薄膜干涉 等厚干涉和等倾干涉
02光程差 等倾干涉 等厚干涉

光程 、光程差 厚度均匀薄膜干涉----等倾干涉 劈尖干涉----等厚干涉
1
光程、光程差
一、光程 相位差在分析光的叠加时十分重要,为便于计算光 通过不同介质时的相位差,引入光程概念。 光通过媒质时频率 不变,但波长 要变,设为 n。
真空中 a λ ·
介质中 r
b ·
18
劈尖干涉
劈尖——夹角很小的两个平面所构成的薄膜。 劈尖干涉在膜表面附近形成明、暗相间的条纹。 观察劈尖干涉的实验装置
S ·
反射光2 1 2
*
: 4 ~ 105 rad 10
1、2两束反射光来自 同一束入射光,它们 可以产生干涉 。
19
单色平行光
反射光1
n A e n n ( 设n > n )
2en2 ' (1 sin 2 r ) 2n2e cos r cos r
2 2n2 e 1 sin 2 r 2e n2 n12 sin 2 i
11
未考虑半波损失时
2 2e n2 n12 sin 2 i
i
2
①
n ②1 n2
d e
考虑半波损失:
n3
'
l
ek
ek+1
e
有
e e k 1 e k
2n
设条纹间距为l
Δe l sin 2n sin
很小,
sin
l l 22 2nl 条纹间距大,更好测量。 2n
4、劈尖干涉的应用 1) 测、n或θ。 2) 测微小直径、厚度 (或镀膜厚度)。 e L L 2nl
薄膜干涉等厚条纹等倾条纹

利用光具组将同一列波分解,使它们经过不同的途径后重 新相遇,由于这样的两列波由同一列波分解而来,它们频 率相同,位相差稳定,振动方向也可做到基本平行,因而 满足相干条件,能产生干涉图样。实际的干涉装置按分解 波列的方法不同分为两种: i)分波前法将点光源的波前分割为两部分的波列分解法称 为分波前法,杨氏双缝是分波前法的典型代表 ii)分振幅法利用两种媒质的界面将振幅分解为反射和透 射两部分的波列分解法称为分振幅法。分振幅法的典型代 表是薄膜干涉和迈克尔逊干涉仪。
膜厚增大,条纹细锐 中心条纹没有周围细锐
28
2.观察等倾条纹时扩展光源的作用
29
3.薄膜干涉的定域问题
30
31
32
33
i) 条纹偏离等厚线:
14
ii) 反衬度下降:
15
6. 薄膜的颜色、增透膜和高反膜
16
增透膜
17
18
高反膜
(1) (2) (3) (4) (5) (6) (1) (2) (3) (4) (5) (6) H L H L H L H
基底
19
20
降低反射率
黑硅
21
作业:P300, 2, 3, 5, 6
8
2.薄膜表面的等厚条纹(i固定h变化)
光程差计算:
9
10
3.楔形薄膜的等厚干涉
11
12
4.牛顿圈(环)
13
5.等厚干涉条纹的观测方法及倾角的影响
严格的等厚干涉要求点光源、正入射。但扩展光源、斜入射,用眼睛 也能观察到干涉现象。主要是眼睛的瞳孔对光束进行了限制,只是干 涉的结果会受到一定的影响。
中心处条纹较稀疏。
膜厚增大,条纹变密。
27
ch2-8等倾干涉和等厚干涉

四、薄膜干涉的应用
1. 牛顿环实验装置
显微镜 T
L S
M半透 半反镜
R
r
h
测量透镜的曲率半径
工件 标准件
检测透镜质量
测量透镜的曲率半径
rm2 = mR λ
r2 m+N
=
(m +
N )Rλ
测出任意两级暗环的半径(或直 径),数出它们的级数差N,则透镜 的曲率半径
三、等倾干涉和等厚干涉的基本特征
1)干涉条纹为光程差相同的点的轨迹。 对等倾干涉,干涉条纹的相同级次对应相同入射角的光线与薄膜表 面交点的轨迹对应;对等厚干涉,干涉条纹的相同级次对应厚度相 等的点的轨迹。厚度线性增长条纹等间距,厚度非线性增长条纹不 等间距。 2)反射光的干涉图样和透射光的干涉图样是互补的。 3)当入射光为白光时,干涉条纹将带上彩色,而且条纹变得模糊。 4)随着薄膜厚度的增大,当光程差超过入射光的相干长度时,就看
的不同而变化。
S
n1
θ
n
h
i n2
单色点光源照明下的等顷干涉
反射光总光程差:
Δl
=
⎧ ⎪2hn cos i ⎨
±
λ
2
⎪⎩2hn cos i
n1, n2 < n或n1, n2 > n n1 < n < n2或n1 > n > n2
干涉条纹特点:具有相同入射角的光线与薄膜表面交点的轨迹对应 干涉条纹的相同级次。
以反射光为例,并设n1,n2<n,则
亮纹条件: 2hn cos i + λ = jλ
2
j=0, 1, 2, 3, ···
《光的干涉》 知识清单

《光的干涉》知识清单一、光的干涉现象当两束或多束光在空间中相遇时,它们会相互叠加,在某些区域光的强度增强,而在另一些区域光的强度减弱,这种现象被称为光的干涉。
光的干涉现象是光具有波动性的重要证据之一。
最常见的光的干涉现象包括杨氏双缝干涉和薄膜干涉。
杨氏双缝干涉实验是托马斯·杨在 1801 年进行的,通过这个实验,他成功地证明了光的波动性。
在这个实验中,一束光通过两个相距很近的狭缝,在屏幕上形成了明暗相间的条纹。
薄膜干涉则常见于肥皂泡、水面上的油膜等,它们表面呈现出的彩色条纹就是薄膜干涉的结果。
二、光的干涉条件要产生光的干涉现象,需要满足以下几个条件:1、两束光的频率必须相同。
这是因为只有频率相同的光,在相遇时才能产生稳定的干涉现象。
如果两束光的频率不同,它们的相位差会随时间快速变化,无法形成稳定的干涉条纹。
2、两束光的振动方向必须相同或具有平行的分量。
如果两束光的振动方向相互垂直,它们之间无法发生有效的干涉。
3、两束光的相位差必须保持恒定。
这意味着两束光在传播过程中,它们的相位关系不能随意变化,否则也无法形成稳定的干涉条纹。
三、杨氏双缝干涉1、实验装置杨氏双缝干涉实验装置由光源、单缝、双缝和屏幕组成。
光源发出的光经过单缝形成一束线光源,再通过双缝形成两束相干光,在屏幕上产生干涉条纹。
2、干涉条纹的特点(1)条纹间距相等:相邻的明条纹或暗条纹之间的距离是相等的。
(2)明暗相间:屏幕上交替出现明亮的条纹和黑暗的条纹。
(3)中央条纹为亮纹:在屏幕中央位置,是最明亮的条纹。
3、条纹间距的计算条纹间距可以通过公式Δx =λL/d 来计算,其中Δx 是条纹间距,λ 是光的波长,L 是双缝到屏幕的距离,d 是双缝之间的距离。
四、薄膜干涉1、形成原理薄膜干涉是由于光线在薄膜的上、下表面反射后相互叠加而产生的。
当一束光照射到薄膜上时,一部分光在薄膜的上表面反射,另一部分光透射到薄膜内部,在薄膜的下表面反射,然后这两束反射光在薄膜上方相遇,发生干涉。
薄膜干涉概述

2
通常习惯上用入射角i表示光程差:
由于 cos 1 sin2 1 ( n1 )2 sin2 i
n2
2n2e
n22
n12 sin2 i n22
2
2e
n22
n12
sin2
i
2
2
❖透射光的光程差
同理,可得 2e n22 n12 sin2 i
与反射光不同的是,没有半波损失。
3、干涉加强、减弱条件
6
2、光程差分析
S
❖反射光的光程差
S1
设n2>n1,设薄膜厚度为e,a1、 a2 为两平行相干光。
作 BD⊥AD , 则 反 射 光 的 光
程差为AD,总光程差为
Δ=n2(AC+CB)-n1AD +
2
a
a1
iD
i
e
A
B
C
a2
n1
n2
n1
界面AB上反射光线a1有半波损失 故有 (也可用 )
❖为达到反射光干涉相消的目的,
则要求从介质透明薄膜的外界面
ai
(空气与薄膜的接触面)与内界
面(薄膜与透镜等的接触面)上
e
反射回来的光振幅要接近相等,
使干涉相消的合振幅接近于零。
b1
b
a1
n1 1
n2 1.38
n3 1.8
这就要求选择合适的透明介质薄膜,使其折射率介于空气和玻
璃面的某一恰当的数值。通常选氟化镁作增透膜。
射本领,例如,激光管中谐振腔内的反射镜,宇航员的头盔和 面甲等。为了增强反射能量,常在玻璃表面上镀一层高反射率 的透明薄膜,利用薄膜上、下表面的反射光的光程差满足干涉 相长条件,从而使反射光增强,这种薄膜叫增反膜。
等倾干涉与等厚干涉的比较

目录本科生毕业论文诚信声明 (1)等厚干涉与等倾干涉的比较 (2)中文摘要 (2)英文摘要 (2)1. 引言 (2)2 等厚干涉和等倾干涉 (2)2.1等厚干涉 (2)2.2等倾干涉 (3)3.干涉条纹之比较 (4)3.1 牛顿环干涉条纹的半径和间距 (4)3.2等倾干涉条纹的半径和间距 (4)3.3 两种干涉条纹形状的比较 (5)4 .干涉条纹移动规律之比较 (5)参考文献 (5)致谢 (6)本科生毕业论文诚信声明本人郑重声明:所呈交的本科毕业论文,是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。
对本文的研究做出重要贡献的个人和集体均已在文中以明确方式明。
本人完全意识到本声明的法律结果由本人承担。
作者签名:二0一年月日等厚干涉与等倾干涉的比较刘xx,付文羽(陇东学院电气工程学院,甘肃庆阳 74500)摘要:对牛顿环等厚干涉和薄膜等倾干涉条纹形成原理, 干涉条纹的半径、间距、干涉级次等进行比较和分析, 揭示两种相似条纹的本质区别。
关键词:等厚干涉等倾干涉条纹半径条纹间距干涉级次Thickness Interference And Isoclinic InterferenceLIU xx, FU Wen-yu(Electrical Engineering College,Longdong University,Qingyang 74500,Gansu)Abstract:Of Newton ring thickness interference and film isoclinic interference fringe formation principle, the radius of the interference fringes,spacing,interference levels compare and analysis,reveals the essential difference between two similar stripe.Key Words: Isopach interference Isoclinic interference Stripe radiusFringe spacing Interference levels1 引言在光学教学中,关于等倾干涉和等厚干涉学生理解起来往往比较困难,有时显得似是而非,容易望文生义从字面上认为“等厚干涉”是指薄膜厚度是等厚的干涉这一错误结论,从而把等倾干涉和等厚干涉混淆起来,笔者通过几年的教学,总结出了等倾干涉和等厚干涉的异同点,以便学习。
《薄膜干涉》 讲义

《薄膜干涉》讲义一、什么是薄膜干涉在日常生活中,我们可能会观察到一些有趣的光学现象,比如肥皂泡表面呈现出五彩斑斓的颜色,或者油膜在水面上形成的彩色条纹。
这些现象的背后,其实都隐藏着薄膜干涉的原理。
薄膜干涉,简单来说,就是当一束光照射到薄膜上时,一部分光在薄膜的上表面反射,另一部分光穿过薄膜在其下表面反射,这两束反射光相互叠加,从而产生干涉现象。
要理解薄膜干涉,首先我们需要知道光的波动性。
光具有波的特性,就像水波一样,当两列波相遇时,如果它们的振动频率相同、相位差恒定,就会发生干涉现象。
在薄膜干涉中,这两束反射光就相当于两列光波。
二、薄膜干涉的条件并不是所有的薄膜都能产生明显的干涉现象,要发生薄膜干涉,需要满足一定的条件。
首先,薄膜的厚度要足够薄。
通常来说,薄膜的厚度要与光的波长相当或者更薄。
这是因为如果薄膜太厚,两束反射光的光程差太大,干涉效果就不明显。
其次,薄膜的折射率要不均匀。
薄膜的上下表面的折射率不同,这样才能导致光在上下表面反射时产生相位差。
此外,入射光的相干性要好。
相干性是指光的振动频率和相位在时间和空间上的一致性。
只有相干性好的光,才能产生明显的干涉条纹。
三、薄膜干涉的类型薄膜干涉主要有两种类型:等厚干涉和等倾干涉。
等厚干涉是指薄膜的厚度相同的地方,干涉条纹相同。
比如劈尖干涉和牛顿环就是典型的等厚干涉。
劈尖干涉可以通过将两块玻璃板叠在一起,在一端插入薄片形成劈尖状来实现。
当平行光垂直入射时,在劈尖的上表面和下表面反射的两束光会发生干涉,形成明暗相间的平行条纹。
条纹间距与劈尖的夹角以及光的波长有关。
牛顿环则是将一个曲率半径很大的平凸透镜放在一块平面玻璃上,在两者之间形成一个空气薄膜。
当光垂直入射时,在空气薄膜的上表面和下表面反射的光发生干涉,形成同心圆环状的干涉条纹。
等倾干涉是指薄膜的厚度均匀,但入射角不同时,干涉条纹不同。
当一束平行光以不同的入射角入射到薄膜上时,不同入射角对应的光程差不同,从而形成不同的干涉条纹。
波动光学第2讲 等倾干涉、等厚干涉、牛顿环 PPT课件

由于单色光在劈尖上下两
个表面后形成①、②两束反射
光,满足光的干涉条件,由薄
膜干涉公式:
很小, cos r 1,n1 n2 n3
2nd
k
2
k (k 1,2)
(2k 1) (k 0,1,2)
2
n
加强 减弱
18
讨论
① 棱边处
dk=0,光程差为
dk
说明工件表面是凹还是凸?
并证明深度可用下式求的。
h b
a2
a
b 23
ba h
a
b
d k 1
dk h
解: 干涉条纹弯曲说明工件表面不平,
因为k 级干涉条纹各点都相应于同一气隙厚度,
如果条纹向劈尖棱的一方弯曲,由式
2d (2k 1)
2
2
说明该处气隙厚度有了增加,可判断该处为下凹
互减弱(加强),两者是互补的.
11
4、镀膜技术
在光学器件中,由于表面上的反射与透 射,在器件表面要镀膜,来改变反射与透射光 的比例。可有增透膜,增反膜。
例如:较高级的照相机的镜头由 6 个透镜组成, 如不采取有效措施,反射造成的光能损失可达 45%~90%。为增强透光,要镀增透膜,或减反膜。 复杂的光学镜头采用增透膜可使光通量增加 10 倍。
由于同一条纹下的空 气薄膜厚度相同,当待测 平面上出现沟槽时条纹向 左弯曲。
光学平板玻璃
待测平面
22
例3
利用空气劈尖的等厚干涉条纹可以检测工件表 面存在的极小的凹凸不平。
在经过精密加工的工件表面上放一光学平面玻 璃,使其间形成空气劈尖,用单色光垂直照射玻璃 表面
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i 0
d n2
7
2n2d
2
2k
( 2k
2
1)
2
k 1,2,相长干涉 k 0,1,2,相消干涉
讨论
(1) 同一厚度 d 对应同一级条纹——等厚条纹
(2) 两相邻明条纹(或暗条纹)对应的厚度差都等于
dk 1
dk
2n2
若为空气层时,相邻明条纹(或暗条纹)对应的厚度差
dk 1
dk
2
8
1. 劈尖干涉
(3) 使用面光源条纹更清楚明亮
(4) 透射光图样与反射光图样互补
i
薄膜干涉的一般情况是相当复杂的。其干涉的特征与光源的尺 寸、膜的厚薄和形状以及如何观测都有十分密切的关系。
16
等倾条纹
牛顿环
如何在实验上区分上述条纹是等倾还是牛顿环?
牛顿环与等倾条纹都是内疏外密的圆环形条纹 牛 顿 环:级次由环心向外递增 等倾条纹:级次由环心向外递减
明条纹到第 31 条明条纹的距离为 4.295 mm
求 金属丝直径 D
解
sin D
L
aD
L2
D L
a2
D
由题知 a 4.295 0.143 17mm
L
30
直径 D L λ 28.880 1 0.589 3103 mm a 2 0.14317 2
0.05944mm
12
例 一平面单色光波垂直照射在厚度均匀的薄油膜上,油膜覆 盖在玻璃板上,所用光源波长可连续变化,观察到500nm和 700nm这两个波长的光在反射中消失。油的折射率为1.30, 玻璃的折射率为1.50
实 验
x D
d
2
光程和光程差
光程是一个折合量,在相位改变相同的条件下,把光在介质
中传播的路程折合为光在真空中传播的路程
x nr
2π 0
透镜物象等光程原理像点是物点光线经来自透镜后干涉加强点s
s
物点发出的经透镜折射后到 像点的所有光线的光程相等
透镜能改变物象间光线传 播方向,但不附加光程差
3
例 用折射率 n =1.58 的很薄的云母片覆盖在双缝实验中的一条 缝上,这时屏上的第七级亮条纹移到原来的零级亮条纹的 位置上。如果入射光波长为 550 nm
2n2d
1 cosγ
sin
γ
tanγ
2n2dcosγ
6
光程差 2n2dcos
考虑半波损失
2n2dcos
2
n1 1 2 n2 A C d
n1
B
δ
2n2dcosγ
λ 2
2k
( 2k
λ 2 1)
λ
k 1, 2, k 0,1, 2,
2
相长干涉 相消干涉
光线垂直入射
入射光 反射光1 反射光2
dmax
kλ 2n2
7.2 107
m
(3) 最外暗环逐渐向外扩大,中心点明暗交替变化,
条纹级数逐渐减少
14
二. 等倾干涉(厚度均匀的薄膜)
两条光线的光程差
S
P
L
E
n2 AB BC n1AD
2n2dcos
考虑到有半波损失
δ
2n2dcosγ
λ 2
iD
n1
d
A γ
C n2
B n3 n1
半径
2
r kR
k 0 ,1,2 , 暗 纹
rk2m rk2 m R
讨论
(1) 测透镜球面的半径 R
已知 , 测 m、rk+m、rk,可得 R
(2) 测波长
已知 R,测出 m 、 rk+m、rk, 可得
(3) 检测透镜的曲率半径误差及其表面平整度
(4) 若接触良好,中央为暗纹——半波损失
求 此云母片的厚度是多少?
解 设云母片厚度为 d 。无云母片时,零级亮纹在屏上 P 点, 则到达 P 点的两束光的光程差为零。加上云母片后,到达 P 点的两光束的光程差为
(n 1)d
当 P 点为第七级明纹位置时
P
7
d
7λ
7 550 109
d
6.6 106 m
n 1 1.58 1
4
§14.5 薄膜干涉
问 (1)油滴与玻璃交界处是明条纹还是暗条纹?
(2)油膜的最大厚度是多少?
(油: n2=1.60, 玻璃: n3=1.50)
(3)若油滴逐渐摊开,条纹将如何变化
解 (1)因n1<n2,n2>n3,所以要考虑半波损失
由光程差
2n2d
λ 2
n2 n3
交界处 d = 0 对应于 k = 0 的暗纹
(2) 中心点为 k = 4 的暗纹
当膜层厚度减少时,牛顿环的环纹向外扩张,等倾条纹则相反
17
(5) 透射图样与反射图样互补
样板 待测 透镜 条纹
11
例 为了测量一根细的金属丝直径 D,按图办法形成空气劈尖,
用单色光照射形成等厚干涉条纹,用读数显微镜测出干涉明 条纹的间距,就可以算出 D。已知 单色光波长为589.3 nm, 测量结果是:金属丝与劈尖顶点距离 L=28.880 mm,第1条
求 油膜的厚度
解 根据题意,不需考虑半波损失,暗纹的条件为
2nd (2k 1) 1
2
2nd [2(k 1) 1] 2
2
d 12
500 700
2n(1 2 ) 2 1.30 (700 500)
6.73102 (nm)
13
例 在平面玻璃板上滴一滴油,用 =576nm 的单色光垂直照射, 从反射光中看到图示的干涉条纹。
2n2dcos
2
2k
2
(2k
1)
2
k 1,2,3相长干涉 k 0,1,2,相消干涉
15
条纹特点
(1) 等倾干涉条纹为一系列同心圆 环;内疏外密;内圆纹的级次 比外圆纹的级次高
PE i
(2) 膜厚变化时,条纹发生移动。 当薄膜厚度增大时,圆纹从
i n1
中心冒出,并向外扩张,条
d
纹变密
n2 n1
C
R
光程差
L
2d
2
B
r
A O
S d
R 2 r 2 ( R d ) 2 R>>d, 消去d2 d r 2
B
2R
明纹 2 r 2 2k ,k 1,2,3,
2R 2 2
暗纹 2 r 2 (2k 1) ,k 0,1,2,
2R 2
2
T M A
10
r (2k 1) R k 1,2,3,明纹
5
一. 等厚干涉(分振幅法)
两条光线的光程差
S·
反射光2 反射光1
n2 AB BC n1DC
AB BC d cos DC AC sin i sin i 2d tan n1 sin i n2sin
2
n1 1 i D
n2
AC
d
n1
B
光程差 2n2 AB n1DC
2n2d cosγ n1 sin i 2d tanγ
光垂直入射时,两相邻条纹对应的空气层厚度差都等于
dk 1
dk
2
明暗
纹纹 中中
a
相邻条纹之间距 asinθ
心心
讨论
2
(1) 空气劈尖顶点处是一暗纹 —— 半波损失 dk
2
dk+1
(2) 可测量小角度θ、微位移 x、微小直径 D、波长 λ 等
(3) 测表面不平整度
等厚条纹
平晶
D
待测工件
9
2. 牛顿环
大学物理
1
相干条件:频率相同、相位差恒定 、光矢量振动方向平行
相干叠加 I P I1 I 2 2 I1I 2 co s
普通光源 相干光: 同一原子的同一次发光
获得相干光的方法 1. 分波阵面法 2. 分振幅法
杨 氏
δ
r2
r1
xd D
双 缝 干 涉
=
2k
λ 2
,
2k+1
λ 2
明条纹 ,暗条纹