qa,而最高位的数据Qh从SQh端移出。
如果把SQh与另一片74HC595的数据端连接,那么SQh的串行输出就是第2片74HC595的串行数据输入,从而实现级联。
74HC595在移位的过程中并不影响其锁存器的输出,移位寄存器中的数据是通过锁存端的上升沿打入到锁存器中的。
正是由于74HC595具备了锁存功能,因而可以保证并行输出数据的稳定和数据同步改变的功能。
经过以上分析我们可以得出74HC595控制数据输入输出的实现步骤:1、在SCLK上升沿期间将数据端串入的数据经过发送到移位寄存器中,如果需要发送8位的数据,则需要8个SCLK上升沿才能将8位数据全部输入到移位寄存器中。
2、使锁存端产生一个上升沿,从而将移位寄存器中的数据打入到锁存器中并输出。
本实例中8位数码管显示电路的工作原理:8位数码管的8个段选端口全部并联接到单片机的PB口上。
74HC595控制8位数码管的8个位选端,当某位选通后,点亮该位的数码管,使它显示相应的数字。
3. 实验原理图(Protues仿真图)四、实验操作步骤1. JP595用跳线冒短接,JP1302跳线帽断接或取下,JP3和JP2 用8PIN排线连接。
2.用数据线将单片机开发板与PC机连接好。
3.打开Keil软件,新建一个工程(记住工程所保存的位置),将所给HC595_LED.c(或HC595_LED.asm)文件添加到这个工程中,然后进行编译,编译完成后,打开工程所保存的文件夹,可以看到此工程中生成了一个HC595_LED.hex的文件。
4.打开烧录软件,单击窗口中的“打开文件”,选中上述生成的HC595_LED.hex的文件,然后打开单片机开发板的电源,再单击烧录软件窗口中的“下载程序”,当窗口中出现“文件下载完毕,数据下载成功”字样后,程序下载成功。
5.程序下载成功后,观察单片机开发板上静态数码管的现象:最开始静态数码管会显示数字2,然后依次跳变为3,4,5,6,7,8,9,A,B,C,D,E,F。
显示F后会跳变为0,再依次增加,循环显示0-F。
如果想再次从头观察现象可以按复位键RSTK。
6.实验完成后,先关闭单片机开发板的电源,再将接线拆下,最后要将实验仪器放回原处。
五、实验流程图六、小结1. 通过此例程,可以熟悉我们所使用的C51单片机开发板,了解74HC595芯片和数码管的构造和原理,理解串入并出的原理与方法,也更进一步熟练Protues仿真图的制作。
2. 作此实验之前最好先查一些资料,了解本例程所要用的C51芯片、74HC595芯片和数码管,了解它们各引脚的作用和工作原理,帮助看懂此例程的程序和仿真图。
3. 仿真图中所用芯片可能与开发板上的或程序所给的不是同一款,但它们可以实现相同的功能,通过了解各引脚功能可得知它们引脚的对应关系。
七、实物图。