第5章固溶体

合集下载

第4章:固溶体

第4章:固溶体

第4章,固溶体(Solid Solution)掺杂通常不改变(被掺杂)材料的结构类型。

因此掺杂即“固溶”(固溶体——原子水平均匀分散的固态溶液。

掺杂有间隙掺杂(间隙固溶体)和取代掺杂(代位固溶体),有原子掺杂(原子固溶体)和离子掺杂(离子固溶体)。

本章重点讨论形成固溶体的条件及规律。

“固溶体”科学,尚处于“经验总结”的发展阶段。

因此,对于相关“结论”/“总结”,不能绝对化。

杂质原子导入引起晶格畸变,一定区域内的原子拉或压应力,系统能量增加。

当能量增加到一定程度,主体结构不再稳定,这就是固溶极限。

“15%规律”的不严格性:掺杂导致晶格畸变和能量升高,从而限制了极限掺杂量。

晶格畸变和能量升高,不但与尺寸差(ΔR)有关,同时与掺杂原子或离子的性质有关(例如可变形性),以及主结构的键合力(材料的理论弹性模量E)有关。

材料的E 越大,掺杂原子的尺寸限制就越严格,这时ΔR可能降低到8~10%。

相反,若主体结构较为开放,E较小,ΔR可能增大到21%。

一般而言:ΔR<15%:形成连续固溶体(必要条件,而非充要条件);15%~30%:形成有限固溶体;ΔR>30%,固溶度很低或不能形成固溶体。

b) 电负性因素:掺杂原子和主结构原子的Pauling 电负性差别越大,元素周期表中距离越远,元素间易形成化合物(ΔE > 0.4),而不易形成固溶体。

另一较普遍的规律:当掺杂原子在体系中可以多种状态存在是,它的固溶度将发生改变。

物种越稳定,固溶度越小。

例如,Fe-C固溶体中,碳可有两种形态——FeC3或石墨,石墨远比FeC3稳定,因此,FeC3在Fe中的固溶度远大于C。

二元合金体系:掺杂金属原子的价电子数与主体金属 原子的价电子数差别越大,固溶度越低。

例如:Zn (二价)、Ga(三价)、Ge(四价)、As(五价)在 一价金属(Cu、Ag、Au)中的固溶度分别为38.5 at%、 19.5 at%、11.8 at%、7 at%。

第五章 相平衡

第五章  相平衡

b.同一相内物质间有浓度限制条件R′
5.3 相律
相律
例如:合成氨时系统内有N2,H2,NH3 N2+3H2=2NH3
Kp p p p
2 NH 3 3 N2 H 2
C= S-R C =S-R-R´ 5.3 相律
相律
C = S - R - R'
注意: (1)R---表示独立的化学平衡数。有时系统中可以 存在很多化学平衡,但是独立的并不多。
5.3 相律
相律
自由度(degree of freedom) 系统内独立可变因素的数目称为自由度,用字母f 表示。独立可变因素包括压力、温度和浓度等。
独立可变因素是指在一定范围内这些可变因素变 化时,不会引起相的改变,既不会使原有相消失, 也不会增加新的相。
5.3 相律
相律
相律(phase rule)
Φmin=1
fmin=0
(3)可求系统中最多相数Φ
max
5.3 相律
相律
例题(P336,习题4):已知Na2CO3(s)和 H2O(l)可以生成三种水合物: Na2CO3· H2O(s), Na2CO3· 7H2O(s)和 Na2CO3· 10H2O(s),试求: (1) 在大气压力下,与Na2CO3水溶液和冰 平衡共存的水合盐的最大值; (2) 在298K时,与水蒸气平衡共存的水合 盐的最大值。
单组分系统的两相平衡
解:
p2 vap H m 1 1 (1) ln p1 R T1 T2 p2 34170J m ol1 1 1 ln 1 1 10.02kPa 8.314J m ol K 293K 303K p2 15.91kPa
5.1 引言

物理化学第五章2

物理化学第五章2

2、 等压T-x-y图( 沸点组成图 )
T x y
( yA )
p
等温p x
p
T4 T3 T2
T : 纯B物质的沸点 T : 纯A物质的沸点
A
B A
T1
B
x1
x2 xA
x3
x4
p xA yA p
T x y
气相线
A
T
TB
液相线
p
B
TA
xA
A
( yA )
T
B
T
A
T
B
T
A
l
完全互溶双液系
两个纯液体组分可以按任意比例相互混合 成均一液相的体系,称为完全互溶双液系(或 液体混合物)。
理想的完全互溶双液系
若混合溶液中任一组分在全部浓度范围内, 其蒸气压与液相组成的关系都符合Raoult定律, 则这样的双液系称为理想的完全互溶双液系(或 理想的液体混合物)。
B A
A A A B
说明1 液相线是直线,
p pA pB p ( p p ) xA
B B A
B
A
B
p p 气相线不是直线, p pA ( p pA ) yA
p
气相线
液相线

?
说明2
p p
A
B
yB pB p xB yA pA p xA
答案:A
三、杠杆规则
1、物系点与相点? 2、杠杆规则的内容? 3、杠杆规则推导的依据? 4、杠杆规则在相图中的应用?
三、杠杆规则 1、物系点与相点
物系点: 相图中表示体系总状态(总组 成、温度和压力)的点称为物系点。

第五章 固溶体半导体材料

第五章 固溶体半导体材料
第五章 固溶体半导体 材料
李斌斌

5.1 固溶体的概念
5.2 SiGe固溶体 5.3 应用 Nhomakorabea

5.1 固溶体

凡在固体条件下,一种组分(溶剂)内“溶解” 了其它组分(溶质)而形成的单一、均匀的晶态 固体称为固溶体。
固溶体半导体材料是某些元素半导体或者化合物 半导体相互溶解而形成的一种具有半导体性质的 固态溶液材料,又称为混晶半导体或者合金半导 体。

SiGe合金是目前较为成熟的一种高温热电材料, 适用于制造由放射线同位素供热的温差发电器, 并已得到实际应用。
1977年旅行者号太空探测器首次采用SiGe合金作 为温差发电材料; 在此后美国NASA的空间计划中,SiGe差不多完 全取代PbTe材料。


其它内容

见教材
赝晶生长--共度生长

临界厚度---应力没有释放
产生位错和形成表面起伏是释放SiGe失配应 力的两种方式。


当Ge组分较低时(x<0.2),通过产生位错 来释放失配引起的应力; 当Ge组分介于0.2~0.6之间时将会导致形成 台阶,诱导生成均匀的3D岛; 当Ge组分大于0.6时,遵循SK模式三维生长, 利于形成表面起伏来释放失配引起的应力。 可以用来生长高组分表面起伏的多量子阱



电学性质--禁带宽度
Eg ( x) a bx cx
2 2
1.115 0.43x 0.0206 x (0 x 0.85)
Eg ( x) 2.01 1.27 x(0.85 x 1)
带隙和温度的关系
E
Si g
1.206 2.7310 T
4

固溶体

固溶体

固溶体
掺杂、溶解
M gVO M g O A l2 O 3 2 ' 2
A l O
O
A l M gO 2x
x
3x(x0~2) 2
原子(离子)尺度
与主相Al2O3相同 均匀单相
2019/6/6
3
固溶体、化合物、机械混合物
形成方式 反应式
化学组成 混合尺度
结构 相组成
化合物 化学反应
M g O A l2 O 3 A lM g 2 O 4 AlMg2O4
原子(离子)尺度 AB2O4型结构-新相
单相
2019/6/6
4
固溶体、化合物、机械混合物
形成方式 反应式
化学组成 混合尺度
结构 相组成
机械混合物 简单的机械混合 MgOAl2O3 均匀混合
MgOAl2O3
晶体颗粒态 MgO结构+Al2O3结构 两相(或多相),有界面
r1 r2 r1
<15%
形成连续固溶体
15%~30% 形成有限固溶体
>30%
不能形成固溶体
如:MgO-CoO固溶体,溶质-溶剂晶体可
按任意比例无限互溶
(MgXCo1-X)O,X=0~1, (rMg2+= 0.08nm; rCo2+=0.074nm)
结构相同 半径相似
【电例负】性半相径近差别大电:价M相gO同-CaO系SS----有限
Z r
i
O
2019/6/6
20
小结:期在不等价置换固溶体中,可能出现的四种 “组分缺陷”
高价置换低价
阳离子出现空位 阴离子进入间隙 低价置换高价
C2 a K C C C lK l V a K 2 C C C2 a K C C C lK lC a li C C

第5章 材料的形变和再结晶4

第5章 材料的形变和再结晶4

steel or, lead. Platinum and white gold are, at present, the most popular materials.
White gold(白金) is an alloy of gold (i.e., it is gold and silver or palladium(钯). This is where the concept of Karat (开,克拉) comes in. Karat is a measure of the purity of the material.
2. 晶粒越细,塑韧性提高
细晶粒材料中,应力集中小,裂纹不易萌生; 晶界多,裂纹不易传播,在断裂过程中可吸收较 多能量,表现出高韧性。
晶界在塑性变形中的作用
协调作用:协调相邻晶粒变形
障碍作用:阻碍滑移的进行 促进作用:高温变形时两相邻晶粒沿晶界滑动 起裂作用:晶界阻碍滑移晶界应力集中
Strength or elongation
Cu
回答:为什么钻戒不用纯金而是用白金作为托 架的问题?
利用合金固溶强化理论,白金的硬度显然比纯金的高 ,以保证钻石不会从戒指中脱落。
4)屈服现象与应变时效
①屈服现象
上屈服点:试样开始屈服时对应的应力
下屈服点:载荷首次降低的最低载荷 屈服伸长:试样在此恒定应力下的伸长
拉伸试验时, p 接近于恒定。

m'
塑形变性前,ρm很低,v很大,τ 很大;这就是上屈服点 高的原因。
3. 弥散强化 4. 加工硬化
6. 应变时效
7. 柯氏气团 8. 形变织构
Questions?
1. 为什么工程上很少用纯金属?

固溶体的分类

固溶体的分类

则化学式为:Ca2yZr1-yO2 x、y为待定参数,可根据实际掺入量确定。
3、 举例
以添加了0.15molCaO的ZrO2固溶体为例。 (1)置换式固溶体:化学式 CaxZr1-xO2-x 即Ca0.15Zr0.85O1.85。ZrO2属立方晶系,萤石结 构,Z=4,晶胞中有Ca2+、Zr4+、O2-三种质点。
2、活 化 晶 格
形成固溶体后,晶格结构有一定畸变, 处于高能量的活化状态,有利于进行化学 反应。如,Al2O3熔点高(2050℃),不利 于烧结,若加入TiO2,可使烧结温度下降 到1600℃,这是因为Al2O3与TiO2形成固溶 体,Ti4+置换Al3+后, 带正电,为平 衡电价,产生了正离子空位,加快扩散, 有利于烧结进行。
第二节
置换型固溶体
(一)形成置换固溶体的影响因素
1、离子尺寸因素 2、离子的电价因素 3、晶体的结构因素 4、电负性因素

第三节 间隙型固溶体
形成间隙型固溶体的条件
间隙式固溶体的固溶度仍然取决于离子尺寸、离 子价、电负性,结构等因素。
1、 杂质质点大小
即添加的原子愈小,易形成固溶体,反之亦然。
第四章
第一节



固溶体的分类
按杂质原子在固溶体中的位置分类
固溶体的分类1
置换型固溶体:杂质原子 进入晶体中正常格点位置 所生成的固溶体。 间隙型固溶体:杂质原 子进入溶剂晶格中的间隙 位置所生成的固溶体。
第一节
固溶体的分类
按杂质原子在晶体中的溶解度分类
固溶体的分类2
无限型固溶体:溶质和溶 剂两种晶体可以按任意比 例无限制地相互固溶。 有限型固溶体:溶质只 能以一定的溶解限量溶 入到溶剂中 。

材料科学基础-第五章 材料的相结构及相图

材料科学基础-第五章 材料的相结构及相图

相律在相图中的应用
C
2 二元系
P 1 2
3 1
f 2 1 0
3 2 1 0
含义
单相合金,成分和温度都可变 两相平衡,成分、相对量和温度 等因素中只有一个独立变量 三相平衡,三相的成分、相对 量及温度都确定 单相合金其中两个组元的含量 及温度三个因素均可变 两相平衡,两相的成分、数量 及温度中有两个独立变量 三相平衡,所有变量中只有 一个是独立变量 四相平衡所有因素都确定不变
结构简单的具有极高的硬度及熔点,是合金工具钢和硬 质合金的重要组成相。
I. 间隙化合物
间隙化合物和间隙固溶体的异同点
相同点: 非金属原子以间隙的方式进入晶格。
不同点: 间隙化合物:间隙化合物中的金属组元大多与自 身原来的结构类型不同 间隙固溶体:间隙固溶体中的金属组元仍保持自 身的晶格结构
I. 尺寸因素
II. 晶体结构因素 组元间晶体结构相同时,固溶度一般都较大,而且有可 能形成无限固溶体。若不同只能形成有限固溶体。
III. 电负性差因素
两元素间电负性差越小,越易形成固溶体,且形成的 固溶体的溶解度越大;随两元素间电负性差增大,固 溶度减小。

1)电负性差值ΔX<0.4~0.5时,有利于形成固溶体 2)ΔX>0.4~0.5,倾向于形成稳定的化合物
Mg2Si
Mg—Si相图
(2)电子化合物
由ⅠB族或过渡金属元素与ⅡB,ⅢB,ⅣB族元素 形成的金属化合物。 不遵守化合价规律,晶格类型随化合物电子浓度 而变化。 电子浓度为3/2时: 呈体心立方结构(b相); 电子浓度为21/13时:呈复杂立方结构(g相); 电子浓度为21/12时。呈密排六方结构(e相);
NaCl型 CaF2型 闪锌矿型 硫锌矿型 (面心立方) (面心立方) (立方ZnS) (六方ZnS)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宝石名称 淡红宝石 红宝石 紫罗兰宝石
基体 Al2O3 Al2O3 Al2O3
Al2O3 黄玉宝石 Mg(AlO2) 海蓝宝石 桔红钛宝石 2 TiO2 蓝钛宝石 TiO2

2.固溶体的电性能 PbTiO3 PbZrO3
PZT
29
思考题
1.为什么PZT用一般的烧结方法达不到
透明,而PLZT可以?
Ni2+ Ca2+ MgO-BeO Mg2+ Be2+ BeO-CaO Be2+ Ca2+
BaO-BeO
Ba2+ Be2+
13.6 2.7
10.9
13
离子尺寸因素

在相互取代的两种离子半径相差较大的体系 中,通常较大的离子比较容易被取代。
Na2SiO3-Li2SiO3体系
Na2SiO3中:50%的Na+可被Li+取代 Li2SiO3中:10%的Li+可被Na+取代
5
固溶体的分类
B 填隙型固溶体:溶质原子半径较小的 H、C、B、N等进入金属晶格的间隙。

6
固溶体的分类
2.
按杂质原子/离子在晶体中溶解度划分:
A 无限固溶体(连续固溶体或完全互溶 固溶体) B 有限固溶体(不连续固溶体或部分互 溶固溶体)
固溶体的性质
纯的Al2O3单晶是无色透明的,称为白宝石。 通过加入不同添加剂形成固溶体,可以形成 不同颜色的宝石。 Cr3+使Al2O3变成红色的原因:

红宝石强烈吸收 可见光中的篮紫 光,因而呈现红 色。
27
固溶体的性质

人造宝石
颜色 淡红色 红色 紫色 金黄色 蓝色 桔红色 蓝色 着色剂(%) Cr2O3 0.01-0.05 Cr2O3 1-3 TiO2 0.5 Cr2O3 0.1 Fe2O3 1.5 NiO 0.5 Cr2O3 0.01-0.05 CoO 0.01-0.05 Cr2O3 0.05 28 氧不足
22

3.传感器和控制器 贮氢合金生成氢化物后,氢达到一定平 衡压,在温度升高时,合金压力也随之升高。 根据这一原理,只要将一小型贮氢器上的压 力表盘改为温度指示盘,经校正后即可制成 温度指示器。这种温度计体积小,不怕震动, 温度测量准确,这种温度传感器还可改制成 火警报警器。
23
4.高性能充电电池—镍氢电池的负
极材料
5、氢同位素的分离
24
终端用户
氢能社会构想再生能
源制氢 电厂 加氢站
天然气制氢
燃料电池工厂
CO2处理
25
5.5 固溶体的性质
1.固溶体的光性能 利用加入杂质离子可以对晶体的的光学性能 进行调节或改变。 例: PZT 除了采用热等静压烧结之外,是无 法获得透明的烧结体的。在 PZT 中加入少量 La2O3 ,生成所谓的 PLZT , PLZT 可用热压 烧结或在高 PbO 气氛下通氧烧结形成透明烧 结体。 26
20
储氢合金的应用

储氢合金可在低压力下储存,除非外部加热, 否则不会放出氢气。因此,用储氢合金储存 氢安全可靠。 储氢合金还可以用于提纯和回收氢气,它可 将氢气提纯到很高的纯度。例如,采用储氢 合金,可以以很低的成本获得纯度高于 99.9999% 的超纯氢。
21
2.蓄热、热泵
,而放氢时又吸收 同量热,而且在吸放氢气的反应热很大,因 而可用于化学蓄热和化学热泵。
固 溶 体
主讲教师:闫尔云
1
5.1 固溶体的定义

定义:固溶体是指在固态条件下一种组元(组 分) “溶解”了其他组元而形成的单相晶态固
体。

一般把固溶体中含量较高的组元称为主晶体、
基质或溶剂,其他组元称为溶质。
2
固溶体和化合物的区别

固溶体是一种或多种原子(分子)部分取代 原有结构中的原子(分子)而不改变原有结

LiF 和 CaO

晶体结构实际上与离子尺寸、离子价是密切联系的。
16
5.4 填隙型固溶体
定义:外来杂质原子/离子进入晶格的间隙位 置形成的固溶体。 填隙型固溶体在金属中比较常见,而在无机 非金属材料中比较少见,该固溶体的生成, 通常会导致基质晶体晶格常数增大,当增大 到一定程度时,导致固溶体不稳定或分解, 因此填隙型固溶体只能生成有限固溶体。
2.形成一个简单的取代固溶体,需要满
足那些要求?
30
更复杂的固溶体机理-变价取代
31
离子补偿机制
1.产生阳离子空位 例如:NaCl中溶解少量CaCl2 2.产生填隙阴离子 例如: CaF2溶解少量YF3
32
33
11
结论:

具有近似半径的离子较容易互相取代,成分 在大范围内变化的固溶体可以在任何温度下 形成,具有稳定性;
离子半径差别在 15%-20%,固溶体可在高温 下形成; 离子半径差别大于30%,固溶体不能形成。
12


离子尺寸因素
系统 MgO-NiO NiO-CaO 离子 Mg2+ Ni2+ 半径 /nm 6.6 7.0 7.0 10.0 6.6 2.7 2.7 10.0 半径差 (R1-R2)/R1 固溶情况 /nm /% 0.4 3.0 3.9 7.3
构的同相晶体;

化合物则是由两种或两种以上不同元素的原
子或离子以固定组分形成宏观上均质的物质。
3
固溶体与机械混合物的区别
机械混合物:多相体系,各物相保持各
自的结构和性质;
固溶体:均匀的单相,其结构与掺杂物
无关,性质与基质晶体有着显著的不同。
4
5.2 固溶体的分类

1. 按杂质在固溶体中的位置 A 取代 ( 置换 ) 型固溶体:杂质原子或离子直 接代替母体结构中带相同电性的原子或离子。

17
18
储氢合金

重要的填隙型固溶体:储氢合金 稀土金属与氢气反应生成稀土氢化物 REH2 ,这种
氢化物加热到1000C以上才会分解。而在稀土金属
中加入另一种吸氢量小或根本不吸氢的金属元素形
成合金后,在较低温度下也可吸放氢气,通常将这
种合金称为储氢合金。
19
储氢合金的应用
1.氢气的贮存和提纯 稀土系储氢合金可以储存大量的氢气。1984年, 日本川崎重工业株式会社用储氢合金制造了世界上 第一个最大的储氢装置,这个装置是用一种含镧铈 混合稀土元素的镍钛合金制成的,能储存 175 标准 立方米体积的氢气,储氢量相当于 25 个 150 个大气 压力的高压氢气瓶。但这个储氢装置的重量比25个 高压氢气瓶的重量要轻30%,体积只有0.4立方米, 是高压氢气瓶的1/7。
14
离子价因素

只有当离子价或离子价总和相同时,才可能 生成无限固溶体,这是生成无限固溶体的必 要条件。 Ca2++Al3+=Na++Si4+
离子价总和相同:斜长石Ca1-xNaxAl2-xSixO4 CaAl2O4+Na2SiO3
类似的置换在铝硅酸盐矿物中是非常普遍的。
15
晶体结构因素

晶体结构相同是生成无限固溶体的必要条件,结构 不同最多只能生成有限固溶体。
7

无限固溶体:溶质和溶剂两种晶体可以按任 意比例无限制的相互溶解,即溶质的溶解度 可达100%。
(NixMg1-x)O x=0-1
8
如果杂质原子在固溶体中的溶解度是有
限的,存在一个溶解度极限,这样的固 溶体就称为有限固溶体。 MgO-CaO体系 Mg2+半径0.027 nm Ca2+半径0.1 nm
9
5.3 取代型固溶体

从热力学的观点,杂质原子进入晶格将引起 熵增并导致体系自由能下降。因此当T>0K时, 任何外来杂质均有一定的溶解度。 影响取代型固溶体溶解度的因素以及影响程 度,至今仍不能严格的定量计算,但已有若 干经验定律可供参考。
10

离子尺寸因素

15%规则:当原子(离子)半径之差大于15% 时,形成的固溶体的固溶度通常是有限的。 15%的计算方法:(R1-R2)/R1 (R1>R2) Al2O3-Cr2O3 Al3+:0.53 Å Cr3+:0.62 Å 按Al3+:(0.62-0.53)/0.53=16.7% 按Cr3+:(0.62-0.53)/0.62=14.5% Al2O3-Cr2O3生成连续型固溶体。
相关文档
最新文档