《抽屉原理》教学设计与反思

合集下载

抽屉原理教学反思汇编5篇

抽屉原理教学反思汇编5篇

抽屉原理教学反思汇编5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!抽屉原理教学反思汇编5篇抽屉原理教学反思篇1本课是小学六年级数学广角的内容,初看教学内容,我甚至没有看懂所学的内容与我们现在学习的知识有多大联系,不知道这部分知识能够解决什么问题,而且这部分知识又有一定的难度。

抽屉原理教学反思

抽屉原理教学反思
抽屉原理教学反思
作为一位到岗不久的老师,课堂教学是紧要的工作之一,借助教学反思我们可以学习到很多讲课技巧,优秀的教学反思都具备一些什么特点呢?下面是整理的抽屉原理教学反思【精选4篇】,假如对您有一些参考与帮助,请共享给最好的伙伴。
抽屉原理教学反思 篇一
《抽屉原理》是人教版六班级下册数学广角中的内容,这部分内容属于奥数学问范畴,首次被编入新课改教材,它的教学就是通过实际案例培育同学有依据、有条理地进行思考和推理的本领,从而解决实际问题,初步感受数学的魅力。
1、情境中激发喜好。
喜好是最好的老师。课前“抢椅子”的小游戏,简单却能真实的反映“抽屉原理”的本质。通过小游戏,一下就捉住同学的。注意力,让同学觉得这节课要探究的问题,好玩又有意义。
2、活动中恰当引导。
老师是同学的合,引导者。在活动设计中,我偏重同学经过学问产生、形成的过程。4枝铅笔放进3个文具盒的结果早就可想而知,但让同学通过放一放、想一想、议一议的过程,把抽象的说理用实在的实物演示出来,化抽象为实在,发觉并描述、理解了最简单的“抽屉原理”。在此基础上,我又自动提问:还有什么有价值的问题讨论吗?让同学自主的想到:铅笔数比文具盒数多2或其它数会怎么样?来连续开展探究活动,同时,通过活动结合板书引导同学归纳出求至少数的方法。
2、在例2的教学中让同学借助直观操作发觉,把书尽量多的“平均分“个各个抽屉,看每个抽屉能分到多少本书,剩下的书不管放到哪个抽屉里,总有一个抽屉比平均分得的本数多1本,可以用有余数的除法这一数学规律来表示。
3、大量例举之后,再引导同学总结归纳这一类“抽屉问题”的一般规律,让同学借助直观操作、察看、表达等方式,让同学经过从不同的角度认得抽屉原理。
三、谈谈有无偏离自身的教案
在教学实施过程中,基本上没有偏离自身的教案,在教学设计时预设的几个教学环节,在老师的引导下基本完成。但,在引导同学总结规律说出至少数方法时,我预设同学的答案是有两种情况,一是商加余数,一是商加一,但课堂生成同学只说出了商加余数这一种情况,叫了两位孩子都是这一种想法,于是我连续往下引导,那我们来验证一下咱的结论吧,通过出示5本书放进3个抽屉中,不管怎么放,总有一个抽屉中至少放进几本书?这时有同学说是2本,还有人说是3本,结果显现分歧,我随即问:谁来说说,理由呢?刘洋说是3本,原因是利用刚才的结论:商加余数即1加2等于3,那时候胡小蝶的发言很好,她是这样说的:“先在每一个抽屉中放进一本书,剩下的两本书再第二次平均分到两个抽屉中,这样就保证总有一个抽屉中至少有2本书。”我随即问:“两本书放进一个抽屉中可以吗?”“可以,但这不是最少的情况,只是其中的一种情况。”我很好地捉住了这个生成,接着自然就引出了至少数等于商加一、另外,在揭示出原理后,原来还要对开始的抢凳子游戏联系这一原理做一回应,即数学源于生活,又还原于生活,但由于种种原因疏忽了。最后,还剩两分钟时,我本意是引导同学看书,加深这节课所学学问的理解,由于口误却说成了自学课本。以后,我应注意自身

《抽屉原理》教学设计优秀4篇

《抽屉原理》教学设计优秀4篇

《抽屉原理》教学设计优秀4篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、演讲发言、策划方案、合同协议、心得体会、计划规划、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, speeches, planning plans, contract agreements, insights, planning, emergency plans, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!《抽屉原理》教学设计优秀4篇作为一名专为他人授业解惑的人·民教师,就有可能用到教案,编写教案助于积累教学经验,不断提高教学质量。

抽屉原理教学反思范文(通用5篇)

抽屉原理教学反思范文(通用5篇)

抽屉原理教学反思范文(通用5篇)抽屉原理教学反思范文(通用5篇)作为一名优秀的人民教师,我们的任务之一就是教学,我们可以把教学过程中的感悟记录在教学反思中,那么大家知道正规的教学反思怎么写吗?以下是小编精心整理的抽屉原理教学反思范文(通用5篇),仅供参考,大家一起来看看吧。

抽屉原理教学反思1《抽屉原理》是人教版六年级下册数学广角中的内容,这部分内容属于奥数知识范畴,首次被编入新课改教材,它的教学就是通过实际案例培养学生有根据、有条理地进行思考和推理的能力,从而解决实际问题,初步感受数学的魅力。

本堂课我注重为学生提供自主探索的空间,引导学生通过探索,初步了解“抽屉原理”,会用“抽屉原理”解决实际问题。

一、生活情境导入激发学习兴趣情境导入,目的是让学生很快的排除外界及内心因素的干扰而进入教学内容。

营造一个恰当的教学情境,让学生在思想上产生学习新知识的愿望,产生一种需要认识和学习的心理,具有极其重要的作用。

基于以上认识,在引入新课时我设计了对学生来说很感兴趣的猜扑克牌游戏:任意在52张牌中抽出5张牌,不看牌面,老师敢肯定至少会有2张同花色的牌。

充分调动他们思维的翅膀,给学生造成了“疑而不解又欲解之”的强烈欲望,激发他们积极思维,快速进入学习情境。

二、注重自主探究,培养问题意识。

在本节课中,我非常注重学生的自主探索精神,让学生在学习中,经历猜想、验证、推理、应用的过程。

1、采用列举法,让学生把4枝笔放入3个笔筒中的所有情况都列举出来,运用直观的方式,发现并描述、理解最简单的“抽屉原理”即“铅笔数比笔筒数多1时,总有一个笔筒里至少有2枝笔”。

2、在例2的教学中让学生借助直观操作发现,把书尽量多的“平均分“个各个抽屉,看每个抽屉能分到多少本书,剩下的书不管放到哪个抽屉里,总有一个抽屉比平均分得的本数多1本,可以用有余数的除法这一数学规律来表示。

3、大量例举之后,再引导学生总结归纳这一类“抽屉问题”的一般规律,让学生借助直观操作、观察、表达等方式,让学生经历从不同的角度认识抽屉原理。

抽屉原理的教学设计和反思

抽屉原理的教学设计和反思

抽屉原理的教学设计和反思教学设计:教学目标:1.理解抽屉原理的概念和基本思想。

2.掌握抽屉原理的应用方法。

3.培养学生的逻辑思维和问题解决能力。

教学内容:1.抽屉原理的定义和基本思想。

2.抽屉原理的应用实例。

3.练习题和实践活动。

教学步骤:步骤一:导入通过一个问题引入抽屉原理的概念,例如:一个房间里有10个人,其中至少有两个人的生日是同一天。

请问为什么?步骤二:讲解抽屉原理的定义和基本思想1.定义:抽屉原理是指如果有n+1个物体放入n个抽屉中,其中必定至少有一个抽屉中放入了两个或两个以上的物体。

2.基本思想:通过将物体和抽屉进行映射,将问题转化为抽屉中物体的分配问题。

步骤三:讲解抽屉原理的应用实例1.生日问题:假设有366个人,那么至少有两个人的生日是同一天。

2.鸽巢原理:如果有n+1只鸽子被放入n个巢中,那么至少有一个巢中放入了两只或两只以上的鸽子。

3.数字排列问题:如果将1到10之间的10个整数任意排列,那么至少存在两个整数,它们的差是9的倍数。

步骤四:练习题和实践活动1.给学生出示一些抽屉原理的应用题,让学生尝试解答。

2.分组让学生共同设计一个实践活动,利用抽屉原理解决一个实际问题。

步骤五:总结和拓展总结抽屉原理的基本思想和应用方法,并鼓励学生在实际生活中寻找更多的应用场景。

反思:在练习题和实践活动环节,可以设计一些具有挑战性的问题,让学生能够动手解决,培养他们的问题解决能力和创新思维。

同时,分组设计实践活动可以锻炼学生的合作和沟通能力。

在总结和拓展环节,可以鼓励学生主动思考和探索抽屉原理在其他领域的应用,培养他们的拓展思维和创新意识。

总的来说,通过教学设计和反思,可以使学生在理解和掌握抽屉原理的基础上,培养其逻辑思维和问题解决能力,为其今后的学习和生活打下坚实的基础。

抽屉原理教学反思【10篇】

抽屉原理教学反思【10篇】

抽屉原理教学反思【10篇】抽屉原理教学反思篇一《抽屉原理》是人教版六年级下册数学广角中的内容,这部分内容属于奥数知识范畴,首次被编入新课改教材,它的教学就是通过实际案例培养学生有根据、有条理地进行思考和推理的能力,从而解决实际问题,初步感受数学的魅力。

数学课堂是师生互动的过程,学生是学习的主人,教师是组织者和引导者。

本堂课注重为学生提供自主探索的空间,引导学生通过探索,初步了解“抽屉原理”,会用“抽屉原理”解决实际问题。

一、生活情境导入激发学习兴趣情境导入,目的是让学生很快的排除外界及内心因素的干扰而进入教学内容。

营造一个恰当的教学情境,让学生在思想上产生学习新知识的愿望,产生一种需要认识和学习的心理,具有极其重要的作用。

基于以上认识,在引入新课时我设计了对学生来说很感兴趣的猜扑克牌游戏:任意在52张牌中抽出5张牌,不看牌面,老师敢肯定至少会有2张同花色的牌。

充分调动他们思维的翅膀,给学生造成了“疑而不解又欲解之”的强烈欲望,激发他们积极思维,快速进入学习情境。

二、注重自主探究,培养问题意识。

在本节课中,我非常注重学生的自主探索精神,让学生在学习中,经历猜想、验证、推理、应用的`过程。

1、采用列举法,让学生把4枝笔放入3个笔筒中的所有情况都列举出来,运用直观的方式,发现并描述、理解最简单的“抽屉原理”即“铅笔数比笔筒数多1时,总有一个笔筒里至少有2枝笔”。

2、在例2的教学中让学生借助直观操作发现,把书尽量多的“平均分“个各个抽屉,看每个抽屉能分到多少本书,剩下的书不管放到哪个抽屉里,总有一个抽屉比平均分得的本数多1本,可以用有余数的除法这一数学规律来表示。

3、大量例举之后,再引导学生总结归纳这一类“抽屉问题”的一般规律,让学生借助直观操作、观察、表达等方式,让学生经历从不同的角度认识抽屉原理。

三、注重“说理“活动,培养学生逻辑能力。

在这节课中,由于我提供的数据比较小,为学生自主探究和自主发现“抽屉原理”提供了很大的空间。

抽屉原理教学设计(优秀4篇)

抽屉原理教学设计(优秀4篇)

抽屉原理教学设计(优秀4篇)《抽屉原理》教学设计篇一【教学内容】《义务教育课程标准实验教科书·数学》六年级下册第68页。

【教学目标】1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2.通过操作发展学生的类推能力,形成比较抽象的数学思维。

3.通过“抽屉原理”的灵活应用感受数学的魅力。

【教学重点】经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

【教学难点】理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

【教具、学具准备】每组都有相应数量的盒子、铅笔、书。

【教学过程】一、课前游戏引入。

师:同学们在我们上课之前,先做个小游戏:老师这里准备了4把椅子,请5个同学上来,谁愿来?(学生上来后)师:听清要求,老师说开始以后,请你们5个都坐在椅子上,每个人必须都坐下,好吗?(好)。

这时教师面向全体,背对那5个人。

师:开始。

师:都坐下了吗?生:坐下了。

师:我没有看到他们坐的情况,但是我敢肯定地说:“不管怎么坐,总有一把椅子上至少坐两个同学”我说得对吗?生:对!师:老师为什么能做出准确的判断呢?道理是什么?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。

下面我们开始上课,可以吗?【点评】教师从学生熟悉的“抢椅子”游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象,激发了学生的学习兴趣,为后面开展教与学的活动做了铺垫。

二、通过操作,探究新知(一)教学例11.出示题目:有3枝铅笔,2个盒子,把3枝铅笔放进2个盒子里,怎么放?有几种不同的放法?师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况(3,0) (2,1)【点评】此处设计教师注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与进来。

师:5个人坐在4把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。

抽屉原理教学设计及反思

抽屉原理教学设计及反思

抽屉原理教学设计及反思靖安二小戴燕燕一、教学设计1.教材分析《抽屉原理》是义务教育课程标准实验教科书数学六年级下册第五单元数学广角的教学内容。

这部分教材通过几个直观例子,借助实际操作,向学生介绍“抽屉原理”,使学生在理解“抽屉原理”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“抽屉原理”加以解决。

2.学情分析“抽屉原理”在生活中运用广泛,学生在生活中常常能遇到实例,但并不能有意识地从数学的角度来理解和运用“抽屉原理”。

教学中应有意识地让学生理解“抽屉原理”的“一般化模型”。

六年级学生的逻辑思维能力、小组合作能力和动手操作能力都有了较大的提高,加上已有的生活经验,很容易感受到用“抽屉原理”解决问题带来的乐趣。

3.教学理念激趣是新课导入的抓手,喜欢和好奇心比什么都重要,以“抢椅子”,让学生置身游戏中开始学习,为理解抽屉原理埋下伏笔。

通过小组合作,动手操作的探究性学习把抽屉原理较为抽象难懂的内容变为学生感兴趣又易于理解的内容。

特别是对教材中的结论“总有、至少”等字词作了充分的阐释,帮助学生进行较好的“建模”,使复杂问题简单化,简单问题模型化,充分体现了新课标要求。

4.教学目标1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2.通过操作发展学生的类推能力,形成比较抽象的数学思维。

3.通过“抽屉原理”的灵活应用感受数学的魅力。

5.教学重难点重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

6.教学过程一、课前游戏引入。

上课前,我们先来热身一下,一起来玩抢椅子的游戏。

这有4把椅子,请5位同学上来参加游戏,游戏规则是:在老师说开始时,5位同学绕着椅子走,当老师说停的,5位同学都要坐在椅子上。

为什么总有一张椅子至少坐两个同学?在这个游戏中蕴含着一个有趣的数学原理叫做抽屉理原,这节课我们就一起来研究抽屉理原。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《抽屉原理》教学设计与反思
一、教学目标
1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2.通过操作发展学生的类推能力,形成比较抽象的数学思维。

3.通过“抽屉原理”的灵活应用感受数学的魅力。

二、教学重、难点
经历“抽屉原理”的探究过程,理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

三、教学过程
一、问题引入。

师:同学们,你们玩过抢椅子的游戏吗?现在,老师这里准备了3把椅子,请4个同学上来,谁愿来?
1.游戏要求:开始以后,请你们5个都坐在椅子上,每个人必须都坐下。

2.讨论:“不管怎么坐,总有一把椅子上至少坐两个同学”这句话说得对吗?
游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象。

引入:不管怎么坐,总有一把椅子上至少坐两个同学?你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。

二、探究新知
(一)教学例1
1.出示题目:有4枝铅笔,3个盒子,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?
师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师出示各种情况。

板书:(4,0,0)(3,1,0)(2,2,0)(2,1,1),
问题:4个人坐在3把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。

4支笔放进3个盒子里呢?
引导学生得出:不管怎么放,总有一个盒子里至少有2枝笔。

问题:
(1)“总有”是什么意思?(一定有)
(2)“至少”有2枝什么意思?(不少于两只,可能是2枝,也可能是多于2枝?)
教师引导学生总结规律:我们把4枝笔放进3个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。

这是我们通过实际操作现了这个结论。

那么,你们能不能找到一种更为直接的方法得到这个结论呢?
学生思考并进行组内交流,教师选代表进行总结:如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。

首先通过平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。

问题:把6枝笔放进5个盒子里呢?还用摆吗?把7枝笔放进6个盒子里呢?把8枝笔放进7个盒子里呢?把9枝笔放进8个盒子里呢?……你发现什么?(笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。

)总结:只要放的铅笔数盒数多1,总有一个盒里至少放进2支。

2.完成课下“做一做”,学习解决问题。

问题:6只鸽子飞回5个鸽笼,至少有2只鸽子要飞进同一个鸽笼里,为什么?
(1)学生活动—独立思考自主探究
(2)交流、说理活动。

引导学生分析:如果一个鸽笼里飞进一只鸽子,最多飞进4只鸽子,还剩一只,要飞进其中的一个鸽笼里。

不管怎么飞,至少有2只鸽子要飞进同一个鸽笼里。

所以,“至少有2只鸽子飞进同一个笼里”的结论是正确的。

总结:用平均分的方法,就能说明存在“总有一个鸽笼至少有2只鸽子飞进一个个笼里”。

(二)教学例2
1.出示题目:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
(留给学生思考的空间,师巡视了解各种情况)
2.学生汇报,教师给予表扬后并总结:
总结1:把5本书放进2个抽屉里,如果每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。

总结2:“总有一个抽屉里的至少有2本”只要用“商+1”就可以得到。

问题:如果把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?用“商+2”可以吗?(学生讨论)
引导学生思考:到底是“商+1”还是“商+余数”呢?谁的结论对呢?(学生小组里进行研究、讨论。


总结:用书的本数除以抽屉数,再用所得的商加1,就会发现“总有一个抽屉里至少有商加1本书”了。

师:同学们的这一发现,称为“抽屉原理”,“抽屉原理”又称“鸽笼原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。

这一原理在解决实际问题中有着广泛的应用。

“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。

下面我们应用这一原理解决问题。

(三)学生自学例题3并进行自主交流,试着用手中的用具模拟演示场景。

三、解决问题
四、全课小结。

教学反思
这节课是浅显的奥数知识范畴,首次被编入新课改教材,初看教材我甚至没有看懂教材上所讲的内容跟我们现在的数学学习有多大的联系,不知道这部分知识又能解决什么问题,我的心里很没底,我连看了好几遍教材和教学参考书才发现这部分知识真的很有趣,但有趣归有趣讲起来却不是很容易,于是我开始认真钻研教材、《课程标准》和教学参考书,终于有了清晰的思路,我相信只要认真钻研,精心准备,做到胸有成竹,课堂上就能游刃有余,才能把一节课讲好,课上我的孩子们也许是由于听课的老师太多,也可能由于年龄的增长、年级的升高,他们已经知道了揣摩老师的心思,又担心自己说不好,索性不说,就在学生把自己探究的过程总结为结论的时候,思维出现了稍纵即逝的停滞,但我没有因为学生说不上或说不好而紧张,我认为这是正常的反应,在我进一步的引导和激励下,孩子们的学习兴趣又高涨了起来,最终总结出了本节课的重点知识——抽屉原理。

学生的学习效果还不错,针对这类问题都能快速地做出正确分析和判断。

我也算圆满完成了这节课的学习目标,实现了三维目标的有机整合。

我觉得,有时拿出一点尝试的勇气来,你会发现很多事情并不是你想象中的那样无从下手,大胆地迈出第一步,你才有成功的机会!。

相关文档
最新文档