抽屉原理(二)— 数论中的抽屉原理
第一讲 抽屉原理(二)

抽屉原理(二)把所有整数按照除以某个自然数m 的余数分为m 类,叫做m 的剩余类或同余类,用[0],表示. 每一个类含有无穷多个数,例如中含有[1]m −[1],[2],[3],...,[1]1,21m m ++3m 1,1+,,….在研究与整除有关的问题时,常用剩余类作为抽屉.根据抽屉原理,可以证明:任意n +1个自然数中,总有两个自然数的差是n 的倍数.1. 证明:任取8个自然数,必有两个数的差是7的倍数.2. 求证: 从47个正整数中,一定可以找到两个正整数的差是46的倍数.3. 求证: 存在正整数使得. i N47|111i "个4. 从任意13个自然数中,总可以找到若干个数,它们的和是13的倍数. 1213,,,a a a "5. 对于任意的五个自然数,证明其中必有3个数的和能被3整除.6. 任意给定7个不同的自然数,求证其中必有两个整数,其和或差是10的倍数.7. 对于任意的11个整数,证明其中一定有6个数,它们的和能被6整除.8. 证明:17个整数中,必可找到5个数,这5个数之和为5的倍数.9. 任给12个整数,证明:其中必存在8个数,将它们用适当的运算符号连起来后运算的结果是3 465的倍数.10. 对任给的63个互异的正整数,试证:其中一定存在四个正整数,仅用减号,乘号和括号将它们适当地组合为一个算式,其结果是1984的倍数.1,,a a "6311. 试证明:在17个不同的正整数中,必定存在若干个正整数,仅用减号、乘号和括号可将它们组成一个算式,算式的结果是21879的倍数。
12. 郑老师和肖同学是足球迷,同时又对趣味数学题感兴趣. 一次在看足球比赛时,肖同学说:我知道红方有20名队员,编号恰好是1到20,,今天上场的11名队员中,一定有一名队员的号码是另一名队员号码的偶数倍。
郑老师听后点点头,接着说:我还知道红队上场队员中每四名队员中,必定有两名队员号码之差是3的倍数。
六年级下第19讲抽屉原理二

六年级下第19讲抽屉原理二在数学的奇妙世界里,抽屉原理是一个非常有趣且实用的知识。
之前我们已经学习了抽屉原理一,现在让我们一起来探索抽屉原理二。
首先,咱们来回顾一下什么是抽屉原理。
简单地说,就是如果把 n + 1 个物品放进 n 个抽屉里,那么至少有一个抽屉里会放有两个或者更多的物品。
那抽屉原理二又是什么呢?它是抽屉原理的进一步拓展和深化。
比如说,把多于 mn 个物品任意放进 n 个抽屉中,那么至少有一个抽屉里的物品数量不少于 m + 1 个。
为了更好地理解这个原理,咱们来看几个具体的例子。
假设现在有10 支铅笔,要放进 3 个文具盒里。
按照抽屉原理二,如果平均每个文具盒放 3 支铅笔,那么 3 个文具盒一共放了 9 支铅笔,还剩下 1 支铅笔。
这剩下的 1 支铅笔无论放进哪个文具盒,都会使得其中一个文具盒里至少有 4 支铅笔。
再比如说,有 25 个苹果,要放进 6 个篮子里。
如果平均每个篮子放 4 个苹果,那么 6 个篮子一共放了 24 个苹果,还剩下 1 个苹果。
这个剩下的苹果不管放进哪个篮子,都会导致有一个篮子里至少有 5 个苹果。
那么,我们在解决实际问题的时候,怎么运用抽屉原理二呢?比如这样一道题:一个班级有 40 名学生,他们的数学考试成绩分别为 60 分到 100 分之间的整数。
那么,至少有几名同学的成绩是相同的?咱们来分析一下,60 分到 100 分一共有 41 个不同的分数。
把这 41 个分数看作 41 个抽屉,把 40 名学生看作 40 个物品。
40÷41 = 040,平均每个抽屉放 0 个物品,还剩下 40 个物品。
所以至少有 1 个抽屉里会有 1 个或更多的物品,也就是说至少有 2 名同学的成绩是相同的。
再看这道题:从 1、2、3、、100 这 100 个数中,任意取出 51 个数。
证明:其中一定有两个数的差等于 50。
我们可以把这 100 个数分成 50 组:(1,51)、(2,52)、(3,53)(50,100)。
抽屉原理(带答案)

精心整理抽屉原理(一)抽屉原理1将多于n件物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。
抽屉原理2将多于m×n件物品任意放到到n个抽屉中,那么至少有一个抽屉知3分析与解:关键是构造合适的抽屉。
既然是问“至少有几名学生的成绩相同”,说明应以成绩为抽屉,学生为物品。
除3名成绩在60分以下的学生外,其余成绩均在75~95分之间,75~95共有21个不同分数,将这21个分数作为21个抽屉,把47-3=44(个)学生作为物品。
44÷21=2……2,根据抽屉原理2,至少有1个抽屉至少有3件物品,即这47名学生中至少有3名学生的成绩是相同的。
例2夏令营组织2000名营员活动,其中有爬山、参观博物馆和到海滩游玩三个项目。
规定每人必须参加一项或两项活动。
那么至少有几名营员参加的活动项目完全相同?的有3334名怎样放,至少有一个抽屉中放有4件物品,求最多有几个抽屉。
这个问题的条件与结论与抽屉原理2正好相反,所以反着用抽屉原理2即可。
由1255÷(4-1)=41……2知,125件物品放入41个抽屉,至少有一个抽屉有不少于4件物品。
也就是说这个班最多有41人。
同学们想一想,如果有42个人,还能保证至少有一人分到至少4本书吗?例4五(1)班张老师在一次数学课上出了两道题,规定每道题做对得2分,没做得1分,做错得0分。
张老师说:可以肯定全班同学中至少有6名学生各题的得分都相同。
那么,这个班最少有多少人?分析与解:由“至少有6名学生各题的得分都相同”看出,应该以各题得分情例31,2,4总数与女孩总数都是偶数。
分析与解:因为一组中的男孩人数与女孩人数的奇偶性只有下面四种情况:(奇,奇),(奇,偶),(偶,奇),(偶,偶)。
将这四种情况作为4个抽屉,五组作为5件物品,由抽屉原理1知,至少有一个抽屉中有两件物品。
即这五组中至少有两组的情况相同,将这两组人数相加,男孩人数与女孩人数都是偶数。
抽屉原理

抽屉原理(又名鸽笼原理)什么是“抽屉原理”?举个简单例子来说明:把3个苹果分放在2个抽屉里,必定有1个抽屉里放了2个或2个以上苹果。
这就是“抽屉原理”。
道理很简单,谁都能理解,很容易用反证法证明。
用数学语言表达如下:抽屉原理一:把多于n个物体(n为正整数),放到n个抽屉里,必定有1个抽屉里放2个或2个以上的物体。
抽屉原理二:把多于m×n个物体(m、n为正整数),放到n个抽屉里,必定有1个抽屉里放m+1个或m+1个以上的物体。
以上原理是德国数学家狄利克雷首先发现的,所以也叫狄利克雷原理。
它是一个重要而又基本的数学原理。
应用它可以解决一些有趣的看起来相当复杂的问题。
举两个简单的例子:1.第四次人口普查表明,我国50岁以下的人口已经超过8亿。
试证明:在我国至少有2人的出生时间相差不超过2秒钟。
解:50年的秒数约等于15.8亿秒,设2秒为1个抽屉,抽屉总数小于8亿个,所以至少有2人的出生时间相差不超过2秒钟。
2.某工厂生产一种天平托盘1000付,要求每付两个托盘的重量相差≤1毫克,而该厂的冲床设备生产的产品重量误差是±5毫克,问该厂用这种冲床设备,至少要生产多少个托盘才能配出1000付符合要求的托盘?解:设10个重量相差为1毫克以内的抽屉:(-5<-4),(-4<-3),(-3<-2)……(+3<+4),(+4≤+5)。
最差的情况是每一个抽屉都是奇数,那么有10个托盘不能配对,所以只要生产2010个合格托盘,就能配出1000付符合要求的托盘。
以下几道题,请读者自己解:1.证明:在25人中,至少有3人属相相同。
2.6个小朋友,每人至少有1本书,一共有20本书,试证明:至少有2个小朋友有相同数量的书。
(提示:如果每人的书数量都不相同,至少要21本书。
)3.在2行5列的2×5的方格子中,随意用红、绿两种颜色染上,证明:不管怎样染,至少有两列着色完全相同.关于抽屉原理关于整除问题a.任意n+1个自然数中,总有两个自然数的差是n的倍数例1:任取8个自然数,必有两个数的差是7的倍数。
(小学奥数讲座)抽屉原理(二)

抽屉原理(二)导言:这里介绍除最不巧原则之外的另一种思维来解答抽屉原理问题。
先让我们来做个试验,把4个苹果放在3个抽屉里,会出现什么情况?我们把这几种情况分别表示出来:4=4+0+0;4=3+1+0;4=2+2+0;4=2+1+1。
观察上面放苹果的各种情况,我们发现,不管怎么放,总有一个抽屉里至少有2个苹果。
像这种现象,我们称之为抽屉原理。
它是由德国数学家狄利克雷最早发现的,也称之为狄利克雷原理。
我们利用这一原理,可以解决生活中很多有趣但又觉得无从入手的问题。
抽屉原理一把n+1个苹果放入n个抽屉中,则至少有一个抽屉至少放了两个苹果例1.任意13名同学中,必有2名同学出生在同一个月份,为什么?解析:把13名同学当作13个苹果,把一年12个月看作12个抽屉,13=12+1,根据抽屉原理一,至少有2名同学出生在同一个月份。
这题我们也可以用最不巧原理来解答。
出生月份只有1、2、、、、12月这12种情况,最不巧的是这13名同学中的12名同学的出生月份,分别是这12种情况,互不相同。
但第13名同学肯定是12种情况中的一种,这样,至少有2名同学出生在同一个月份中。
例2.有红、黄、蓝、白4色的小球各10个,混合放在一个布袋里。
一次摸出8个小球,其中至少有几个小球的颜色是相同的。
解析:把红、黄、蓝、白4色小球看作成4个抽屉,8个小球看作8个苹果,因为8=4+4,根据抽屉原理一,至少有2个小球的颜色是相同的。
例3.在长度是10厘米的线段上任意取11个点,试说明至少有2个点间的距离不大于1厘米?解析:把长度10厘米的线段分成10等份,那么每段长都是1厘米,我们把这样的每段看成一个抽屉,共有10个抽屉。
把11个点放入10个抽屉中,根据抽屉原理一,必有2个点放在同一个抽屉中,所以,至少有2个点间的距离不大于1厘米。
例4.用红、黄两种颜色将下图中的小方块随意涂色,每个小方格涂一种颜色,那么,必有两列方格中所涂颜色完全相同。
抽屉原理

抽屉原理、最不利原则知识点介绍抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.知识框架:认识——抽屉原理解决的是存在性问题操作——构造抽屉的方法:从问题出发,相同即为抽屉;从数量出发:少的就是抽屉。
1、袋中取球;2、数的整除演练——抽屉原理的逆向应用代数细想最不利原则最糟的情形+1就能保证完成目标一、对抽屉原理两个版本的认识抽屉原理1:将n+1个物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。
原理要点:(1)物品数比抽屉数多1。
只有物品数比抽屉数多时抽屉原理才会成立。
(2)物品是“任意放”到抽屉中。
(3)其中“物品不少于2件”的抽屉是一定存在的,但是不确定是哪一个。
(4)原理的结论是:“至少有一个抽屉中的物品数不少于2件”,也可以这么说,“至少有2件物品在同一个抽屉中”。
原理讲解:只要有一个抽屉中的物品数不少于2件,抽屉原理1 就是成立的。
当我们可以往抽屉中任意放物品时,最不利的情形就是“平均分”,这样所有抽屉中的物品数都不会太多。
n+1个物品平均地放入n个抽屉,每个抽屉放一个,由于物品数比抽屉数多,就会余出一个物品。
最后,余出的这个物品放入某个抽屉,这个抽屉中就有了2个物品。
此外,其它情形,只要有一个抽屉是空的,那么就一定会有另外的抽屉中有2个或2个以上的物品。
每种方法中,都会有一个鸟笼中的鸽子数不少于2。
在有些地方抽屉原理又叫做“鸽笼原理”。
抽屉原理2(加强版的抽屉原理)将m件物品任意放入n个抽屉(m>n),(1)当m是n的整数倍时,那么至少有一个抽屉中的物品件数是不少于m÷n件;(2)当m不是n的整数倍时,那么至少有一个抽屉中的物品件数是不少于[m÷n]+1件。
抽屉原理2

抽屉原理2
抽屉原理,又称为鸽巢原理,是数学中的一个基本原理,它指出如果有n个物体放进m个抽屉,其中n大于m,那么至少有一个抽屉里面至少有两个物体。
这个原理在实际生活中也有着广泛的应用,不仅在数学领域,也在计算机科学、生活中的整理和分类等方面都有着重要的作用。
抽屉原理的第二个版本是指对于有限个抽屉的情况下,如果抽屉的数量小于待放入物品的数量,那么至少有一个抽屉里面放入的物品数量是相同的。
这个原理在实际生活中也有着广泛的应用。
比如,在一个班级里,如果有11个学生,而只有10个座位,那么至少有一个座位上会有两个学生。
这个原理也可以应用于生活中的其他方方面面,比如在购物时,如果有8个苹果要放进7个袋子里,那么至少有一个袋子里会有两个苹果。
抽屉原理2的应用不仅仅局限于数学和生活中,它也在计算机科学中有着重要的应用。
比如在数据结构中,如果有n个数据要放入m个存储空间,其中n大于m,那么至少有一个存储空间里面会有两个数据。
这个原理在算法设计和优化中有着重要的作用,可以帮助我们更好地理解和设计算法。
抽屉原理2的应用还可以延伸到生活中的整理和分类。
在家里收纳物品时,如果物品的数量大于收纳空间的数量,那么就需要合理地利用抽屉原理2,将物品进行分类整理,以便更好地利用有限的空间。
这样不仅可以让家里看起来更加整洁,也可以更方便地找到需要的物品。
总之,抽屉原理2在数学、计算机科学和生活中都有着重要的应用。
它帮助我们更好地理解和处理问题,让我们在面对大量数据和有限资源时能够更加合理地进行分类和整理。
通过合理地利用抽屉原理2,我们可以更好地提高工作效率,提高空间利用率,让生活变得更加有序和高效。
小学六年级奥数第30讲 抽屉原理(二)(含答案分析)

第30讲抽屉原理(二)一、知识要点在抽屉原理的第(2)条原则中,抽屉中的元素个数随着元素总数的增加而增加,当元素总数达到抽屉数的若干倍后,可用抽屉数除元素总数,写成下面的等式:元素总数=商×抽屉数+余数如果余数不是0,则最小数=商+1;如果余数正好是0,则最小数=商。
二、精讲精练【例题1】幼儿园里有120个小朋友,各种玩具有364件。
把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?把120个小朋友看做是120个抽屉,把玩具件数看做是元素。
则364=120×3+4,4<120。
根据抽屉原理的第(2)条规则:如果把m×x×k(x>k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有m+1个或更多个元素。
可知至少有一个抽屉里有3+1=4个元素,即有人会得到4件或4件以上的玩具。
练习1:1、一个幼儿园大班有40个小朋友,班里有各种玩具125件。
把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?2、把16枝铅笔放入三个笔盒里,至少有一个笔盒里的笔不少于6枝。
这是为什么?3、把25个球最多放在几个盒子里,才能至少有一个盒子里有7个球?【例题2】布袋里有4种不同颜色的球,每种都有10个。
最少取出多少个球,才能保证其中一定有3个球的颜色一样?把4种不同颜色看做4个抽屉,把布袋中的球看做元素。
根据抽屉原理第(2)条,要使其中一个抽屉里至少有3个颜色一样的球,那么取出的球的个数应比抽屉个数的2倍多1。
即2×4+1=9(个)球。
列算式为(3—1)×4+1=9(个)练习2:1、布袋里有组都多的5种不同颜色的球。
最少取出多少个球才能保证其中一定有3个颜色一样的球?2、一个容器里放有10块红木块、10块白木块、10块蓝木块,它们的形状、大小都一样。
当你被蒙上眼睛去容器中取出木块时,为确保取出的木块中至少有4块颜色相同,应至少取出多少块木块?3、一副扑克牌共54张,其中1—13点各有4张,还有两张王的扑克牌。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数论中的抽屉原理(组合)
一、数论中的抽屉原理& 最不利原则——“和差倍”
1. 题型
(1)两数之和或两数之差是m
(2)两数之和或两数之差是m的倍数
2. 解题思路
题型(1)根据题意构造抽屉
题型(2)根据余数的特征进行分组,构造抽屉
二、注意事项
1. 相邻两数必互质。
题型一:根据题意构造抽屉
1.从2、4、6、…、30这15个偶数中,至少选出多少个数,才能保证其中一定有两个数之和
是34 .
2.从1 ~ 11这11个自然数中,至少选出多少个数,才能保证其中一定有两个数之和是12 .
3.从1 ~ 99这99个自然数中,最多选出多少个数,使得其中每两个数之和都不等于100?
4.从1,2,3,4,5,6,7,8,9,10,11,12中最多能选出几个数,使得在选出的数中,
每一个数都不是另一个数的2倍。
5.从1 ~ 21这21个自然数中,至少取出多少个数,才能保证其中必有两数的差等于4?
6.从1 ~ 99这99个自然数中,最多可以取出多少个数,使得其中每两个数之差都不等于5?
7.如果在1,2,… …,n中任取19个数,都可以保证其中必有两个数的差是6,那么n最大
是多少?
8.从1 ~ 50这50个自然数中,至少选出多少个数,才能保证其中必有两个数互质?
题型二:根据余数构造抽屉
1.在任意的四个自然数中,是否其中必有两个数,它们的差能被3整除。
2.至少取几个数,才能保证一定有两个数的差是7的倍数?
3. 1 ~ 17中,至少拿出多少个数才能保证:
(1)里面一定有5的倍数?(2)一定有两个数的和是5的倍数?
4. 1 ~ 35中,至少拿出多少个数才能保证一定有两个数的和是8的倍数?
5.从1至17这17个自然数中取出若干个数,使其中任意两个数的和都不能被5整除.请问:
最多能取出多少个数?
6.任选7个不同的数,请说明:其中必有2个数的和或者差是10的倍数。
巩固练习
1.从1 ~ 19这19个自然数中,至少取出多少个数,才能保证其中必有两数的差等于4?
2.从1 ~ 19这19个自然数中,至少取出多少个数,才能保证其中必有两数的差是4的倍数?
3.从1 ~ 25这25个自然数中,至少取出多少个数,才能保证其中必有两数的和是6的倍数?
4.从1至30这30个自然数中取出若干个数,使其中任意两个数的和都不能被7整除.请问:
最多能取出多少个数?
5.在任意的五个自然数中,是否其中必有三个数的和是3的倍数?。