双曲线经典例题讲解
专题10双曲线问题(解答题)

专题10双曲线问题(解答题)一、解答题1.已知双曲线C 的中心为坐标原点,左焦点为()-.(1)求C 的方程;(2)记C 的左、右顶点分别为1A ,2A ,过点()4,0-的直线与C 的左支交于M ,N 两点,M 在第二象限,直线1MA 与2NA 交于点P .证明:点P 在定直线上.2.已知双曲线2222:1(0,0)x y C a b a b -=>>的右焦点为(2,0)F ,渐近线方程为y =. (1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点()()1122,,,P x y Q x y 在C 上,且1210,0x x y >>>.过P 且斜率为Q M .从下面①②③中选取两个作为条件,证明另外一个成立:①M 在AB 上;②PQ AB ∥;③||||MA MB =.注:若选择不同的组合分别解答,则按第一个解答计分.3.已知双曲线222Γ:1,(0),y x b b -=>左右顶点分别为12,A A ,过点()2,0M -的直线l 交双曲线Γ于,P Q 两点.(1)若离心率2e =时,求b 的值.(2)若2b MA P =△为等腰三角形时,且点P 在第一象限,求点P 的坐标. (3)连接OQ 并延长,交双曲线Γ于点R ,若121A R A P ⋅=u u u r u u u u r ,求b 的取值范围. 4.已知动点P 与定点(),0A m 的距离和P 到定直线2n x m=的距离的比为常数m n .其中0,0m n >>,且m n ≠,记点P 的轨迹为曲线C .(1)求C 的方程,并说明轨迹的形状;(2)设点(),0B m -,若曲线C 上两动点,M N 均在x 轴上方,AM BN P ,且AN 与BM 相交于点Q .①当4m n ==时,求证:11AM BN+的值及ABQ V 的周长均为定值;②当m n >时,记ABQ V 的面积为S ,其内切圆半径为r ,试探究是否存在常数λ,使得S r λ=恒成立?若存在,求λ(用,m n 表示);若不存在,请说明理由.5.已知双曲线2222:1(0,0)x y C a b a b-=>>过点A ,且焦距为10. (1)求C 的方程;(2)已知点3),B D -,E 为线段AB 上一点,且直线DE 交C 于G ,H 两点.证明:||||||||GD HD GE HE =.6.已知双曲线()2222:10,0x y C a b a b-=>>的实轴长为2,右焦点为). (1)求双曲线C 的方程;(2)已知直线2y x =+与双曲线C 交于不同的两点A ,B ,求AB . 7.已知双曲线E :2214x y -=与直线l :3y kx =-相交于A 、B 两点,M 为线段AB 的中点. (1)当k 变化时,求点M 的轨迹方程;(2)若l 与双曲线E 的两条渐近线分别相交于C 、D 两点,问:是否存在实数k ,使得A 、B 是线段CD 的两个三等分点?若存在,求出k 的值;若不存在,说明理由.8.已知双曲线C :22221x y a b-=(0a >,0b >)实轴端点分别为()1,0A a -,()2,0A a ,右焦点为F ,离心率为2,过1A 点且斜率1的直线l 与双曲线C 交于另一点B ,已知1A BF △的面积为92. (1)求双曲线的方程;(2)若过F 的直线l '与双曲线C 交于M ,N 两点,试探究直线1A M 与直线2A N 的交点Q 是否在某条定直线上?若在,请求出该定直线方程;如不在,请说明理由.9.过点()4,2的动直线l 与双曲线()2222:10,0x y E a b a b-=>>交于,M N 两点,当l 与x 轴平行时,MN =l 与y 轴平行时,MN =(1)求双曲线E 的标准方程;(2)点P 是直线1y x =+上一定点,设直线,PM PN 的斜率分别为12,k k ,若12k k 为定值,求点P 的坐标.10.已知双曲线E :22221x y a b-=的左右焦点为1F ,2F ,其右准线为l ,点2F 到直线l 的距离为32,过点2F 的动直线交双曲线E 于A ,B 两点,当直线AB 与x 轴垂直时,6AB =. (1)求双曲线E 的标准方程;(2)设直线1AF 与直线l 的交点为P ,证明:直线PB 过定点.11.双曲线()2222:10,0x y C a b a b-=>>的左顶点为A ,焦距为4,过右焦点F 作垂直于实轴的直线交C 于B 、D 两点,且ABD △是直角三角形.(1)求双曲线C 的方程;(2)M 、N 是C 右支上的两动点,设直线AM 、AN 的斜率分别为1k 、2k ,若122k k =-,求点A 到直线MN 的距离d 的取值范围.12.已知双曲线2222:1(0)x y C a b a b-=>>的一个焦点为()2,0,F O 为坐标原点,过点F 作直线l 与一条渐近线垂直,垂足为A ,与另一条渐近线相交于点B ,且,A B 都在y 轴右侧,OA OB +=(1)求双曲线C 的方程;(2)若直线1l 与双曲线C 的右支相切,切点为1,P l 与直线23:2l x =交于点Q ,试探究以线段PQ 为直径的圆是否过x 轴上的定点.13.在平面直角坐标系xOy 中,双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为12,,F F C 的离心率为2,直线l 过2F 与C 交于,M N 两点,当2OM OF =时,12MF F △的面积为3.(1)求双曲线C 的方程;(2)已知,M N 都在C 的右支上,设l 的斜率为m .①求实数m 的取值范围;②是否存在实数m ,使得MON ∠为锐角?若存在,请求出m 的取值范围;若不存在,请说明理由.14.已知O 为坐标原点,双曲线2222:1(0,0)x y C a b a b-=>>的焦距为4,且经过点. (1)求C 的方程:(2)若直线l 与C 交于A ,B 两点,且0OA OB ⋅=u u u r u u u r ,求AB 的取值范围:(3)已知点P是C上的动点,是否存在定圆222:()0O x y r r+=>,使得当过点P能作圆O的两条切线PM,PN时(其中M,N分别是两切线与C的另一交点),总满足PM PN=?若存在,求出圆O的半径r:若不存在,请说明理由.15.已知双曲线2222:1(0,0)x yC a ba b-=>>的焦点与椭圆2215xy+=的焦点重合,其渐近线方程为y=. (1)求双曲线C的方程;(2)若,A B为双曲线C上的两点且不关于原点对称,直线1:3l y x=过AB的中点,求直线AB的斜率.。
高考数学专题复习:双曲线(含解析)

高考数学专题复习:双曲线(含解析)本文存在大量的格式错误和段落问题,需要进行修正和删减。
修正后的文章如下:研究目标:1.理解双曲线的定义、几何图形、标准方程以及简单几何性质。
2.理解数形结合的思想。
3.了解双曲线的实际背景及其简单应用。
一、单选题1.设 $F_1,F_2$ 分别是双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的左右焦点,点 $P$ 在双曲线 $C$ 的右支上,且 $F_1P=F_2P=c$,则 $\frac{c^2}{a^2-b^2}$ 的值为:A。
$1$B。
$\frac{1}{2}$C。
$\frac{1}{3}$D。
$\frac{1}{4}$答案】B解析】根据双曲线的性质求出 $c$ 的值,结合向量垂直和向量和的几何意义进行转化求解即可。
点睛】本题主要考查双曲线性质的意义,根据向量垂直和向量和的几何意义是解决本题的关键。
2.设 $F_1(-1,0),F_2(1,0)$ 是双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的左右焦点,$A(0,b)$ 为左顶点,点$P$ 为双曲线右支上一点,且 $AP=\frac{a}{2}$,则$\frac{b^2}{a^2}$ 的值为:A。
$1$B。
$\frac{1}{2}$C。
$\frac{1}{3}$D。
$\frac{1}{4}$答案】D解析】先求出双曲线的方程为 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,再求出点 $P$ 的坐标,最后求$\frac{b^2}{a^2}$。
点睛】本题主要考查双曲线的几何性质和向量的数量积运算,考查双曲线方程的求法,意在考查学生对这些知识的掌握水平和分析推理计算能力。
双曲线的通径为 $2a$。
3.已知直线$l$ 的倾斜角为$\theta$,且$l: y=x\tan\theta$,直线 $l$ 与双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的左、右两支分别交于 $A,B$ 两点,$OA\perp$轴,$OB\perp$轴(其中 $O$、$F_1,F_2$ 分别为双曲线的坐标原点、左、右焦点),则该双曲线的离心率为:A。
双曲线专题复习考点技巧归纳+经典例题+变式训练+综合练习

双曲线专题复习讲义题型一 双曲线定义的应用例题1已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F ,2F ,点M 在双曲线的右支上,点N 为2F M的中点,O 为坐标原点,2||||2ON NF b -=,则该双曲线的离心率为( )A B .2 C D 【答案】C【解析】由N 为2F M 的中点,所以1//ON MF ,且11||||2ON MF =,故01260F MF ∠=, 2121||||(||||)2ON NF MF MF a ∴-=-=,故2a b =,设双曲线的焦距为2c ,由224a b =可得222244()a b c a ==-,即c =,故双曲线的离心率为e =,故选C . 例题2已知点P 是双曲线22221(0,0)x y a b a b -=>>右支上一点,1F 、2F 分别是双曲线的左、右焦点,I 为△12PF F 的内心,若121213IPF IPF IF F S S S =+成立,则双曲线的离心率为( )A .3BCD .4【答案】A【解析】设△12PF F 的内切圆的半径为r .I 为△12PF F 的内心,由121213IPF IPF IF F SS S =+成立,可得121111||||22232PF r PF r c r ⋅=⋅+⨯⨯⋅.∴又12||||2PF PF a -=,1223a c ∴=⋅.232ce a∴==.故选A . 【解题技巧提炼】双曲线上的点P 与其两个焦点F 1,F 2连接而成的三角形PF 1F 2称为焦点三角形.令|PF 1|=r 1,|PF 2|=r 2,∠F 1PF 2=θ,因|F 1F 2|=2c ,所以有(1)定义:|r 1-r 2|=2a . (2)余弦公式:.(3)面积公式:一般地,在△PF 1F 2中,通过以上三个等式,所求问题就会顺利解决.题型二 与双曲线有关的轨迹问题例题1(2021•重庆质检)在平面直角坐标系中,一动圆C 与x 轴切于点(4,0)A ,分别过点(5,0)M -、(5,0)N 作圆C 的切线并交于点P (点P 不在x 轴上),则点P 的轨迹方程为( )A .221(4)169x y x -=>B .221(4)169x y x -=<-C .221(4)2516x y x +=>D .221(4)2516x y x +=<-【答案】A【解析】由题意,在平面直角坐标系中,一动圆C 与x 轴切于点(4,0)A ,圆的圆心在4x =上,分别过点(5,0)M -、(5,0)N 作圆C 的切线并交于点P (点P 不在x 轴上),与圆交于S ,T ,所以||||MA MS =,||||NA NT =,||||PS PT =,所以||||||||54(54)8PM PN AM AN -=-=+--=,P 满足双曲线的定义, 是双曲线的右支,除去A 点,故选A .【解题技巧提炼】求解与双曲线有关的点的轨迹问题,常见的方法有两种:(1)列出等量关系,化简得到方程;(2)寻找几何关系,双曲线的定义,得出对应的方程.求解双曲线的轨迹问题时要特别注意:(1)双曲线的焦点所在的坐标轴;(2)检验所求的轨迹对应的是双曲线的一支还是两支;(3)求出方程后要注意满足方程的解的坐标的点,是否都在所求曲线上.题型三 由双曲线的标准方程求其简单的几何性质例题1(2021秋•温州期中)已知双曲线222:19x y C b-=的焦距为10,则双曲线C 的渐近线方程为( )A .916y x =±B .169y x =±C .43y x =±D .34y x =±【答案】C【解析】双曲线222:19x y C b-=的焦距为10,210c ∴=,5c =,3a =,22925916b c ∴=-=-=,4b ∴=,∴双曲线C 的浙近线方程为43b y x x a =±=±. 故选C .【解题技巧提炼】由双曲线的方程研究几何性质的解题步骤1把双曲线方程化为标准形式是解决本题的关键. 2由标准方程确定焦点位置,确定a 、b 的值.3由c 2=a 2+b 2求出c 值,从而写出双曲线的几何性质.题型四 利用几何性质求双曲线的标准方程例题1(2020•新疆模拟)已知双曲线的一条渐近线方程为2y x =,且经过点(4,43),则该双曲线的标准方程为( )A .221416x y -=B .221164y x -=C .22128x y -=D .22144176y x -=【答案】A【解析】1:根据题意知,2443⨯>(4,3)在渐近线方程2y x =的右下方,所以该双曲线的焦点在x 轴上,设标准方程为22221x y a b-=,且0a >,0b >;又2ba=,所以2b a =; 又2216481a b -=,即2221648414a a a -==,解得24a =,216b =,所以双曲线的标准方程是221416x y -=.解法2:根据渐近线方程设双曲线的标准方程是22(0)4y x k k -=≠,代入点(4,43),计算得481644k =-=,所以双曲线的标准方程为2244y x -=,即221416x y -=.故选A . 例题2 (2020秋•胶州市期末)与双曲线22:12x C y -=共渐近线,且经过10)点的双曲线的标准方程是()A .22142x y -=B .22124x y -=C .22142y x -=D .22124y x -=【答案】A【解析】根据题意,要求双曲线与双曲线22:12x C y -=共渐近线,设要求的双曲线为222x y t -=,(0)t ≠,又由双曲线经过点10,则有91024t -=, 解可得2t =,则要求双曲线的标准方程为22142x y -=;故选A . 【解题技巧提炼】求双曲线的标准方程的方法与技巧(1)根据双曲线的某些几何性质求双曲线方程,一般用待定系数法转化为解方程(组),但要注意焦点的位置,从而正确选择方程的形式.(2)利用渐近线与双曲线的位置关系,设有公共渐近线的双曲线方程x 2a 2-y 2b 2=λ(λ≠0),这样可避免分类讨论,从而减少运算量,提高解题速度与准确性.拓展延伸:巧设双曲线的六种方法与技巧(1)焦点在x 轴上的双曲线的标准方程可设为x 2a 2-y 2b 2=1(a >0,b >0).(2)焦点在y 轴上的双曲线的标准方程可设为y 2a 2-x 2b2=1(a >0,b >0).(3)与双曲线x 2a 2-y 2b 2=1共焦点的双曲线方程可设为x 2a 2-λ-y 2b 2+λ=1(λ≠0,-b 2<λ<a 2).(4)与双曲线x 2a 2-y 2b 2=1具有相同渐近线的双曲线方程可设为x 2a 2-y 2b 2=λ(λ≠0).(5)渐近线为y =kx 的双曲线方程可设为k 2x 2-y 2=λ(λ≠0). (6)渐近线为ax ±by =0的双曲线方程可设为a 2x 2-b 2y 2=λ(λ≠0).题型五 求双曲线的离心率例题1(2021秋•镇海区校级期中)双曲线22221(0,0)x y a b a b -=>>的离心率为1e ,22221(0,0)x y a b a b-=->>的离心率为2e ,则221211e e +的值为( )A .1B .2C .12D .4【解析】双曲线22221(0,0)x y a b a b-=>>的离心率为1e ,22221(0,0)x y a b a b -=->>的离心率为2e =2222222222122211111a b a b a b e e a b a b ++=+==+++.故选A . 例题2 (2021秋•遵义月考)已知曲线2222:1(0,0)x y C a b a b -=>>其中一条渐近线与直线:22l x y +=平行,则此双曲线的离心率是( ) ABC .32D【解析】根据题意,双曲线C 的方程为22221(0,0)x y a b a b -=>>,则其渐近线方程为by x a=±,又由其一条渐近线与直线:22l x y +=平行,有12b a =,即12b a =,则c =,则其离心率c e a =B .【解题技巧提炼】 求离心率的方法与技巧(1)求双曲线离心率的常见方法:一是依据条件求出a ,c ,再计算e =ca ;二是依据条件建立参数a ,b ,c 的关系式,一种方法是消去b 转化成离心率e 的方程求解,另一种方法是消去c 转化成含b a 的方程,求出ba 后利用e =1+b 2a2求离心率. (2)求离心率的范围一般是根据条件建立a ,b ,c 的不等式,通过解不等式得c a 或ba 的范围,再求得离心率的范围.题型六 与渐进线有关的问题例题1(2021秋•洛阳期中)已知双曲线2222:1(0,0)x y C a b a b-=>>,若点(,0)A a -,(,0)B a ,C ,)b 是等腰三角形的三个顶点,则该双曲线的渐近线方程为( )A .3y x =±B .y =C .13y x =±D .y = 【答案】B【解析】依题意,要使点(,0)A a -,(,0)B a ,C ,)b 是等腰三角形的三个顶点,则必有2AB BC a ==,2a ,整理可得2220c ac a --=,解得2c a =,即可得2224a a b =+,ba=所以双曲线的渐近线方程为by x a=±=,故选B .例题2 (2021秋•南湖区月考)已知双曲线221169x y -=的右支上一点P 到其渐近线的距离为d ,F 为双曲线的左焦点,则||PF d +的最小值为( ) A .9B .10C .11D .12【解析】由双曲线的方程可得216a =,29b =,所以22225c a b =+=,可得5c =, 设双曲线的右焦点(5,0)F ',渐近线的方程为:043x y±=,即340x y ±=, 所以右焦点F '到渐近线的距离||3DF '==,由双曲线的性质可得右支上的点P 到右焦点的距离||||2PF PF a '=-,||||2||2PF d PF a d DF a ''+=+++,当且仅当F ',P ,垂足三点共线,其值最小,所以||PF d +的最小值为:2324311a +=⨯+=,故选C .【解题技巧提炼】1.双曲线x 2a 2-y 2b 2=1的渐近线为y =±b a x ,双曲线y 2a 2-x 2b 2=1的渐近线为y =±ab x ,两者容易记混,可将双曲线方程中的“1”换成“0”,然后因式分解即得渐近线方程.2.若已知渐近线方程为mx ±ny =0,求双曲线方程,双曲线的焦点可能在x 轴上,也可能在y 轴上,可用下面的方法来解决.方法一:分两种情况设出方程进行讨论.方法二:依据渐近线方程,设出双曲线方程m 2x 2-n 2y 2=λ(λ≠0),求出λ即可. 显然方法二较好,避免了讨论. 3.有共同渐近线的双曲线的方程.与双曲线x 2a 2-y 2b 2=1有共同渐近线的双曲线方程可设为x 2a 2-y 2b 2=λ(λ≠0).若λ>0,则实轴在x 轴上;若λ<0,则实轴在y 轴上,再依据题设条件可确定λ.题型一 双曲线定义的应用1.已知1F 、2F 分别是双曲线22124y x -=的左、右焦点,若P 是双曲线左支上的点,且12||||48PF PF ⋅=.则△12F PF 的面积为( )A .8B .16C .24 D.【答案】C 【解析】P 是双曲线左支上的点,21||||2PF PF ∴-=,12||10F F =,在△12PF F 中,由余弦定理得222221212211212121212||||||(||||)2||||||4248100cos 02||||2||||248PF PF F F PF PF PF PF F F F PF PF PF PF PF +--+-+⨯-∠====⨯,1290F PF ∴∠=︒,即12PF PF ⊥,∴△12F PF 的面积为1211||||482422PF PF ⋅=⨯=,故选C . 2.已知双曲线2222:1(0,0)x y C a b a b-=>>的左,右焦点分别为1F 、2F ,过点2F 作倾斜角为θ的直线l 交双曲线C 的右支于A ,B 两点,其中点A 在第一象限,若1||||AB AF =,且双曲线C 的离心率为2.则cos (θ=) A .14B .13C .23D .12【答案】A【解析】由双曲线的定义知,12||||2AF AF a -=,1||||AB AF =,221||||||AF BF AF ∴+=,即122||||||2AF AF BF a -==,12||||24BF BF a a ∴=+=,在△12BF F 中,由余弦定理知,2222121212||||||cos 2||||BF F F BF BF F F θ+-=⋅,∴2222244163cos 2222a c a c a a c ac θ+--==⋅⋅,2c e a ==,∴431cos 44θ-==,故选A .题型二 与双曲线有关的轨迹问题1.(2021秋•海曙区校级期中)与圆22(2)2x y ++=外切,且与圆2240x y x +-=内切的圆的圆心在( ) A .抛物线上 B .圆上C .双曲线的一支上D .椭圆上【答案】C【解析】由题设,22(2)2x y ++=的圆心为(2,0)A -2240x y x +-=的圆心为(2,0)B ,半径为2,∴若所求圆的圆心为C ,半径为r ,由图及已知条件易得2r >,∴|||2AC r BC r =+=-,则||||2AC BC -=,由双曲线定义知:圆心C 在以A ,B 为焦点的双曲线的右支上. 故选C .题型三 由双曲线的标准方程求其简单的几何性质1.(2021秋•福建期中)双曲线2214y x -=的右顶点到渐近线的距离为( )ABC .1D .2【答案】B【解析】由双曲线2214y x -=,得1a =,2b =,可得右顶点为(1,0),一条渐近线方程为2y x =,即为20x y -=,可得右顶点到该双曲线一条渐近线的距离为d =.故选B .2.(2021秋•沙坪坝区校级期中)已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F ,O 为坐标原点,点P 为双曲线C 中第一象限上的一点,12F PF ∠的平分线与x 轴交于Q ,若214OQ OF =,则双曲线的离心率取值范围为( ) A .(1,2) B .(1,4) C. D.【答案】B【解析】由214OQ OF =,知Q 在线段2OF 上,且234QF c =,又12F PF ∠的平分线与x 轴交于Q ,所以1122554334c PF QF PF QF c ===, 所以1253PF PF =,又122PF PF a -=, 所以2223PF a =,又点P 为双曲线C 中第一象限上的一点,所以2PF c a >-, 所以226c a a -<,所以4ce a=<,又1e >,故14e <<.故选B .题型四 利用几何性质求双曲线的标准方程1.(2019秋•荔湾区期末)已知双曲线的中心在原点,焦点在x 轴上,焦距为8,离心率为2,则该双曲线的方程为( )A .221204x y -= B .221412x y -= C .2211648x y -=D .2216416x y -=【答案】B【解析】由题意可设双曲线的标准方程为22221x y a b-=,因为双曲线的焦距为8,则28c =,所以4c =, 又双曲线的离心率为2ca=,所以2a =,则22216412b c a =-=-=, 所以双曲线的标准方程为221412x y -=,故选B .2.(2020•梅州二模)已知双曲线2222:1(0,0)x y C a b a b -=>>的渐近线方程为34y x =±,且其一个焦点为(5,0),则双曲线C 的方程为( )A .221916x y -=B .221169x y -=C .22134x y -=D .22143x y -=【答案】B【解析】由双曲线的方程及渐近线的方程可得:34b a =,即34a b =,又由题意可得5c =,且222c a b =+, 所以解得216a =,29b =,所以双曲线的方程为:221169x y -=,故选B .题型五 求双曲线的离心率1.(2021秋•河北期中)已知双曲线22:14x y C m -=(m = )A .2B .4C .8D .12【答案】B【解析】双曲线22:14x y C m -=,∴c a ==4m =.故选B .题型六 与渐进线有关的问题1.(2021秋•温州期中)已知双曲线222:19x y C b-=的焦距为10,则双曲线C 的渐近线方程为( )A .916y x =±B .169y x =±C .43y x =±D .34y x =±【答案】C【解析】双曲线222:19x y C b-=的焦距为10,210c ∴=,5c =,3a =,22925916b c ∴=-=-=,4b ∴=,∴双曲线C 的浙近线方程为43b y x x a =±=±.故选C .2.(2021秋•福州期中)已知F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的渐近线方程为( )A .y =B .y x =C .2y x =±D .12y x =±【答案】A【解析】F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x轴.若AB 的斜率为3,可得23b a c a =-,可得223()c a c a a-=-,解得2c a =,即2224a b a +=,所以ba=C 的渐近线方程为:y =.故选A .1.(2021秋•福州期中)已知F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的渐近线方程为( )A .y =B .y x =C .2y x =±D .12y x =±【答案】A【解析】F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x轴.若AB 的斜率为3,可得23b a c a =-,可得223()c a c a a-=-,解得2c a =,即2224a b a +=,所以ba=C 的渐近线方程为:y =.故选A .2.(2021秋•沙坪坝区校级期中)若双曲线22221(0,0)y x a b a b-=>>率的取值范围是( )A .)+∞B .C .)+∞D . 【答案】D【解析】依题意双曲线22221(0,0)y x a b a b-=>>经过一、三象限的渐近线斜率为k ,当k >时,可知a b >,则离心率c e a ==.故选D .3.(2021秋•北海月考)已知双曲线22:1412x y C -=的左、右焦点分别为1F ,2F ,O 为坐标原点,点P 在C 的一条渐近线上,若2||||OP PF =,则△12PF F 的面积为( ) A.B.C.D.【答案】D【解析】由题意知1(4,0)F -,2(4,0)F,渐近线的方程为y =, 因为2||||OP PF =,故点P 在线段2OF 的中垂线2x =上,故0||y = 所以△12PF F的面积为1201||||2F F y ⋅=.故选D .4.(2021秋•河南期中)如图,已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F ,过点2F 作直线l 交双曲线C 的右支于A ,B 两点.若1||||AB AF =,且△1~F AB △21F F B ,则双曲线C 的离心率为()A .2 BC .32D .4【答案】A【解析】由过点2F 作直线l 交双曲线C 的右支于A ,B 两点.所以12||||2AF AF a -=,1||||AB AF =, 所以,2||||2AB AF a -=,所以2||2BF a =,又12||||2BF BF a -=,所以1||4BF a =, 因为△1~F AB △21F F B ,所以1121AF F F ABF B=,又1||||AB AF =,所以112||||BF F F =,所以42a c =,所以离心率2ce a==,故选A . 5.(2021秋•福建期中)双曲线2222:1(0)x y C a b a b-=>>的左、右焦点分别是1F 、2F ,直线y kx =与曲线C交于A ,B 两点,11||3||AF BF =,且1260F AF ∠=︒,则双曲线C 的离心率是 .【解析】设1||BF t =,因为11||3||AF BF =,则1||3AF t =,2||AF t =,所以212||||32a BF BF t t t =-=-=,2||AF a =,1||3AF a =,在三角形12AF F 中,由余弦定理可得:22212941cos 232a a c AF F a a +-∠==⨯⨯,整理可得:2c =,所以离心率e =.6.(2021秋•沙坪坝区校级期中)已知点P 在双曲线22:1169x y C -=左支上,1F ,2F 是其左、右焦点,若1260F PF ∠=︒,1211||||PF PF -= . 【答案】29【解析】设1||PF m =,2||PF n =,由双曲线的定义可知8n m -=,在△12PF F 中,由余弦定理可得22100cos602m n mn+-︒=,22100m n mn ∴+-=,2()2100n m mn mn ∴-+-=,即36mn =, ∴211212||||1182||||||||369PF PF n m PF PF PF PF mn ---====,故答案为:29.。
双曲线常见题型与典型方法归纳(修改版 附详解答案)

双曲线常见题型与典型方法归纳考点一 双曲线标准方程及性质1.双曲线的定义第一定义:平面内与两个定点21,F F 距离的差的绝对值等于|)|2(221F F a a <的点的轨迹。
(1)距离之差的绝对值.(2)当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支;当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支;当2a =|F 1F 2|时,轨迹是同一直线上以F 1、F 2为端点向外的两条射线;当2a >|F 1F 2|时,动点轨迹不存在. 【典例】到两定点()0,31-F 、()0,32F 的距离之差的绝对值等于6的点M 的轨迹( )A .椭圆B .线段C .双曲线D .两条射线 第二定义:平面内与一个定点F 和一条定直线l 的距离的比是常数)1(>e 的动点的轨迹。
2双曲线的标准方程及几何性质标准方程)0,0(12222>>=-b a by a x )0,0(12222>>=-b a bx a y 图形性 质焦点 F 1(-)0,c ,F 2()0,c F 1(),0c -,F 2(),c o焦距 | F 1F 2|=2c 222c b a =+范围 R y a x ∈≥,|| R x a y ∈≥,||对称 关于x 轴,y 轴和原点对称顶点 (-a ,0)。
(a ,0) (0,-a )(0,a )轴 实轴长2a ,虚轴长2b离心率)1(>=e ace (离心率越大,开口越大) 准线ca x 2±=ca y 2±=通径22b d a=22b d a=渐近线x ab y ±= x bay ±=注意:等轴双曲线(1)定义:实轴长与虚轴长相等的双曲线 (2)方程:222x y a -=或222y x a -= (3)离心率e =渐近线y x =±(4)方法:若已知等轴双曲线经过一定点,则方程可设为22(0)x y λλ-=≠ 【典例】 已知等轴双曲线经过点1)-,求此双曲线方程 3双曲线中常用结论(1)两准线间的距离: 22a c (2)焦点到渐近线的距离为b (3)通径的长是ab 22考点二 双曲线标准方程一 求双曲线标准方程的方法(1)定义法,根据题目的条件,若满足定义,求出相应a b c 、、即可求得方程; (2)待定系数法,其步骤是①定位:确定双曲线的焦点在哪个坐标轴上;②设方程:根据焦点的位置设出相应的双曲线方程; ③定值:根据题目条件确定相关的系数。
高中数学双曲线经典考点及例题讲解

双曲线考纲解读 1.根据双曲线的定义和性质求标准方程;2.根据双曲线的标准方程求双曲线的性质:离心率、渐近线等;3.利用双曲线定义及性质解决简单的直线与双曲线的关系问题.[基础梳理]1.双曲线的定义(1)平面内与两个定点F1,F2的距离之差的绝对值(|F1F2|=2c>0)为非零常数2a(2a<2c)的点的轨迹叫做双曲线.这两个定点叫作双曲线的焦点,两焦点间的距离叫作焦距.(2)集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.①当2a<|F1F2|时,M点的轨迹是双曲线;②当2a=|F1F2|时,M点的轨迹是两条射线;③当2a>|F1F2|时,M点不存在.2.双曲线的标准方程与几何性质x2y2y2x2[三基自测]1.双曲线x 23-y 22=1的焦距为( )A .32 B.5 C .2 5 D .45答案:C2.若双曲线E :x 29-y 216=1的左、右焦点分别为F 1,F 2,点P 在双曲线E 上,且|PF 1|=3,则|PF 2|等于( )A .11B .9C .5D .3 答案:B3.x 22+m -y 2m +1=-1表示双曲线,则m 的范围为________. 答案:(-∞,-2)∪(-1,+∞) 4.(2017·高考全国卷Ⅰ改编)双曲线x 2-y 23=1的渐近线方程为________. 答案:y =±3x考点一 双曲线定义及应用|易错突破[例1] (1)已知两圆C 1:(x +4)2+y 2=2,C 2:(x -4)2+y 2=2,动圆M 与两圆C 1,C 2都相切,则动圆圆心M 的轨迹方程是( )A .x =0 B.x 22-y 214=1(x ≥2) C.x 22-y 214=1 D.x 22-y 214=1或x =0 (2)已知双曲线x 2-y 224=1的两个焦点为F 1,F 2,P 为双曲线右支上一点.若|PF 1|=43|PF 2|,求△F 1PF 2的面积.[解析] (1)动圆M 与两圆C 1,C 2都相切,有四种情况:①动圆M 与两圆都外切;②动圆M 与两圆都内切;③动圆M 与圆C 1外切、与圆C 2内切;④动圆M 与圆C 1内切、与圆C 2外切.在①②情况下,显然,动圆圆心M 的轨迹方程为x =0;在③的情况下,设动圆M 的半径为r ,则|MC 1|=r +2,|MC 2|=r - 2.故得|MC 1|-|MC 2|=22;在④的情况下,同理得|MC 2|-|MC 1|=2 2. 由③④得|MC 1|-|MC 2|=±2 2.已知|C 1C 2|=8,根据双曲线定义,可知点M 的轨迹是以C 1(-4,0),C 2(4,0)为焦点的双曲线,且a =2,c =4,b 2=c 2-a 2=14,其方程为x 22-y 214=1.(2)由双曲线的定义可得|PF 1|-|PF 2|=13|PF 2|=2a =2,解得|PF 2|=6,故|PF 1|=8,又|F 1F 2|=10,故三角形PF 1F 2为直角三角形,因此S △PF 1F 2=12|PF 1|×|PF 2|=24.[答案] (1)D[易错提醒][纠错训练]1.(2018·陕西师大附中模拟)设过双曲线x 2-y 2=9右焦点F 2的直线交双曲线的左支于点P ,Q ,F 2为双曲线的右焦点.若|PQ |=7,则△F 2PQ 的周长为( )A .19B .26C .43D .50解析:如图,由双曲线的定义可得⎩⎪⎨⎪⎧|PF 2|-|PF 1|=2a , ①|QF 2|-|QF 1|=2a , ②①+②得|PF 2|+|QF 2|-|PQ |=4a , ∴△F 2PQ 的周长为|PF 2|+|QF 2|+|PQ | =4a +|PQ |+|PQ |=4×3+2×7=26.答案:B2.已知F 1,F 2为双曲线x 25-y 24=1的左,右焦点,P (3,1)为双曲线内一点,点A 在双曲线上,求|AP |+|AF 2|的最小值.解析:由题意知,|AP |+|AF 2|=|AP |+|AF 1|-2a ,要求|AP |+|AF 2|的最小值,只需求|AP |+|AF 1|的最小值,当A ,P ,F 1三点共线时,取得最小值,则|AP |+|AF 1|=|PF 1|=37,∴|AP |+|AF 2|=|AP |+|AF 1|-2a =37-2 5.考点二 双曲线的方程及性质|方法突破命题点1 求双曲线的方程[例2] (1)已知焦点在y 轴上的双曲线C 的一条渐近线与直线l :x +3y =0垂直,且C 的一个焦点到l 的距离为3,则双曲线C 的标准方程为( )A.y 29-x 23=1 B.x 29-y 23=1 C.y 24-x 26=1 D.x 24-y 26=1 (2)若双曲线经过点(3,2),且渐近线方程是y =±13x ,则双曲线的方程是________。
高二数学双曲线知识点及经典例题分析

高二数学双曲线知识点及经典例题分析1. 双曲线第一定义:平面内与两个定点F 1、F 2的距离差的绝对值是常数(小于|F 1F 2|)的点的轨迹叫双曲线。
这两个定点叫双曲线的焦点,两焦点间的距离|F 1F 2|叫焦距。
2. 双曲线的第二定义:平面内与一个定点的距离和到一条定直线的距离的比是常数e (e>1)的点的轨迹叫双曲线。
定点叫双曲线的焦点,定直线叫双曲线的准线,常数e 叫双曲线的离心率。
3. 双曲线的标准方程:(1)焦点在x 轴上的:x a y b a b 2222100-=>>(),(2)焦点在y 轴上的:y a x ba b 2222100-=>>(),(3)当a =b 时,x 2-y 2=a 2或y 2-x 2=a 2叫等轴双曲线。
注:c 2=a 2+b 24. 双曲线的几何性质:()焦点在轴上的双曲线,的几何性质:11002222x x a y ba b -=>>()<>≤-≥1范围:,或x a x a<2>对称性:图形关于x 轴、y 轴,原点都对称。
<3>顶点:A 1(-a ,0),A 2(a ,0)线段A 1A 2叫双曲线的实轴,且|A 1A 2|=2a ; 线段B 1B 2叫双曲线的虚轴,且|B 1B 2|=2b 。
<>=>41离心率:e ca e () e 越大,双曲线的开口就越开阔。
<>±5渐近线:y bax =<>=±62准线方程:x a c5.若双曲线的渐近线方程为:x ab y ±= 则以这两条直线为公共渐近线的双曲线系方程可以写成: )0(2222≠=-λλby a x【典型例题】 例1. 选择题。
121122.若方程表示双曲线,则的取值范围是()x m y m m +-+=A mB m m ..-<<-<->-2121或C m mD m R ..≠-≠-∈21且2022.ab ax by c <+=时,方程表示双曲线的是()A. 必要但不充分条件B. 充分但不必要条件C. 充分必要条件D. 既不充分也不必要条件322.s i n s i n cos 设是第二象限角,方程表示的曲线是()ααααx y -=A. 焦点在x 轴上的椭圆B. 焦点在y 轴上的椭圆C. 焦点在y 轴上的双曲线D. 焦点在x 轴上的双曲线416913221212.双曲线上有一点,、是双曲线的焦点,且,x y P F F F PF -=∠=π 则△F 1PF 2的面积为( ) A B C D (963)3393例2. ()已知:双曲线经过两点,,,,求双曲线的标准方程P P 12342945-⎛⎝ ⎫⎭⎪例3. 已知B (-5,0),C (5,0)是△ABC 的两个顶点,且sin sin sin B C A -=35,求顶点A 的轨迹方程。
高考数学双曲线性质典型例题

(二)双曲线性质典型例题例1 求与双曲线191622=-y x 共渐近线且过()332-,A 点的双曲线方程及离心率. .例2 求以曲线0104222=--+x y x 和222-=x y 的交点与原点的连线为渐近线,且实轴长为12的双曲线的标准方程.例3 已知双曲线的渐近线方程为023=±y x ,两条准线间的距离为131316,求双曲线标准方程. 例4 中心在原点,一个焦点为()01,F 的双曲线,其实轴长与虚轴长之比为m ,求双曲线标准方程.例5 求中心在原点,对称轴为坐标轴经过点()31-,P 且离心率为2的双曲线标准方程.例6 已知点()03,A ,()02,F ,在双曲线1322=-y x 上求一点P ,使PF PA 21+的值最小. 例7 已知:()11y x M ,是双曲线12222=-by a x 上一点.求:点M 到双曲线两焦点1F 、2F 的距离.例9 如图所示,已知梯形ABCD 中,CD AB 2=,点E 满足EC AE λ=,双曲线过C 、D 、E 三点,且以A 、B 为焦点,当4332≤≤λ时,求双曲线离心率的取值范围. 例10 设双曲线12222=-by a x )0(b a <<的半焦距为c ,直线l 过)0,(a 、),0(b 两点, 且原点到直线l 的距离为c 43,求双曲线的离心率.例11 在双曲线1131222=-x y 的一支上有三个点),(11y x A 、)6,(2x B 、),(33y x C 与焦点)5,0(F 的距离成等差. (1)求31y y +; (2)求证线段AC 的垂直平分线经过某个定点,并求出定点的坐标.例12 根据以下条件,分别求出双曲线的标准方程. (1)过点)2,3(-P ,离心率25=e . (2)已知双曲线的右准线为4=x ,右焦点为)0,10(F ,离心率2=e .(3)1F 、2F 是双曲线的左、右焦点,P 是双曲线上一点,且︒=∠6021PF F ,31221=∆F PF S ,又离心率为2. 例13 已知双曲线12222=-by a x 的离心率21+>e ,左、右焦点分别为1F 、2F ,左准线为l ,能否在双曲线的左支上找到一点P ,使得1PF 是P 到l 的距离d 与2PF 的等比中项?例14 直线1+=kx y 与双曲线122=-y x 的左支相交于A ,B 两点,设过点)0,2(-和AB 中点的直线l 在y 轴上的截距为b ,求b 的取值范围.例15 已知1l ,2l 是过点)0,2(-P 的两条互相垂直的直线,且1l ,2l 与双曲线122=-x y 各有1A ,1B 和2A ,2B 两个交点. (1)求1l 的斜率1k 的取值范围;(2)若22115B A B A =,求1l ,2l 的方程; (3)若1A 恰是双曲线的一个顶点,求22B A 的值. 例16 已知双曲线的渐近线方程是043=+y x ,043=-y x ,求双曲线的离心率.例17 已知双曲线S 的两条渐近线过坐标原点,且与以)0,2(A 为圆心,1为半径的圆相切,双曲线S 的一个顶点'A 和A 关于直线x y =对称,设直线l 过点A ,斜率为k .(1)求双曲线S 的方程;(2)当1=k 时,在双曲线S 的上支求点B ,使其与直线l 的距离为2;(3)当10<≤k 时,若双曲线S 的上支上有且只有一个点B 到直线l 的距离为2,求斜率k 的值及点B 的坐标. 例18 如右图,给出定点)0,(a A )0(>a 和直线1-=x l :, B 是直线l 上的动点,BOA ∠的角平分线交AB 于C ,求点C 的轨迹方程,并讨论方程表示的曲线类型与a 值的关系\例19 已知双曲线C 的实轴在直线2=x 上,由点)4,4(-A 发出的三束光线射到x 轴上的点P 、Q 及坐标原点O 被x 轴反射,反射线恰好分别通过双曲线的左、右焦点1F 、2F 和双曲线的中心M .若4=PQ ,过右焦点的反射光线与右准线交点的纵坐标为98,求双曲线C 的方程和入射光线AP 、AQ 所在直线的方程.。
双曲线知识点归纳与例题分析

双曲线知识点归纳与例题分析双曲线是解析几何中重要的曲线之一,它有着许多特殊的性质和应用。
本文将对双曲线的知识点进行归纳,并结合例题进行分析,帮助读者更好地理解和应用双曲线的相关概念。
一、基本概念双曲线是平面上满足特定几何性质的曲线,由平面上到两个给定的点的距离之差等于一个常数构成。
常见的双曲线方程有两种形式:椭圆型和双曲型。
椭圆型的方程形如:$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$,而双曲型的方程形如:$$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$$。
其中,a和b分别是椭圆的长轴和短轴的长度。
二、性质与特点1. 焦点和准线:双曲线的焦点是曲线上到两个定点的距离之和等于常数的点,而准线是指到两个定点的距离之差等于常数的直线。
在椭圆型的双曲线中,焦点和准线位于曲线的长轴上,而在双曲型双曲线中,焦点和准线位于曲线的短轴上。
2. 渐近线:双曲线的两条渐近线是曲线的一种特殊性质。
渐近线与曲线的距离趋于无穷远,但始终不与曲线相交。
在双曲型的双曲线中,渐近线的斜率等于正负短轴与长轴之比。
而在椭圆型的双曲线中,渐近线的斜率等于正负长轴与短轴之比。
3. 对称性:双曲线具有关于x轴、y轴和原点的对称性。
即在曲线上一点(x, y)处,如果(x, -y)也在曲线上,那么曲线关于x轴对称;如果(-x, y)也在曲线上,那么曲线关于y轴对称;如果(-x, -y)也在曲线上,那么曲线关于原点对称。
三、例题分析下面通过几个例题来加深对双曲线的理解:例题1:已知双曲线的焦点为(2, 0),离心率为2,求该双曲线的方程。
解析:根据离心率的定义可知,双曲线的离心率e满足$$e=\frac{\sqrt{a^2+b^2}}{a}$$,其中a和b分别为双曲线椭圆型方程中长轴和短轴的长度。
因此,代入题目中的离心率2,可以得到2=\frac{\sqrt{a^2+b^2}}{a}。
解方程可得a=\sqrt{5},再根据焦点所在的位置可知,椭圆型方程的焦点是位于横轴上的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一部分 双曲线相关知识点讲解一.双曲线的定义及双曲线的标准方程:1 双曲线定义:到两个定点F 1与F 2的距离之差的绝对值等于定长(<|F 1F 2|)的点的轨迹(21212F F a PF PF <=-(a 为常数))这两个定点叫双曲线的焦点.要注意两点:(1)距离之差的绝对值.(2)2a <|F 1F 2|,这两点与椭圆的定义有本质的不同.当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; 当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支;当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线; 当2a >|F 1F 2|时,动点轨迹不存在.2.双曲线的标准方程:12222=-b y a x 和12222=-bx a y (a >0,b >0).这里222a c b -=,其中|1F 2F |=2c.要注意这里的a 、b 、c 及它们之间的关系与椭圆中的异同. 3.双曲线的标准方程判别方法是:如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上.对于双曲线,a 不一定大于b ,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上.4.求双曲线的标准方程,应注意两个问题:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解. 二.双曲线的内外部:(1)点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>的内部2200221x y a b ⇔->.(2)点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>的外部2200221x y a b ⇔-<.三.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x aby ±=.(2)若渐近线方程为x aby ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222b y a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x轴上,0<λ,焦点在y 轴上). 四.双曲线的简单几何性质22a x -22by =1(a >0,b >0)⑴范围:|x |≥a ,y ∈R⑵对称性:关于x 、y 轴均对称,关于原点中心对称 ⑶顶点:轴端点A 1(-a ,0),A 2(a ,0) ⑷渐近线:①若双曲线方程为12222=-b y a x ⇒渐近线方程⇒=-02222b y a x x aby ±=②若渐近线方程为x a by ±=⇒0=±b y a x ⇒双曲线可设为λ=-2222b y a x③若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上)④与双曲线12222=-b y a x 共渐近线的双曲线系方程是λ=-2222by a x )0(≠λ⑤ 与双曲线12222=-by a x 共焦点的双曲线系方程是12222=--+k b y k a x 六.弦长公式:若直线y kx b =+与圆锥曲线相交于两点A 、B ,且12,x x 分别为A 、B 的横坐标,则AB 2121k x +-,若12,y y 分别为A 、B 的纵坐标,则AB =21211y y k -+。
第二部分 典型例题分析题型1:运用双曲线的定义例1. 如图所示,F 为双曲线1169:22=-y x C 的左 焦点,双曲线C 上的点i P 与()3,2,17=-i P i 关于y 轴对称,则F P F P F P F P F P F P 654321---++的值是( ) A .9 B .16 C .18 D .27[解析] =-F P F P 61=-F P F P 52643=-F P F P ,选C练习:设P 为双曲线11222=-y x 上的一点F 1、F 2是该双曲线的两个焦点,若|PF 1|:|PF 2|=3:2,则△PF 1F 2的面积为 ( ) A .36 B .12 C .312 D .24解析:2:3||:||,13,12,121====PF PF c b a 由 ①又,22||||21==-a PF PF ② 由①、②解得.4||,6||21==PF PF,52||,52||||2212221==+F F PF PF为21F PF ∴直角三角形,.124621||||212121=⨯⨯=⋅=∴∆PF PF S F PF 故选B 。
题型2 求双曲线的标准方程例2 已知双曲线C 与双曲线162x -42y =1有公共焦点,且过点(32,2).求双曲线C 的方程.解:设双曲线方程为22a x -22by =1.由题意易求c =25.又双曲线过点(32,2),∴22)23(a -24b =1.又∵a 2+b 2=(25)2,∴a 2=12,b 2=8.故所求双曲线的方程为122x -82y =1.练习:1已知双曲线的渐近线方程是2x y ±=,焦点在坐标轴上且焦距是10,则此双曲线的方程为 ; 解:设双曲线方程为λ=-224y x , 当0>λ时,化为1422=-λλy x ,2010452=∴=∴λλ, 当0<λ时,化为1422=---λλy y ,2010452-=∴=-∴λλ, 综上,双曲线方程为221205x y -=或120522=-x y 2.已知点(3,0)M -,(3,0)N ,(1,0)B ,动圆C 与直线MN 切于点B ,过M 、N 与圆C 相切的两直线相交于点P ,则P 点的轨迹方程为A .221(1)8y x x -=<- B .221(1)8y x x -=> C .1822=+y x (x > 0) D .221(1)10y x x -=> [解析]2=-=-BN BM PN PM ,P 点的轨迹是以M 、N 为焦点,实轴长为2的双曲线的右支,选B 题型3 与渐近线有关的问题 例3.焦点为(0,6),且与双曲线1222=-y x 有相同的渐近线的双曲线方程是A .1241222=-y xB .1241222=-x y C .1122422=-x y D .1122422=-y x[解析]从焦点位置和具有相同的渐近线的双曲线系两方面考虑,选B练习:过点(1,3)且渐近线为x y 21±=的双曲线方程是解:设所求双曲线为()2214x y k-= 点(1,3)代入:135944k =-=-.代入(1):22223541443535x y x y -=-⇒-=即为所求. 题型4 弦中点问题——设而不求法例4. 双曲线122=-y x 的一弦中点为(2,1),则此弦所在的直线方程为 ( ) A. 12-=x y B. 22-=x y C. 32-=x y D. 32+=x y解:设弦的两端分别为()()1,12,2,A x y B x y .则有:()()222222111212121222121222101x y y y x x x x y y x x y y x y ⎧-=-+⇒---=⇒=⎨-+-=⎩. ∵弦中点为(2,1),∴121242x x y y +=⎧⎨+=⎩.故直线的斜率121212122y y x xk x x y y -+===-+.则所求直线方程为:()12223y x y x -=-⇒=-,故选C.练习:1.在双曲线1222=-y x 上,是否存在被点M (1,1)平分的弦?如果存在,求弦所在的直线方程;如不存在,请说明理由.【错解】假定存在符合条件的弦AB ,其两端分别为:A (x 1,y 1),B (x 2,y 2).那么:()()()()()22111212121222221112011212x y x x x x y y y y x y ⎧-=⎪⎪⇒-+--+=⎨⎪-=⎪⎩.∵M (1,1)为弦AB 的中点,∴()()()1212121212122022AB x x y y x x y y k y y x x +=⎧----=∴==⎨+=-⎩代入1:2, 故存在符合条件的直线AB ,其方程为:()12121y x y x -=-=-,即. 这个结论对不对呢?我们只须注意如下两点就够了:其一:将点M (1,1)代入方程1222=-y x ,发现左式=1-1122=<1,故点M (1,1)在双曲线的外部;其二:所求直线AB 的斜率2AB k =,而双曲线的渐近线为y =.2,说明所求直线不可能与双曲线相交,当然所得结论也是荒唐的.问题出在解题过程中忽视了直线与双曲线有公共点的条件. 【正解】在上述解法的基础上应当加以验证.由()()222221221224302221y x x x x x y x ⎧-=⎪⇒--=⇒-+=⎨⎪=-⎩这里16240∆=-,故方程(2)无实根,也就是所求直线不合条件. 结论;不存在符合题设条件的直线.2. 已知双曲线1222=-y x ,问过点A (1,1)能否作直线l ,使l 与双曲线交于P 、Q 两点,并且A 为线段PQ 的中点?若存在,求出直线l 的方程,若不存在,说明理由。
解:设符合题意的直线l 存在,并设),(21x x P 、),(22y x Q则⎪⎪⎩⎪⎪⎨⎧=-=-)2(12)1(1222222121y x y x﹙1﹚)2(-得))((2121x x x x +-)3())((212121y y y y +-=因为A(1,1)为线段PQ 的中点,所以⎩⎨⎧=+=+)5(2)4(22121y y x x 将(4)、(5)代入(3)得 )(212121y y x x -=- 若21x x ≠,则直线l 的斜率22121=--=x x y y k ,其方程为012=--y x⎪⎩⎪⎨⎧=--=121222y x x y 得03422=+-x x 根据08<-=∆,说明所求直线不存在。
3.已知中心在原点,顶点A 1、A 2在x 轴上,离心率e =321的双曲线过点P (6,6) (1)求双曲线方程 (2)动直线l 经过△A 1P A 2的重心G ,与双曲线交于不同的两点M 、N ,问 是否存在直线l ,使G 平分线段MN ,证明你的结论解 (1)如图,设双曲线方程为2222b y a x -=1 由已知得321,16622222222=+==-a b a e b a ,解得a 2=9,b 2=12 所以所求双曲线方程为12922y x -=1(2)P 、A 1、A 2的坐标依次为(6,6)、(3,0)、(-3,0),∴其重心G 的坐标为(2,2)假设存在直线l ,使G (2,2)平分线段MN ,设M (x 1,y 1),N (x 2,y 2) 则有22121112221212224129108124,493129108x x x y y y y y x x x y ⎧+=-=⎧-⎪⇒==⎨⎨+=--=⎪⎩⎩,∴k l =34∴l 的方程为 y =34 (x -2)+2,由⎪⎩⎪⎨⎧-==-)2(3410891222x y y x ,消去y ,整理得x 2-4x +28=0 ∵Δ=16-4×28<0,∴所求直线l 不存在 题型5 综合问题1.已知中心在原点的双曲线C 的右焦点为()2,0,右顶点为).(Ⅰ)求双曲线C 的方程(Ⅱ)若直线:=l y kx 与双曲线恒有两个不同的交点A 和B 且2•>OA OB (其中O 为原点),求k 的取值范围解(1)设双曲线方程为22221-=x y a b由已知得2==a c ,再由2222+=a b ,得21=b故双曲线C 的方程为2213-=x y . (2)将=y kx 2213-=x y得22(13)90---=k x 由直线l与双曲线交与不同的两点得()222213036(13)36(1)0⎧-≠⎪⎨∆=+-=->⎪⎩k k即213≠k 且21<k . ① 设(),,(,),A A A B A x y B x y ,则229,1313-+==--A B A B x y x y k k,由2•>OA OB 得2+>A B A B x x y y ,而2((1)()2+=+=+++A B A B A B A b A B A B x x y y x x kx kx k x x x x2222296237(1)222131331-+=++=---k k k k k k k . 于是2237231+>-k k ,即2239031-+>-k k 解此不等式得21 3.3<<k ② 由①+②得2113<<k 故的取值范围为33(1,,133⎛⎫--⎪ ⎪⎝⎭2.已知两定点1(2,0),F -2(2,0),F 满足条件212PF PF -=的点P 的轨迹是曲线E ,直线y=kx -1与曲线E 交于A 、B 两点。