第五章控制系统的频率特性分析法
合集下载
控制工程 第5章 系统的频率特性

解:系统的频响函数(频响特性)、幅频特性和相频 特性分别为
频响函数 幅频特性 相频特性
1 G ( j ) 1 j 0.005 1 | G ( j ) | 1 (0.005 )2 0 0.005 ( ) arctan arctan 1 1 arctan(0.005 )
可见:输入信号频率越高,稳态输出幅值衰减越大,相移越大(这正是惯性环节 的频响特性)。
18:10:18
5-1 频率特性
本例题也可以采用第 4 章介绍的求时间响应的方法获 得稳态响应,即利用传递函数求出零状态响应,然后分 解出其中的稳态响应。 而利用频响函数可直接求出稳态 响应。
21
y( t ) L [Y ( s )] 0.555e 200 t
m k f (t)/x (t) f(t)—力
A
f(t) = Asin(ωt)
A B
x(t)—位移 B
0 -A
ωt
υ
单自由度有阻尼振动 x(t) = Bsin(ωt+υ)+瞬态响应 系统力学模型 教材101页图5-2中的标注“υ”不对,应改成“υ/ω”,
18:10:18
或将横坐标标尺改成“ωt”。
5-1 频率特性
相频特性 = 正弦信号稳态响应相角 - 正弦输入信号相角
幅频特性和相频特性合起来描述了系统的频响特 性或频率特性。
18:10:18
13
5-1 频率特性
系统频率特性的获得 解析法 令输入x(t)=x0sin(t),求解微分方程的特解(稳 态解)。可以利用拉氏变换求解;
利用频率响应函数;
实验法
输入正弦信号,测量稳态输出。
18:10:18
5-1 频率特性
利用频率响应函数求频率特性 频率响应函数的定义:对连续线性定常系统,输出 的付立叶变换 C(j) 与输入的付立叶变换 R(j) 之比 ,叫频率响应函数,简称频响函数,也称为正弦传 递函数,记作G(j) 。即
频响函数 幅频特性 相频特性
1 G ( j ) 1 j 0.005 1 | G ( j ) | 1 (0.005 )2 0 0.005 ( ) arctan arctan 1 1 arctan(0.005 )
可见:输入信号频率越高,稳态输出幅值衰减越大,相移越大(这正是惯性环节 的频响特性)。
18:10:18
5-1 频率特性
本例题也可以采用第 4 章介绍的求时间响应的方法获 得稳态响应,即利用传递函数求出零状态响应,然后分 解出其中的稳态响应。 而利用频响函数可直接求出稳态 响应。
21
y( t ) L [Y ( s )] 0.555e 200 t
m k f (t)/x (t) f(t)—力
A
f(t) = Asin(ωt)
A B
x(t)—位移 B
0 -A
ωt
υ
单自由度有阻尼振动 x(t) = Bsin(ωt+υ)+瞬态响应 系统力学模型 教材101页图5-2中的标注“υ”不对,应改成“υ/ω”,
18:10:18
或将横坐标标尺改成“ωt”。
5-1 频率特性
相频特性 = 正弦信号稳态响应相角 - 正弦输入信号相角
幅频特性和相频特性合起来描述了系统的频响特 性或频率特性。
18:10:18
13
5-1 频率特性
系统频率特性的获得 解析法 令输入x(t)=x0sin(t),求解微分方程的特解(稳 态解)。可以利用拉氏变换求解;
利用频率响应函数;
实验法
输入正弦信号,测量稳态输出。
18:10:18
5-1 频率特性
利用频率响应函数求频率特性 频率响应函数的定义:对连续线性定常系统,输出 的付立叶变换 C(j) 与输入的付立叶变换 R(j) 之比 ,叫频率响应函数,简称频响函数,也称为正弦传 递函数,记作G(j) 。即
孙炳达版 《自动控制原理》第5章 控制系统的频率特性分析法-1

5.1 频率特性的基本概念
在工程实践中, 往往并不需要准确地计算系 统响应的全部过程,而是希望避开繁复的计算, 简单、直观地分析出系统结构、参数对系统性能 的影响。因此,主要采用两种简便的工程分析方 法来分析系统性能,这就是根轨迹法与频率特性 法,本章将详细介绍控制系统的频率特性法。 控制系统的频率特性分析法是利用系统的频 率特性(元件或系统对不同频率正弦输入信号的 响应特性)来分析系统性能的方法,研究的问题 仍然是控制系统的稳定性、快速性及准确性等, 是工程实践中广泛采用的分析方法,也是经典控 制理论的核心内容。
5.1 频率特性的基本概念
二、频率特性和传递函数之间的关系
( j ) ( s ) s j
频率特性就是在s=jω时的传递函数,它也是 系统或环节的数学模型,描述了系统的运动规律 及其性能。 频率特性可以通过传递函数求取(解析法), 也可以用专门的仪器、通过实验的方法求取。
5.1 频率特性的基本概念
yss ( j 2) X sin(2t ) 0.35sin(2t 45 )
5.1 频率特性的基本概念
频率特性的物理意义
1、在某一特定频率下,系统输入输出的幅值比与相位差 是确定的数值,不是频率特性。当输入信号的频率ω在0→∞的 范围内连续变化时,则系统输出与输入信号的幅值比与相位差 随输入频率的变化规律将反映系统的性能,才是频率特性 。 2、频率特性反映系统本身性能,取决于系统结构、参数, 与外界因素无关。 3、 频率特性随输入频率变化的原因是系统往往含有电容、 电感、弹簧等储能元件,导致输出不能立即跟踪输入,而与输 入信号的频率有关。 4、频率特性表征系统对不同频率正弦信号的跟踪能力, 一般有“低通滤波”与“相位滞后”作用。
第五章 频率特性法 (2)

1 1
斜率 (dB/dec) 0 -20 -40 0,-20 ,
特殊点 ω L( )=lgK ω =1, L( )=0 ω ω =1, L( )=0 ω
φ(ω) 0o -90o -180o
s2 1 Ts+1
1+τs
ωn 2 s2+2ζ ωns+ωn
2
转折ω = 1 0o -90o ~ 频率 T 转折ω = 1 0o~90o 0,20 频率 , τ 0,-40 转折 ω =ω n 0o~-180o , 频率
一、典型环节的频率特性 二、控制系统开环频率特性
第二节 典型环节与系统的频率特性
一 典型环节的频率特性
1.比例环节 .
传递函数和频率特性 G(s)=K G(jω)=K 幅频特性和相频特性 A(ω)=K φ(ω)=0o (1) 奈氏图 奈氏图是实轴上的 点 奈氏图是实轴上的K点。 是实轴上的 比例环节的奈氏图
第二节 典型环节与系统的频率特性
(1) 奈氏图
振荡环节的奈氏图
Im
ω=0 =∞
A(ω)=1 A(ω)=0 (ω)=0o φ(ω)=-180o 1 A(ω)= 2ζ 率特性曲线因ζ值 率特性曲线因 值 φ(ω)=-90o 不同而异. 的不同而异
ω ∞
0
1
ω=0
Re
ω=ωn 振荡环节的频
ω= ωn
ξ=0.8 ξ=0.6 ξ=0.4
积分环节的伯德图
40 20 0 -20 0.1 1
L(ω)/dB -20dB/dec
10
ω
Φ(ω)
0 0.1 1 10
φ(ω)=-90o
ω
-90
第二节 典型环节与系统的频率特性
3.微分环节 .
斜率 (dB/dec) 0 -20 -40 0,-20 ,
特殊点 ω L( )=lgK ω =1, L( )=0 ω ω =1, L( )=0 ω
φ(ω) 0o -90o -180o
s2 1 Ts+1
1+τs
ωn 2 s2+2ζ ωns+ωn
2
转折ω = 1 0o -90o ~ 频率 T 转折ω = 1 0o~90o 0,20 频率 , τ 0,-40 转折 ω =ω n 0o~-180o , 频率
一、典型环节的频率特性 二、控制系统开环频率特性
第二节 典型环节与系统的频率特性
一 典型环节的频率特性
1.比例环节 .
传递函数和频率特性 G(s)=K G(jω)=K 幅频特性和相频特性 A(ω)=K φ(ω)=0o (1) 奈氏图 奈氏图是实轴上的 点 奈氏图是实轴上的K点。 是实轴上的 比例环节的奈氏图
第二节 典型环节与系统的频率特性
(1) 奈氏图
振荡环节的奈氏图
Im
ω=0 =∞
A(ω)=1 A(ω)=0 (ω)=0o φ(ω)=-180o 1 A(ω)= 2ζ 率特性曲线因ζ值 率特性曲线因 值 φ(ω)=-90o 不同而异. 的不同而异
ω ∞
0
1
ω=0
Re
ω=ωn 振荡环节的频
ω= ωn
ξ=0.8 ξ=0.6 ξ=0.4
积分环节的伯德图
40 20 0 -20 0.1 1
L(ω)/dB -20dB/dec
10
ω
Φ(ω)
0 0.1 1 10
φ(ω)=-90o
ω
-90
第二节 典型环节与系统的频率特性
3.微分环节 .
自动控制系统—— 第5章-1 频率特性及其表示法

Mod5_1_1.mdl Mod5_1_1Prg.m
7
(1)输入为 ui (t) sin t 相对输入,输出有相位差,幅度不同
8
(2)输入为 ui (t) sin 2t 输出有相位差,峰值衰减,输入峰值不变
9
(3)输入为 ui (t) sin 3t 输出有相位差,初始段峰值衰减,之后峰值稳定
2
引言
频域分析法:应用频率特性研究线性系统的经典 方法称为频域分析法 引入频域模型:频率特性函数
线性定常系统的数学模型: 时域模型: 常微分方程
复数域模型: 传递函数 频域模型: 频率特性函数
3
频域分析的内容: 1.频率特性及其表示:幅相曲线,Bode图 2.典型环节的频率特性:一阶环节,二阶环节 3.Nyquist稳定判据:基于幅相曲线、Bode图 4.稳定裕度:幅值稳定裕度,相位稳定裕度 5.频域指标:带宽、谐振频率、谐振峰值等
cs (t) Kce jt K ce jt
K c 和 K c 可以由留数计算得到
Kc
G(s)
(s
A j)(s
j)
(s
j)
s j
G( j)A
2j
Kc
G(s)
(s
A j)(s
j)
(s
j)
s j
G( j)A
2j
22
由于 G( j) A()e j()
G( j) 与 G( j) 是共轭的
所以 G( j) A()e j()
Kc
G( j,) A
2j
A 2j
A()e j()
Kc
G( j)A
2j
A 2j
A()e
j ( )
代入 cs (t) Kce jt K ce jt
7
(1)输入为 ui (t) sin t 相对输入,输出有相位差,幅度不同
8
(2)输入为 ui (t) sin 2t 输出有相位差,峰值衰减,输入峰值不变
9
(3)输入为 ui (t) sin 3t 输出有相位差,初始段峰值衰减,之后峰值稳定
2
引言
频域分析法:应用频率特性研究线性系统的经典 方法称为频域分析法 引入频域模型:频率特性函数
线性定常系统的数学模型: 时域模型: 常微分方程
复数域模型: 传递函数 频域模型: 频率特性函数
3
频域分析的内容: 1.频率特性及其表示:幅相曲线,Bode图 2.典型环节的频率特性:一阶环节,二阶环节 3.Nyquist稳定判据:基于幅相曲线、Bode图 4.稳定裕度:幅值稳定裕度,相位稳定裕度 5.频域指标:带宽、谐振频率、谐振峰值等
cs (t) Kce jt K ce jt
K c 和 K c 可以由留数计算得到
Kc
G(s)
(s
A j)(s
j)
(s
j)
s j
G( j)A
2j
Kc
G(s)
(s
A j)(s
j)
(s
j)
s j
G( j)A
2j
22
由于 G( j) A()e j()
G( j) 与 G( j) 是共轭的
所以 G( j) A()e j()
Kc
G( j,) A
2j
A 2j
A()e j()
Kc
G( j)A
2j
A 2j
A()e
j ( )
代入 cs (t) Kce jt K ce jt
孙炳达版 《自动控制原理》第5章 控制系统的频率特性分析法-7

(c ) 0 (c ) 0 (c ) 0
系统是稳定的 系统是临界稳定的 系统是不稳定的
5.7用开环频率特性分析系统的动态性能
3. 增益裕量G.M. (幅值裕量) 相角为-180o这一频率值ωg所对应的幅值倒数的分贝数。
1 G.M . 20lg 20lg Gk ( jg ) 20lg A(g ) Gk ( jg )
5.7用开环频率特性分析系统的动态性能
1.低频段 表征了系统的稳态性能即控制精度。从稳态而 言,总希望K大些,系统类型高些,这样稳态误差 就小些。 2.高频段 反映系统的抗干扰能力,斜率越负,抗干扰能 力越强。
5.7用开环频率特性分析系统的动态性能
三、频域性能与时域性能的关系 对于二阶系统 1. γ(ωc)与σ%的关系(平稳性)
自动控制原理
第五章 控制系统的频率特性分析法
5.7 用开环频率特性分析系统的动态性能
5.7用开环频率特性分析系统的动态性能
一、开环频域性能指标
1.截止频率ωc 对数幅频特性等于0分贝时的ω值,即截止频率ωc表 征响应的快速性能, ωc越大,系统的快速性能越好。
L(c ) 20lg A(c ) 0 A(c ) 1
2.相位裕量γ(ωc)
相频特性曲线在ω= ωc时的相角值φ(ωc)与-180°之差。
(c ) (c ) 180
5.7用开环频率特性分析系统的动态性能
相位裕量的物理意义是,为了保持系统稳定, 系统开环频率特性在ω= ωc时所允许增加的最大相 位滞后量。 如果将矢量顺时针旋过γ角度,系统就处于临 界稳定状态。 对于最小相位系统,相位裕量与系统的稳定性 有如下关系:
②中频段的斜率为-40dB/dec,系统相当于阻尼系数 ζ=0的二阶系统,所以h不宜过宽; h越宽,平稳性越差。 ③中频段的斜率为-60dB/dec,系统不稳定。 重要结论:控制系统要具有良好的性能,中频段的 斜率必须为-20dB/dec,而且要有一定的宽度(通常 为5~10); 应提高截止频率来提高系统的快速性。
系统是稳定的 系统是临界稳定的 系统是不稳定的
5.7用开环频率特性分析系统的动态性能
3. 增益裕量G.M. (幅值裕量) 相角为-180o这一频率值ωg所对应的幅值倒数的分贝数。
1 G.M . 20lg 20lg Gk ( jg ) 20lg A(g ) Gk ( jg )
5.7用开环频率特性分析系统的动态性能
1.低频段 表征了系统的稳态性能即控制精度。从稳态而 言,总希望K大些,系统类型高些,这样稳态误差 就小些。 2.高频段 反映系统的抗干扰能力,斜率越负,抗干扰能 力越强。
5.7用开环频率特性分析系统的动态性能
三、频域性能与时域性能的关系 对于二阶系统 1. γ(ωc)与σ%的关系(平稳性)
自动控制原理
第五章 控制系统的频率特性分析法
5.7 用开环频率特性分析系统的动态性能
5.7用开环频率特性分析系统的动态性能
一、开环频域性能指标
1.截止频率ωc 对数幅频特性等于0分贝时的ω值,即截止频率ωc表 征响应的快速性能, ωc越大,系统的快速性能越好。
L(c ) 20lg A(c ) 0 A(c ) 1
2.相位裕量γ(ωc)
相频特性曲线在ω= ωc时的相角值φ(ωc)与-180°之差。
(c ) (c ) 180
5.7用开环频率特性分析系统的动态性能
相位裕量的物理意义是,为了保持系统稳定, 系统开环频率特性在ω= ωc时所允许增加的最大相 位滞后量。 如果将矢量顺时针旋过γ角度,系统就处于临 界稳定状态。 对于最小相位系统,相位裕量与系统的稳定性 有如下关系:
②中频段的斜率为-40dB/dec,系统相当于阻尼系数 ζ=0的二阶系统,所以h不宜过宽; h越宽,平稳性越差。 ③中频段的斜率为-60dB/dec,系统不稳定。 重要结论:控制系统要具有良好的性能,中频段的 斜率必须为-20dB/dec,而且要有一定的宽度(通常 为5~10); 应提高截止频率来提高系统的快速性。
第五章频率特性法

教学内容
1、频率特性的概念 2、典型环节频率特性
3、开环幅相曲线绘制方法,重点:开环对数频率特性曲线
4、频域稳定判据,奈奎斯特判据,对数频率稳定判据 5、稳定裕度的概念 6、闭环系统的频域指标
5-1 频率特性
频率特性法:用频率特性作为数学模型来分析和设 计系统的方法。 优点:①具有明确的物理意义; ②计算量很小,采用近似作图法,简单、直 观,易于在工程技术中使用; ③可以采用实验的方法求出系统或元件的频 率特性。
1 1 (T1 )
2
1 1 (T2 )
2
k
相频特性: ( ) tan1 T1 tan1 T2
1.确定开环幅相曲线的起点和终点
0时, G ( j 0) k (0) 0 时, G ( j 0) 0 (0) -180
式中, φ=-arctgωτ。
式(5.3)的等号右边 , 第一项是输出的暂态分量 , 第
二项是输出的稳态分量。 当时间t→∞ 时, 暂态分量趋 于零, 所以上述电路的稳态响应可以表示为
1 1 limuo (t ) sin( t ) U sin t (5.4) 2 2 t 1 j 1 j 1 U
0
ω 0 1/T ∞
∠G(jω ) 0º -90º -180º
│G(jω │ 1 1/2ζ 0
U(ω ) 1 0 0
V(ω )
-0.5
ζ =0.2— 0.8
0 -1/2ζ 0
-1.5 -0.5 0 0.5 1 1.5 -1
振荡环节的幅相曲线
: 0 , G ( j )曲 线 有 单 调 衰 减 和 谐 两 振种形式。
第五章 频率特性分析法

由于 G( j ) G(s) s j 是一个复数,可写为
G( j ) G( j ) e
jG ( j )
A( )e
j ( )
G( j ) 和 G( j )是共轭的,故 G( j ) 可写成
G( j ) A( )e
j ( )
R Kc A( )e j ( ) 2j R K c A( )e j ( ) 2j
Kc e
jt
K c e
jt
若系统稳定, G ( s ) 的极点均为负实根。当 t 时得 c(t ) 的稳态分量为 css (t ) lim c(t ) K c e jt K c e jt
t
R G ( j ) R 其中 K c G( s) ( s j ) s j ( s j )(s j ) 2j R G ( j ) R K c G ( s) ( s j ) s j ( s j )(s j ) 2j
为方便讨论,设所有极点为互不相同的实数。
若输入信号为正弦函数,即
r (t ) R sin t
其拉氏变换为
R R R( s ) 2 2 s ( s j )(s j )
N ( s) X 则 C ( s) ( s p1 )(s p2 ) (s pn ) ( s j )(s j )
第5章 线性系统的频域分析法
频率特性是研究控制系统的一种工程方法, 应用频率特性可间接地分析系统的动态性能和稳 态性能。频域分析法的突出优点是可以通过实验 直接求得频率特性来分析系统的品质,应用频率 特性分析系统可以得出定性和定量的结论,并具 图表及经验公式。
有明显的物理含义,频域法分析系统可利用曲线、
控制系统--第五章 系统频率响应分析

第五章 系统频率响应分析 5.1.2 频率特性的特点和作用 1. 频率特性可通过频率响应试验求取
根据频率特性的定义,首先改变输入正弦信号 Xie jt 的频率 并测出与此相应的输出幅值Xo ()与相移 ()。然后作出幅值比 Xo () / Xi 对频率 的函数曲线,此即幅频特性曲线;作出相移 () 对频率 的函数曲线,此即相频特性曲线。
Im
[G(jω)] 0
ω=∞
Re -90°
定的相位滞后。
ω
3. 微分环节
图5.7 积分环节的Nyquist图
传递函数 频率特性
G(s) Xo (s) Ts Xi (s)
G( j) = jT
第五章 系统频率响应分析
实频特性恒为0,虚频特性则为 ;
幅频特性|G(j)| = ,相频特性∠ G(j) = 90°。
G(s)Xi (s)
bmsm ansn
bm1sm-1 b1s bo a n1sn1 a1s a o
Xi s2 2
(5.5) (5.6)
第五章 系统频率响应分析
若系统无重极点,则上式可写为
Xo (s)
n i1
Ai s si
( B s j
B* ) s j
(5.7)
其中,si为系统特征方程的根;Ai、B、B* (B*为B 的共轭负数)
(5.12)
式中 u()是频率特性的实部,称为实频特性;
v()是频率特性的虚部,称为虚频特性。
综上所述,一个系统可以用微分
微分方程 dtd
sபைடு நூலகம்
dt d
jω
方程或传递函数来描述,也可以用频
系统
率特性来描述。他们之间的相互关系 如图5.3所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
50 验证:高频段渐近线斜率为-20(n-m)dB/dec
例题40:开环传函 解: γ=1
G (S )
10 (1 0 . 1 S ) S (1 0 . 5 S )
画其频率特性图。
G ( j )
10 (1 0 . 1 j ) j (1 0 . 5 j )
dB
转折频率:2、10
它相当与两个环节,超前、滞后,谁小就先起作 用,就称为那种补偿器。
频率特性:
G ( j ) 1 Tj 1 Tj 1T
2 2 2 2
1 T 1T
2 2 2 2
e
2
j ( tg
1
T tg
1
T )
20 lg G ( j ) 20 lg
Tω>>1时
20 lg G ( j ) 10 lg T
2
2
20 lg T
转折频率: 20lgTω=0
ω=1/T
dB
转折频率 lgω
υ
lgω
-900
一阶超前环节
G ( S ) TS 1 G ( j ) Tj 1 T
2 2
1e
jtg
lg G ( j ) lg G ( j ) lg e
lg G 0 . 434 j
取对数的目的是为了简化运算,使乘积变为加法运算 以20lg|G(jω)|(db,分贝)为纵坐标,以频率的对数为 横坐标绘制的图形称之为幅频特性图;以相角为为纵坐标, 以频率的对数为横坐标绘制的图形称之为相频特性图。以上 二图称之为Bode图。 一、典型因子的Bode图 比例;微积分;一阶超前、滞后系统;二阶超前、 滞后系统; 纯滞后超前补偿器与滞后补偿器
y ( t ) ae
j t
ae
j t
a G ( S ) R ( S )( S j ) a G ( S ) R ( S )( S j )
G ( j ) G ( j ) e y (t )
j j
S j
G ( j ) G ( j )
0.1
1
10
lgω
三、由Bode图估计系统的传递函数: 步骤: 根据实验数据画出Bode图; 作对 数幅频特性的渐近线; 根据渐近线斜率的变化来识别传函中的所有因子。
四、对数幅频特性与相频特性间的关系
Bode定理: 对于最小相位系统,对数幅频特性的 斜率为-20Ndb/dec,对应的相角位移为 -90N。 例题41:已知某系统的开环传递函数为
1 T
( ) tg
2
1
T tg
1
T
二、开环对数频率特性的绘制 (将开环传函表示成时间常数形式) 10根据开环传函,写出其频率特性表达式,确定各组成 因子的转折频率,由小到大标于频率轴上;
20低频段:斜率为-20γ dB/dec(γ为积分阶次),在 ω=1处,L(ω)=20lg|G(jω)|=20lgK 30 沿着频率增大的方向,每遇到一次转折,频率改变一 次分段直线的斜率; 遇到惯性环节的交接频率,斜率增加-20dB/dec; 遇到一阶微分环节的交接频率,斜率增加+20dB/dec; 遇到震荡环节的交接频率,斜率增加-40dB/dec; 遇到二阶微分环节的交接频率,斜率增加+40dB/dec; 40按照误差曲线修正;
20lg|G(jω)|=-20lgω
;υ(ω)=-900
纯微分环节
传函:
G(S)=S ;υ(ω)=900 Φ(jω) dB 900 lgω
频率特性 G(jω)=jω=ω ej90 20lg|G(jω)|=20lgω
积分环节乘积: 传函: G(S)=K/Sr
1
20lg|G(jω)|
频率特性 G(jω)=K/(jω)r=K/ωr e-j90r 20lg|G(jω)|=20(lgK-rlgω) ;υ(ω)=-900 r
ω=1/T
υ dB 900
lgω
lgω
转折频率
由此看出,误差在转折频率处最大
二阶超前、滞后系统
G (S ) S G ( j )
0
2
2
2
S 0 0
2
0
2
2 2
2 j 0 0
1 2 j
2 jtg
1
1
0
0 0
)
比例环节: 传函: G(S)=K 频率特性 G(jω)=K ej0 20lg|G(jω)|=20lgK ;υ(ω)=0 dB 20lg|G(jω)| dB 20lg|G(jω)| 20lgK Φ(jω)
Φ(jω) 微积分环节: 积分环节 传函: 频率特性 lgω -900 G(S)=1/S G(jω)=1/jω=(1/ω) e-j90 1 lgω
G (S )
K (1 T 1 S )( 1 T
'
' 2
S) S
S (1 T 1 S )( 1 T 2 S ) (1 2
0
S
2 2
)
1、起点:ω=0 γ =0 0型 0型 |G|=K ∠G=00
γ=1
γ=2
Ⅰ型
Ⅱ型
Ⅰ型 |G|=∞
∠G=-900
2、终点:ω→∞
y (t ) r (t ) G ( j )
1
K Tj 1
K T
2 2
e 1
j
tg T
y (t ) K T
2 2
1
A sin( t )
第二节频率特性的对数坐标图 (Bode图)
G ( j ) G ( j ) e
j j
0 K Re
微积分
微分 积分
G (S ) S G ( j ) j
G (S )
1 S
G ( j )
1 j
1
j
一阶滞后系统
G (S ) 1 TS 1 1 1 jT
2
jQ(ω) 微分
G ( j ) 1 1T
2
Re
(1 jT )
积分
A j j A
A G ( j ) 2j
A G ( j ) 2j
S j
j j
G ( j ) G ( j ) e e
j t
j
A G ( j ) e 2j
A G ( j ) e 2j
j
e
j t
A G ( j ) [e 2j
Ⅱ型 |G|=∞ ∠G=-1800 此结果仅适用于最 小相位系统!! |G|=0
令分子为m阶,分母为n阶∠G=-(n-m)900
ω→0 jQ(ω) 3型 ω→0 ω=0 K 2型 Re Re jQ(ω)
ω/ω0>>1时,
20 lg G ( j ) 20 lg
(
0
)
4
转折频率:ω=ω0
插入图5-12
插入图5-13
纯滞后:
G(S)=eτS
→
G(jω)=e-jτω
180
0
G ( j ) 1
( )
超前补偿器与滞后补偿器:
传函:
G (S ) 1 TS 1 TS
2
[1 (
0
) ] ( 2
2 2
0
)
2
g ' 0 得 0 1 2 时 g 有极值,即
G ( j ) 有极大值
称此时的ω为谐振频率,即1-2ξ2>0,ξ<0.707 即在ξ<0.707时才可能产生谐振。
渐近线: ω/ω0<<1时, 20lg|G(jω)|=0
— 2
y ( t ) L [ Y ( S ) L [ ] ae
j t
1
1
a S j
a S j
Pn t
b1 S P1
b2 S P2
bn S Pn
]
ae
j t
b1 e
P1 t
bn e
当 t→∞时(即稳态时)
-40dB/dec
40dB
20dB
0dB/dec -20dB/dec 0.01 0.1 1.0 20 8 -40dB/dec ω
-20dB -40dB -60dB -60dB/dec
作业:5-5①、②、③、⑥、5-6
第三节频率特性的极坐标图 (Nyquist图)
一、典型因子的极坐标图
比例;微积分;一阶滞后系统; 二阶滞后系统; 纯滞后 比例 G(S)=K jQ(ω) G(jω)=K+j0
j ( t )
e
j ( t )
]
A G ( j ) sin( t ) B sin( t )
Y ( j ) R ( j )
G ( j ) e
j ( )
G ( j )
例题39:若G(S)=K/(TS+1) r(t)=Asinωt 求y(t)
一阶超前、滞后系统
滞后环节: G ( S )
1 TS 1
2
G ( j )
2
1 Tj 1
e
jtg
1
T
T
2
2
1
20 lg G ( j ) 10 lg( T
1)
( ) tg
1
T
渐近线: Tω<<1时,
20 lg G ( j ) 10 lg 1 0