抽屉原理教学设计

合集下载

抽屉原理教案14篇

抽屉原理教案14篇

抽屉原理教案14篇抽屉原理优质课教案篇一××老师的《抽屉原理》一课结构完整,过程清晰,充分体现了学生的主体地位,为学生提供了足够的自主探索的空间,引导学生在观察、猜测、操作、推理和交流等数学活动中初步了解“抽屉原理”,并学会了用“抽屉原理”解决简单的实际问题。

1、本节课充分放手,让学生自主思考,采用自己的方法“证明”:“把4枝笔放入3个文具盒中,不管怎么放,总有一个杯子里至少放进2枝筷子”,然后交流展示,为后面开展教与学的活动做了铺垫。

此处设计注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有学生的积极性。

在有趣的类推活动中,引导学生得出一般性的结论,让学生体验和理解“抽屉原理”的最基本原理:当物体个数大于抽屉个数时,一定有一个抽屉中放进了至少2个物体。

这样的教学过程,有助于发展学生的类推能力,形成比较抽象的数学思维。

在评价学生各种“证明”方法,针对学生的不同方法教师给予针对性的鼓励和指导,让学生在自主探索中体验成功,获得发展。

在学生自主探索的基础上,进一步比较优化,让学生逐步学会运用一般性的数学方法来思考问题。

2、在教学过程中充分发挥了学生的主体性,在抽屉原理(2)的推导过程中,至少是“商+余数”,还是“商+1”个物体放进同一个抽屉。

让学生互相争辩,再由学生自己想办法来进行验证,使学生更好的理解了抽屉原理。

另外,本节课中,学生争先恐后的学习行为,积极参与自学、交流、合作、展示、补充、互评、提问、质疑、反思等的学习过程,“自主、合作、探究”的学习方式,给人留下了深刻的印象,学生主体地位得到了充分的落实。

3、注意渗透数学和生活的联系。

并在游戏中深化知识。

学了“抽屉原理”有什么用?能解决生活中的什么问题?教学中教师注重了联系学生的生活实际。

课前老师设计一个游戏:“学生在一副去掉了大小王的扑克牌中,任意抽取五张,老师猜:总有一种花色的牌至少有两张。

”这是为什么?学生很惊讶。

《抽屉原理》教学设计精选7篇

《抽屉原理》教学设计精选7篇

《抽屉原理》教学设计精选7篇抽屉原理教学反思篇一抽屉原理教学反思《抽屉原理》是人教版六年级下册数学广角中的内容,这部分内容属于奥数知识范畴,首次被编入新课改教材,它的教学就是通过实际案例培养学生有根据、有条理地进行思考和推理的能力,从而解决实际问题,初步感受数学的魅力。

当我第一次接触到《抽屉原理》时,我很困惑:什么是抽屉原理?这么难的内容学生能理解吗?我的印象里《抽屉原理》是非常坚深难懂的(好像在上师范的时候学过,当时我都没学懂)。

时隔两年,再次教学《抽屉原理》心里还是觉得没底,不知能否讲清楚、讲明白。

为了上好这一内容,我搜集学习了很多资料,查阅了多篇教案,在“前辈”们的经验上,与本组成员相互探讨、研究,终于使我对“抽屉原理”有了新的认识,也终于理出了头绪。

抽屉原理是教给我们一种思考方法,也就是从“最不利”的情况来思考问题,所以要让学生充分体会什么是“最不利”。

通过本部分内容的教学,我有以下几点体会:一、重视集体研讨,集体的智慧是无穷的。

以前上这节课时,总是按照自己的理解来给学生讲,有时会拿一些名师的优秀教案生搬硬套,结果却总是讲着讲着不知道该怎么讲了,有时连自己也都被搅迷糊了,教学效果可想而知。

而今年上课之前,我们几位老师提前就开始讨论这节课,红晓老师还拿出了以前做的课件,讲了讲自己对这节课的理解,以及难点的突破方法,通过我们集体的研讨,原本觉得很难理解的内容也变得简单了,上课之前能够做到胸有成竹,就不愁讲不好这节课了。

二、要根据学生的实际进行教学设计。

以前上这节课时,我总以“学生的生日”为话题引入新课,学生们兴趣也比较高,这次上课,我依旧以此为话题引入新课,却没有出现以前那种效果。

课后反思一下,以前的班级最多42人,当老师猜测“我们班42人中,至少有4个人的生日在同一个月”之后,学生们都不相信,于是就很有兴趣地要进行验证。

由于人数少,比较好验证,而且基本上会出现1月生日的只有一、两个人,2月同样如此,这样学生就会面露得意之色,说老师猜的不对,直到3、4月或5、6月才发现真的有4个或4个以上的人在同一个月生日,这时还会有些学生不甘心,说有5个人在某一月生日,你说的是4人。

抽屉原理教学设计模板

抽屉原理教学设计模板

抽屉原理教学设计模板一、教学目标通过本课的学习,学生应能够:1. 理解抽屉原理的基本概念和应用;2. 运用抽屉原理解决实际问题;3. 培养学生的逻辑思维和问题解决能力。

二、教学准备1. 教学课件及多媒体设备;2. 笔、纸等教学辅助工具;3. 相关练习题和活动材料。

三、教学过程1. 导入(5分钟)教师可以通过提问或显示相关图片引发学生对抽屉原理的思考,并引导他们思考抽屉原理的应用场景。

2. 理论讲解(15分钟)2.1 抽屉原理的概念教师简要介绍抽屉原理的定义和基本概念,即"如果有 n+1 个物件放到 n 个抽屉里,那么至少有一个抽屉里会放有两个或更多物件"。

2.2 抽屉原理的应用教师通过实例和案例,展示抽屉原理在数学、计算机科学、概率等领域的应用,并解释其原理和意义。

3. 实例解析与讨论(20分钟)教师给出一个具体的实际问题,引导学生运用抽屉原理进行分析和解答,同时鼓励学生互相讨论和分享解题思路。

4. 练习与活动(30分钟)4.1 个人练习教师分发抽屉原理相关题目,让学生独立完成练习,巩固对抽屉原理的理解和应用。

4.2 合作活动学生分组,根据教师提供的具体情景,设计抽屉原理相关活动,例如编写小故事、制作游戏等,以提高学生的动手操作能力和创造力。

5. 总结与拓展(15分钟)教师对本堂课的内容进行总结,并提醒学生抽屉原理在日常生活中的应用。

鼓励学生进一步拓展和应用抽屉原理,以解决更加复杂的问题。

四、教学评估教师可以通过以下方式对学生进行评估:1. 教师观察学生在课堂上的参与程度和对理论讲解的理解;2. 集体活动和小组讨论中学生的表现;3. 学生完成的练习题和活动成果;4. 学生的课后作业。

五、教学延伸教师可以推荐相关书籍、网站或视频资源,以帮助学生进一步了解和应用抽屉原理。

同时,鼓励学生在日常生活中积极运用抽屉原理解决问题,培养他们的逻辑思维和创新能力。

六、教学反思教师应及时总结本堂课的教学效果,发现问题并加以改进。

2024最新-抽屉原理教学设计8篇

2024最新-抽屉原理教学设计8篇

抽屉原理教学设计8篇作为一位杰出的老师,通常需要准备好一份教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。

那么应当如何写教学设计呢?如下是勤劳的编辑帮大家收集整理的抽屉原理教学设计8篇,仅供借鉴,希望可以帮助到有需要的朋友。

六年级数学《抽屉原理》公开课教学设计篇一教学目标:1.使学生能理解抽取问题中的一些基本原理,并能解决有关简单的问题。

2.体会数学与日常生活的联系,了解数学的价值,增强应用数学的意识。

教学重点:抽取问题。

教学难点:理解抽取问题的基本原理。

教学过程:一、创设情境,复习旧知1、出示复习题:师:老师这儿有一个问题,不知道哪位同学能帮助解答一下?2、课件出示:把3个苹果放进2个抽屉里,总有一个抽屉至少放2个苹果,为什么?3、学生自由回答。

二、教学例21、出示:盒子里有同样大小的红球和蓝球各4个。

要想摸出的球一定有2个同色的,最少要摸出几个球?(1)组织学生读题,理解题意。

教师:你们能猜出结果吗?组织学生猜一猜,并相互交流。

指名学生汇报。

学生汇报时可能会答出:只摸4个球就可以了,至少要摸出5个球……教师:能验证吗?教师拿出准备好的红球及蓝球,组织学生到讲台前来动手摸一摸,验证汇报结果的正确性。

(2)教师:刚才我们通过验证的方法得出了结论,联系前面所学的知识,这是一个什么问题?2、组织学生议一议,并相互交流。

再指名学生汇报。

教师:上面的问题是一个抽屉问题,请同学们找一找:“抽屉”是什么?“抽屉”有几个?组织学生议一议,并相互交流。

指名学生汇报,使学生明确:抽屉就是颜色数。

(板书)教师:能用例1的知识来解答吗?组织学生议一议,并相互交流。

指名学生汇报。

使学生明确:只要分的物体比抽屉多,就能保证总有一个抽屉至少放荡2个球,因此要保证摸出两个同色的球,摸出球的数量至少要比颜色的种数多一。

(3)组织学生对例题的解答过程议一议,相互交流,理解解决问题的方法。

学生不难发现:只要摸出的球比它们的颜色种数多1,就能保证有两个球同色。

《抽屉原理》教学设计

《抽屉原理》教学设计

《抽屉原理》教学设计一、教学目标:1.理解《抽屉原理》的基本概念和含义;2.掌握运用《抽屉原理》解决问题的方法;3.培养学生的逻辑思维和数学推理能力。

二、教学重点:1.理解《抽屉原理》的概念和含义;2.掌握运用《抽屉原理》解决问题的方法。

三、教学难点:1.培养学生的逻辑思维和数学推理能力;2.运用《抽屉原理》解决复杂的问题。

四、教学内容:1.《抽屉原理》的基本概念和含义;2.运用《抽屉原理》解决问题的方法和步骤。

五、教学过程:1.导入(10分钟)通过一个生活实例引入《抽屉原理》的基本概念,比如班级有30位学生,但座位只有20个,一定会有两个学生坐在同一张椅子上。

引导学生思考其中的数学原理和规律。

2.概念讲解(20分钟)介绍《抽屉原理》的基本概念和含义,解释为什么在一些情况下一定会存在相应的结果。

通过几个简单的示例,让学生进一步理解《抽屉原理》的运用。

3.练习与讨论(30分钟)给学生一些练习题,让他们运用《抽屉原理》解答。

通过拆解和分析问题,引导学生运用逻辑思维和数学推理能力解决问题。

教师可以组织学生进行小组讨论,鼓励他们互相交流和分享解题思路。

4.深化应用(20分钟)给学生一些复杂的问题,要求他们运用《抽屉原理》解决。

这些问题可以与日常生活和数学知识相结合,培养学生的抽象思维和解决实际问题的能力。

5.总结与归纳(10分钟)带领学生总结《抽屉原理》的应用场景和解题步骤。

鼓励学生思考如何在其他领域运用《抽屉原理》解决问题,并进行展示。

六、教学评价:1.在课堂上观察学生参与讨论和解答问题的情况,评价他们的思维和合作能力;2.收集学生练习和作业,评价他们对《抽屉原理》的理解和应用能力;3.针对学生的学习情况,给予个别指导和反馈,提供进一步的辅导和支持。

七、教学资源准备:1.课件和投影仪;2.练习题和作业;3.随堂练习和活动的材料。

八、教学延伸:1.鼓励学生阅读与《抽屉原理》相关的文献和书籍,深入理解其原理和应用;2.组织学生参加数学竞赛和解题比赛,锻炼他们的解决问题和运用《抽屉原理》的能力;3.组织学生讨论与《抽屉原理》相关的开放性问题,培养他们的自主学习和探究能力。

六年级数学《抽屉原理》公开课教学设计

六年级数学《抽屉原理》公开课教学设计

六年级数学《抽屉原理》公开课教学设计六年级数学《抽屉原理》公开课教学设计(精选5篇)抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狭利克雷明确地提出来的,因此,也称为狭利克雷原理。

它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原理。

它是组合数学中一个重要的原理。

接下来我们一起来看看六年级数学《抽屉原理》公开课教学设计(精选5篇)。

六年级数学《抽屉原理》公开课教学设计篇1教学内容:六年级数学下册70页、71页例1、例2。

教学目标:1、理解“抽屉原理”的一般形式。

2、经历“抽屉原理”的探究过程,体会比较、推理的学习方法,会用“抽屉原理”解决简单的的实际问题。

4、感受数学的魅力,提高学习兴趣,培养学生的探究精神。

教学重点:经历“抽屉原理”探究过程,初步了解“抽屉原理”。

教学难点:理解“抽屉原理”的一般规律。

教学准备:相应数量的杯子、铅笔、课件。

教学过程:一、情景引入让五位学生同时坐在四把椅子上,引出结论:不管怎么坐,总有一把椅子上至少坐了两名学生。

师:同学们,你们想知道这是为什么吗?今天,我们一起研究一个新的有趣的数学问题。

二、探究新知1、探究3根铅笔放到2个杯子里的问题。

师:现在用3根铅笔放在2个杯子里,怎么放?有几种放法?大家摆摆看,有什么发现?摆完后学生汇报,教师作相应的板书(3,0)(2,1),引导学生观察理解说出:不管怎么放总有一个杯子至少有2根铅笔。

2、教学例1(1)师:依此推下去,把4根铅笔放在3个杯子又怎么放呢?会有这种结论吗?让学生动手操作,做好记录,认真观察,看看有什么发现?(2)、学生汇报放结果,结合学具操作解释。

教师作相应记录。

(4,0,0) (3,1,0) (2,2,0) (2,1,1)(学生通过操作观察、比较不难发现有与上个问题同样结论。

)(3)学生回答后让学生阅读例1中对话框:不管怎么放,总有一个杯子里至少放进2根铅笔。

抽屉原理教学教案参考

抽屉原理教学教案参考

抽屉原理教学教案参考一、教学目标:1. 让学生理解抽屉原理的基本概念和含义。

2. 培养学生运用抽屉原理解决实际问题的能力。

3. 培养学生逻辑思维能力和创新思维能力。

二、教学内容:1. 抽屉原理的基本概念和含义。

2. 抽屉原理的应用举例。

三、教学重点与难点:1. 教学重点:抽屉原理的基本概念和含义,抽屉原理的应用。

2. 教学难点:如何运用抽屉原理解决实际问题。

四、教学方法:1. 采用问题驱动法,引导学生主动探究抽屉原理。

2. 通过实例分析,让学生理解并掌握抽屉原理的应用。

3. 组织小组讨论,培养学生合作解决问题的能力。

五、教学过程:1. 导入新课:通过生活中的实例,引导学生思考抽屉原理的概念。

2. 讲解抽屉原理:详细讲解抽屉原理的基本概念和含义。

3. 实例分析:分析具体实例,让学生理解抽屉原理的应用。

4. 练习与讨论:布置练习题,组织学生进行小组讨论,共同解决问题。

6. 课后作业:布置作业,让学生巩固所学内容。

六、教学评价:1. 通过课堂问答、练习题和小组讨论,评估学生对抽屉原理的理解程度。

2. 关注学生在解决问题时的逻辑思维和创新思维能力。

3. 结合学生的课后作业,检查学生对课堂所学内容的掌握情况。

七、教学拓展:1. 引导学生思考抽屉原理在其他领域的应用,如数学、物理、计算机科学等。

2. 介绍与抽屉原理相关的有趣问题和挑战,激发学生的学习兴趣。

八、教学资源:1. 教学PPT:展示抽屉原理的基本概念、实例分析和练习题。

2. 练习题:提供不同难度的练习题,让学生巩固所学内容。

3. 小组讨论材料:提供相关话题和问题,方便学生进行小组讨论。

九、教学反思:1. 反思教学过程:思考课堂教学中的优点和不足,找出需要改进的地方。

2. 关注学生反馈:了解学生的学习感受,调整教学方法和内容,提高教学质量。

十、课后作业:1. 巩固抽屉原理的基本概念和应用。

2. 完成课后练习题,提高解决问题的能力。

3. 探索抽屉原理在其他领域的应用,激发创新思维。

抽屉原理教学设计

抽屉原理教学设计

抽屉原理教学设计一、教学背景在数学教学中,抽屉原理是一种常用的数学证明方法。

抽屉原理指出,如果有n+1 个对象放入 n 个容器中,则至少有一个容器中会放入两个对象。

抽屉原理常常用于解决鸽笼原理、排列组合等问题,具有重要的理论和实际应用价值。

因此,通过教学设计将抽屉原理的概念和应用传授给学生,有助于提高他们的证明能力和问题解决能力。

二、教学目标1.理解抽屉原理的概念和应用;2.掌握利用抽屉原理解决问题的方法;3.培养学生的逻辑思维和证明能力;4.培养学生的问题解决能力和创新思维。

三、教学内容和教学步骤3.1 教学内容1.抽屉原理的概念和表述;2.抽屉原理的证明方法和常见应用;3.抽屉原理与鸽笼原理、排列组合等数学概念的关系。

3.2 教学步骤步骤一:导入通过提问导入抽屉原理的概念。

教师可以向学生提问:“你们平时在生活中是否遇到过抽屉原理的应用呢?抽屉原理是什么意思?”通过与学生的互动讨论,引发学生的思考,然后进行概念的解释和引出抽屉原理的表述。

步骤二:介绍抽屉原理的概念和表述教师通过讲解的方式介绍抽屉原理的概念和表述。

教师可以使用以下语言进行讲解:“抽屉原理是数学中的一种常见证明方法。

它的核心思想是:如果有 n+1 个对象放入 n 个容器中,那么至少有一个容器中会放入两个对象。

”通过示例和图表的形式,向学生解释抽屉原理的表述,让学生能够形象化地理解这一概念。

步骤三:介绍抽屉原理的证明方法和常见应用教师介绍抽屉原理的证明方法和一些常见应用。

教师可以使用一些简单的例子,让学生通过具体问题去理解和应用抽屉原理。

例如,教师可以提出一个问题:“班级里有 31 个学生,他们的生日都在 1 月到12 月之间,那么至少有两名学生的生日月份相同。

请思考一下,这个问题可以用抽屉原理来解决吗?”通过引导学生进行思考和讨论,学生可以发现这个问题可以用抽屉原理来解决。

教师可以帮助学生分析具体的解题步骤和思路,引导学生进行证明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抽屉原理教学设计目录第一篇:人教版小学数学第十二册第五单元《抽屉原理》教学设计第二篇:《抽屉原理》教学反思第三篇:抽屉原理教学反思第四篇:抽屉原理教学反思第五篇:抽屉原理教学反思更多相关范文正文第一篇:人教版小学数学第十二册第五单元《抽屉原理》教学设计《抽屉原理》教学设计教学内容:义务教育课程标准实验教科书六年级下册《抽屉原理》。

教学目标:1.识与能力:初步了解抽屉原理,运用抽屉原理知识解决简单的实际问题。

2.程和方法:经历抽屉原理的探究过程,通过动手操作、分析、推理等活动,发现、归纳、总结原理。

3.感与价值:通过“抽屉原理”的灵活应用感受数学的魅力;提高同学们解决问题的能力和兴趣。

教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

教具学具:课件、扑克牌、每组都有相应数量的笔筒、铅笔、书。

教学过程:一、创设情景导入新课师:同学们玩过扑克牌吗?扑克牌有几种花色?取出两张王牌,在剩下的52张扑克牌中任意取出5张,我不看牌,我敢肯定的说:这5张牌至少有两张是同花色,大家相信吗?(师生演示)师:想知道老师为什么能做出如此准确的判断吗?这其中蕴含一个有趣的数学原理——抽屉原理。

(板书课题)这节课我们就一起来研究这个数学原理。

师:通过今天的学习,你想知道些什么?二、自主操作探究新知(一) 活动1课件出示:把4枝铅笔放到3个笔筒里,可以怎么放?师:你们摆摆看,会有什么发现?把你们发现的结果用自己喜欢的方式记录下来。

1、学生动手操作,师巡视,了解情况。

2、汇报交流说理活动① 师:有什么发现?谁能说说看?师根据学生的回答用数字在黑板上记录。

板书:(4,0,0)(3,1,0)(2,2,0)(2,1,1)师:你们是这样记录的吗?师:还可以用图记录。

我把用图记录的用课件展示出来。

② 再认真观察记录,还有什么发现?板书:总有一个笔筒里至少有2枝铅笔。

③ 怎样摆可以一次得出结论?(启发学生用平均分的摆法,引出用除法计算。

)板书:4÷3=1(枝)??1(枝)④ 师:这种方法是不是很快就能确定总有一个笔筒里至少有几枝铅笔呢?(学生交流)⑤ 把5枝铅笔放进4个笔筒里呢?还用摆吗?板书:5÷4=1(枝)??1(枝)⑥ 课件出示:把6枝铅笔放进5个笔筒呢?把7枝铅笔放进6个笔筒呢?把10枝铅笔放进9个笔筒呢?把100枝铅笔放进99个笔筒呢?板书:7÷6=1(枝)??1(枝)10÷9=1(枝)??1(枝)100÷99=1(枝)??1(枝)⑦ 观察这些算式你发现了什么规律?预设学生说出:至少数=商+余数师:是不是这个规律呢?我们来试一试吧!3、深化探究得出结论课件出示:5只鸽子飞回3个鸽笼,至少有两只鸽子要飞进同一个鸽笼里,为什么?① 学生活动② 交流说理活动预设:生1:题目的说法是错误的,用商加余数,应该至少有3只鸽子要飞进同一个鸽笼。

生2:不同意!不是“商加余数”是“商加1”.③ 师:到底是“商加余数”还是“商加1”?谁的结论对呢?在小组里进行研究、讨论。

④ 师:谁能说清楚?板书:5÷3=1(只)??2(只)至少数=商+1(二)活动二课件出示:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?1、分组操作后汇报板书:5÷2=2(本)??1(本)7÷2=2(本)??1(本)9÷2=2(本)??1(本)2、那么探究到现在,大家认为怎样才能确定总有一个抽屉至少有几本书?生:至少数=商+13、师:我同意大家的讨论。

我们这个发现就是有趣的“抽屉原理”,(点题)。

“抽屉原理”又称“鸽笼原理”,最先是由19世纪德国数学家狄里克雷提出的,所以又称“狄里克雷原理”。

这一原理在实际问题中有着广泛的应用。

用它可以解决许多有趣的问题,让我们来试试好吗?三、灵活应用解决问题1、解释课前提出的游戏问题。

2、课件出示:8只鸽子飞回3个鸽舍,不管怎样分,总有一个鸽舍至少有几只鸽子?3、课件出示:任意13人中,至少有两人的出生月份相同。

为什么?4、课件出示:任意367名学生中,一定存在两名学生,他们在同一天过生日。

为什么?四、畅谈感受教学结束同学们,今天这节课有什么感受?(抽生谈谈,师总结。

)第二篇:《抽屉原理》教学反思《抽屉原理》教学反思仙居县岭下张小学王胜《抽屉原理》是义务教育小学数学六年级下册数学广角的内容,《抽屉原理》教学反思。

数学课程标准指出,数学教学是师生互动与发展的过程,学生是数学学习的主人,教师是课堂的组织者、引导者和合作者。

本节课的教学我依据学校的新课堂理念,注重先学后教,给学生提供自主学习的空间,引导学生在观察、猜测、操作、推理和交流等数学活动中初步了解抽屉原理,学会用抽屉原理解决简单的实际问题,教学反思《《抽屉原理》教学反思》。

回顾本堂课的教学,有以下几点思考:1、通过一道世界名题,激发学生的探究兴趣,让学生在思想上产生学习新知识的愿望,产生一种需要认识和学习的心理。

2、“激趣导入---建立模型---解释应用”是新课程所倡导的教学模式。

本节课运用这一模式,让学生经历探究“抽屉原理”的过程,初步了解“抽屉原理”的一般模型,并能够应用于实际,学会思考数学问题的方法,培养学生的数学思维。

3、本节课的教学,有意识的培养学生的“模型思想”,让学生理解抽屉原理的一般化模型。

在学生解决了“4枝铅笔放进3个盒子中”的问题后,继续思考类推,得出一般性的结论。

这样设计,循序渐进,提升了学生的思维,发展了学生的能力。

当然,本堂课还有许多值得商榷和不足的地方,课后,在听了张校长的点评之后,更是对这堂课的不足之处有了更深的认识:1、世界名题的设计对于六年级的学生来说相对偏难,应该在设计上下点功夫,深入浅出。

2、课前的先学部分,可以设计一张导学单来代替看书,可以让学生通过动手操作,亲身经历“把4支铅笔放进3个文具盒中”所有情况,进而得出结论“不管怎么放,总有一个文具盒中至少放进2支铅笔”,紧接着再回过头去解释结论,从而重点引出“假设法”。

通过“操作——总结——解释”等一系列活动,真正提高学生的自学兴趣和自学能力。

3、在课堂设计中,应更注重突出假设法。

这样对后续的学习更有帮助。

第三篇:抽屉原理教学反思抽屉原理教学反思1、《数学广角》的教学要适当把握教学的要求。

本内容只要求学生能结合具体问题把大致的意思说出来就可以了,不必过于追求说理的“严密”性。

而我对学生的要求过高了,不仅要求他们能说理还要求他们的语言准确严密。

在例1后的做一做中,有学生描述结论时说“至少有一个鸽舍会飞进2个鸽子”。

我认为这种说法是错误的,不是“至少一个鸽舍”,而是“至少2只鸽子”,于是我错误地判断学生还没有理解,就揪住这一点不放,在文字上和学生纠缠不清。

其实通过之前学生对例题1的证明、说理过程和对做一做的说理可以看出学生已经理解了抽屉原理中假设法的核心“平均分”,这里学生只是表述结论时不够严密。

由于我对文字的纠缠让本来思维清晰的学生反而不清了,也影响了例2 的教学,临时改变例2的教学设计,又让学生动手操作了一次。

2、对原理的探究要给学生提供充分的时间消化理解。

例1的目的之一就是通过充分的操作,让学生理解“总有一个文具盒中至少放进2支铅笔”这句话。

本节课中,学生很快将4支铅笔放进3个文具盒的所有情况一一罗列出来了,也很快根据所有的情况证明了结论应该是“至少2只”,而不是“至少1只”。

这时我就直接抛出了问题“不用一一列举,想一想,还有其它的方法来证明这个结论吗?”,这里进行的太快了。

虽然部分学生很顺利地罗列了所以的情况,也证明了结论,但是不能代表所有学生的认知水平都达到了同步。

大多数学生此时只是刚刚理解“总有一个文具盒中至少放进2支铅笔”这句话。

对于“总有一个文具盒”和“至少2只”的理解应该再充分利用“一一列举”图示,加以解释理解。

这个重要的环节,我没有落实到位,一带而过,造成了学生对“总有一个文具盒”的理解不到位,也为后面的教学环节制造了障碍。

3、问题面对的是全体而不是个体,应给大多数学生思考的时间和空间。

在每个具体问题的说理证明过程中,老师操之过急。

问题提出后就马上指名回答,没有给大多数同学思考的时间,变成了点对点式的教学,没有做到点对面。

4、挖掘数学背景知识,应与教学内容紧密联系,不能流于形式。

教学中的每一个环节的设计都应围绕教学内容,与之紧密联系。

本节课中,在总结规律后,向学生介绍了抽屉原理的发现者,数学家狄里克雷。

但是仅仅停留在学生阅读资料的程度上,没有充分利用这个资料与本节课中的“做一做”联系,来说明抽屉原理为什么又叫做“鸽巢原理”,流于形式,与“高效课堂”是相悖的。

《数学广角》这个内容,我教学实践了几次,每次教学中学生反映的情况都不同,有的教学下来感觉不错,有的教学下来遗憾多多。

特别是这节课,虽然开始还不错,但是由于中间对学生出现情况的错误处理,导致后面例2的教学完全改变了原来设计。

静下心来想,在新课标的课堂教学中,学生是课堂的主人,是学习的主体,并不意味教师被学生“牵着鼻子走”。

教师要充当好课堂的组织者和引导者,就得站得更高,不是只着眼于教学流程的设计,必须充分解读文本。

从《新课标》的角度解读文本,掌握标准;从编者的角度解读文本,了解编排的意图;从学生的角度解读文本,做到充分的预设。

这样吃透教材,做到心中有数,不管在教学中碰到什么情况,都能围绕教学内容灵活机动处理,将被动化为主动。

第四篇:抽屉原理教学反思《抽屉原理》反思“抽屉原理”是六年级下册内容,应用很广泛且灵活多变,可以解决一些看上去很复杂、觉得无从下手,却又是相当有趣的数学问题。

但对于小学生来说,理解和掌握“抽屉原理”还存在着一定的难度。

制作本微课主要是让学生通过观看视频理解抽屉原理的内含,把握抽屉原理的关键点和解题步骤。

初步培养学生逻辑思维能力。

这种形式解决了教师讲解,但学生的思维跟不上老师的思维的难题,把抽象的说理用具体的动画演示出来,化抽象为具体,学生可以边观看边自主思考,发现并描述、透彻理解了最简单的“抽屉原理”的本质。

从而建立模型、解释应用,有效的将学生的自主探究学习延伸到课外。

体现了“数学来源于生活,又还原于生活”的理念。

第五篇:抽屉原理教学反思抽屉原理教学反思发布:上前城小学时间:2020-4-27 16:55:24来源:兴庆区教育局信息中心点击:538《抽屉原理》教学反思吕慧慧抽屉原理是六年级下册数学广角中的内容,这部分教材通过几个直观例子,借助实际操作,向学生介绍“抽屉原理”,使学生理解“抽屉原理”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“抽屉原理”加以解决。

通过本节课的教学,我觉得这节课还是比较失败的。

相关文档
最新文档